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Abstract 27 

Long-lasting forms of synaptic plasticity such as synaptic scaling are critically dependent on 28 

transcription. Activity-dependent transcriptional dynamics in neurons, however, have not been 29 

fully characterized, because most previous efforts relied on measurement of steady-state 30 

mRNAs. Here, we profiled transcriptional dynamics of primary neuronal cultures undergoing 31 

network activity shifts using nascent RNA sequencing. We found pervasive transcriptional 32 

changes, in which ~45% of expressed genes respond to network activity shifts. Notably, the 33 

majority of these genes respond to increases or decreases of network activity uniquely, rather 34 

than reciprocally. We further linked the chromatin regulator Retinoic acid induced 1 (RAI1), the 35 

Smith-Magenis Syndrome gene, to the specific transcriptional program driven by reduced 36 

network activity. Finally, we show that RAI1 is essential for homeostatic synaptic upscaling but 37 

not downscaling. These results demonstrate the utility of bona fide transcription profiling to 38 

discover mechanisms of activity-dependent chromatin remodeling that underlie normal and 39 

pathological synaptic plasticity.  40 

 41 
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Introduction 43 

Proper cognitive development and brain function relies on synaptic plasticity – the ability of 44 

synapses to strengthen or weaken in response to sensory or neuromodulatory inputs. Synaptic 45 

scaling is one mechanism of plasticity, which buffers potentially destabilizing patterns of network 46 

activity (Abbott and Nelson, 2000; Miller and MacKay, 1994; Turrigiano, 2008). In response to a 47 

sustained increase in neuronal firing rate, neurons decrease, or “scale-down”, the receptivity of 48 

the neuron to excitatory neurotransmitters. Conversely, global decreases in firing rate causes 49 

neurons to “scale-up” and increase synaptic efficacy. Synaptic scaling is thought to 50 

accommodate other forms of plasticity, such as long-term potentiation (LTP), that impose long-51 

lasting increase of individual synaptic efficacy, which if left uncompensated, would result in 52 

circuits that are overly active (Turrigiano, 2017). Synaptic scaling appears to play important 53 

roles in neurodevelopment, learning, and memory (Fernandes and Carvalho, 2016; Yee et al., 54 

2017). Dysregulated homeostatic plasticity is a common pathological hallmark in several 55 

neurodevelopmental disorders, including Fragile X (Soden and Chen, 2010), Rett syndrome 56 

(Zhong et al., 2012), tuberous sclerosis (Bateup et al., 2013), Kleefstra syndrome (Benevento et 57 

al., 2016), and has been proposed to underlie autism spectrum conditions (Bourgeron, 2015). 58 

To understand how homeostatic plasticity contributes to normal and pathological brain 59 

development, identifying the molecular mechanisms underlying synaptic scaling is an important 60 

first step.  61 

 62 

Long-lasting forms of synaptic plasticity, including synaptic scaling, require de novo synthesis of 63 

RNAs, which in turn produce the proteins that directly modulate synaptic efficacy (Benito and 64 

Barco, 2015; Ibata et al., 2008; Igaz et al., 2002). Increased neuronal firing leads to classic 65 

signal transduction cascades that eventually phosphorylate key transcription factors (TFs) such 66 

as cyclic AMP-response binding protein (West et al., 2002). TFs bind to specific DNA 67 

sequences, e.g. cyclic AMP-response element, and play essential roles in expression of 68 

immediate early genes (IEG), which encode key players in synaptic scaling, such as ARC 69 

(Bramham et al., 2008) and HOMER1 (Brakeman et al., 1997). Reduction of network activity 70 

leads to downregulation of these IEGs, while inducing the expression of genes that can scale up 71 

net synaptic efficacy (Schaukowitch et al., 2017). The gene expression programs triggered by 72 

reductions in network activity involves SRF, another key TF, which cooperates with the 73 

transcriptional coactivator ELK1 (Schaukowitch et al., 2017). However, molecular mechanisms 74 

underlying the transcriptional response to activity shifts remain incompletely understood.  75 

 76 
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 77 

In order to control DNA accessibility of the transcription machinery, i.e. RNA polymerase II and 78 

associated factors, TFs need to collaborate with chromatin regulators. Chromatin regulators can 79 

deposit or remove a variety of modifications on DNA and histones, thereby influencing higher 80 

order chromatin structure. The strong linkage between cognitive disorders and chromatin-81 

regulatory genes suggests that activity-dependent chromatin reorganization is essential for 82 

proper brain development and mental health (Ebert and Greenberg, 2013; Guzman-Karlsson et 83 

al., 2014; Mullins et al., 2016). The roles of many chromatin regulators have been described in 84 

activity-dependent gene expression that are linked to LTP and memory (Alarcón et al., 2004; 85 

Bourtchouladze et al., 2003; Guan et al., 2009; Gupta-Agarwal et al., 2012; Gupta-Agarwal et 86 

al., 2014; Iwase et al., 2016; Kerimoglu et al., 2013; Lim et al., 2017; Neelamegam et al., 2012; 87 

Oike et al., 1999; Oliveira, 2016; Rudenko et al., 2013; Vogel-Ciernia et al., 2013; Wang et al., 88 

2015). However, only a handful of chromatin regulators, i.e., TET3 DNA demethylase (Yu et al., 89 

2015), EHMT1/2 histone H3K9 methyltransferases (Benevento et al., 2016), and L3MBTL1 90 

methyl-histone binding factor (Mao et al., 2018) have been well-characterized for activity-91 

dependent chromatin remodeling that underlies synaptic scaling. These three chromatin 92 

regulators participate distinctly in synaptic scaling. TET3 is essential for both up- and 93 

downscaling, whereas L3MBTLl1 is essential only for synaptic downscaling.  94 

 95 

In order to dissect the mechanism by which chromatin regulators impart distinct effects on 96 

synaptic scaling, it is crucial to carefully monitor bidirectional transcriptional responses to 97 

increases or decreases in network activity. Most studies have addressed this issue using 98 

quantification of steady-state mRNA levels, using RT-qPCR, cDNA microarray, and mRNA-seq. 99 

The brain is characterized by its notorious complexity of post-transcriptional regulation, including 100 

activity-dependent mRNA splicing (Hermey et al., 2017), mRNAs stability (Widagdo and 101 

Anggono, 2018), mRNA transport and local translation (Glock et al., 2017). Therefore, changes 102 

in steady-state mRNA levels do not necessarily indicate a direct transcriptional impact of a given 103 

chromatin regulator. Thus, reliance on steady-state mRNA measurements may obscure the 104 

roles of chromatin regulators in transcription. 105 

 106 

In the present work, we developed genome-wide measurement of bona fide transcriptional 107 

dynamics in response to bidirectional network activity alterations. We then used this approach to 108 

uncover a novel role for the chromatin regulator Retinoic acid induced 1 (RAI1) in the 109 

transcriptional program specifically elicited by reduced neural activity.  RAI1 is a nucleosome 110 
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binding protein (Darvekar et al., 2012; Darvekar et al., 2013) that is consistently expressed in 111 

the brain during neurogenesis and throughout adulthood, in both mice and humans (Huang et 112 

al., 2016). RAI1 is associated with two human intellectual disability syndromes. RAI1 113 

haploinsufficiency leads to Smith-Magenis Syndrome (SMS, MIM: 182290), while duplication of 114 

the genomic region containing RAI1 results in Potocki-Lupski syndrome (PTLS, MIM: 610883) 115 

(Bi et al., 2004; Girirajan et al., 2005; Potocki et al., 2007; Slager et al., 2003), Heterozygous 116 

and homozygous Rai1-knockout (KO) mice exhibit many of the symptoms of SMS patients 117 

including learning deficits, abnormal circadian and social behavior, as well as obesity (Bi et al., 118 

2005; Bi et al., 2007; Lacaria et al., 2013) (Huang et al., 2018; Huang et al., 2016). Furthermore, 119 

heterozygous Rai1-KO mice display altered gene expression profiles and reduced dendritic 120 

spine density in the prefrontal cortex. These studies implicate a role for RAI1 in gene 121 

expression, neuronal structure, and behavior, but the precise role for RAI1 in activity-dependent 122 

transcription and synaptic plasticity remains unclear.  Here, using nascent RNA sequencing to 123 

monitor bona fide transcriptional events during network activity shifts, we define a specific role 124 

for RAI1 in the transcription program elicited by reduced network activity and show further that 125 

RAI1 is essential for homeostatic upscaling during chronic activity suppression.  126 

 127 
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Results 129 

Altered neuronal network-activity triggers genome-wide transcriptional changes 130 

We first sought to develop an experimental paradigm that allows us to monitor bona fide 131 

transcriptional dynamics in neuronal networks. To overcome the major limitation of conventional 132 

RNA-seq. i.e. profiling only steady-state RNA quantities, we adopted Bromouridine-sequencing 133 

(Bru-seq), a genome-wide profiling technique of nascent transcripts (Paulsen et al., 2014; 134 

Paulsen et al., 2013). We prepared primary forebrain neuronal cultures from E18 mouse 135 

embryos, and allowed them to mature for 17 days in vitro (DIV). To monitor bidirectional 136 

transcriptional responses to activity shifts, network activity was either elevated by 20 µm 137 

bicuculline (BIC, a GABAA-receptor antagonist) or suppressed by 1 µm tetrodotoxin (TTX, a 138 

sodium channel blocker) for 4 hours. During the last 20 minutes of BIC or TTX treatment, 139 

bromouridine (BrU) was added to the culture medium to label newly-synthesized transcripts. 140 

The labeled RNAs were isolated by immunoprecipitation using an anti-BrU antibody and 141 

subjected to next-generation sequencing (Fig. 1A).   142 

 143 

We first validated the results of Bru-seq by examining transcription of known activity-dependent 144 

genes individually. As shown in Figure 1B, we found the expected changes of Arc and Fos, 145 

which were downregulated by TTX and upregulated by BIC. Abundant intronic reads indicate 146 

that detected transcripts were recently generated and yet to be spliced. Other well-characterized 147 

activity-dependent genes such as Npas4, Egr1, Homer1, Tet3, and Txnip showed expected 148 

transcriptional dynamics (Table S1). Thus, Bru-seq reliably captures known transcriptional 149 

responses to bidirectional shifts in network activity.  150 

 151 

Following individual gene validation, we characterized genome-wide transcriptional responses 152 

to BIC and TTX. Differential gene expression analysis of the Bru-seq data using DESeq2 (Love 153 

et al., 2014) revealed widespread transcriptional changes, in which 45% of expressed genes 154 

(7,592/16,682) were significantly up- or down-regulated by network activity shifts (padj < 0.05, 155 

Fig.1C). BIC increased transcription of 2,908 genes, whereas TTX did so for 1,820 genes. The 156 

magnitude of transcriptional induction is higher in BIC treatment compared to TTX (Fig. 1D). 157 

Meanwhile, a similar number of genes were transcriptionally suppressed upon BIC (2,842) and 158 

TTX (2,307) treatments. A relatively small fraction of genes, 24% (1,798 of 7,592 activity-159 

response genes), displayed reciprocal changes between BIC and TTX treatments, e.g. 160 

upregulation by BIC and downregulation by TTX (Fig.1E). An even smaller fraction, 6% 161 

(487/7,592) of activity-response genes altered their transcription levels in the same direction 162 
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after BIC and TTX treatments. The remaining 70% of genes (5,307/7,592) responded to BIC or 163 

TTX uniquely. Supplemental Table 1 lists genes that displayed greater than 2-fold changes in 164 

transcription upon network-activity shifts.  165 

 166 

We next analyzed two published mRNA-seq datasets, which profiled the steady-state 167 

transcriptome of mouse cortical neurons treated with TTX or BIC for 4 or 6 hours (Schaukowitch 168 

et al., 2017; Yu et al., 2015) with identical processing and analyses (see methods). We found 169 

that Bru-seq identified a greater number of differentially-expressed (DE) genes compared to 170 

conventional mRNA-seq. The DE genes found in each dataset only partially overlapped 171 

(Fig.S1A). However, the groups of DE genes identified in the mRNA-seq dataset of 4-hour 172 

treatments were shifted in the same direction in Bru-seq (Fig. S1B). In contrast, the group of DE 173 

genes of the 6-hour RNA-seq dataset did not show any noticeable transcriptional changes in the 174 

Bru-seq data (Fig. S1C). These results suggest that transcriptional responses are highly 175 

dynamic and correlate with steady-state mRNA levels only in a narrow window of time (< 2 hr). 176 

Conventional mRNA-seq may not be the ideal approach to detect downregulation of 177 

transcription, because after transcription ceases, synthesized RNAs persist for certain periods 178 

of time. To test whether Bru-seq can detect transcriptional downregulation sensitively, we 179 

compared the induction and suppression of known immediate-early genes in our Bru-seq and 180 

published mRNA-seq datasets. We found significantly larger suppression of Fos, Arc, Bdnf, and 181 

Npas4 (4- to 16-fold) by TTX treatment in Bru-seq compared to conventional mRNA-seq, in 182 

which downregulation was less than 2-fold (Fig. 1F). In the Bru-seq data, the four genes showed 183 

smaller magnitudes of upregulation in response to BIC, likely because the early transcriptional 184 

induction is largely complete 4 hours after BIC treatment (Fig. S1C). These data highlight an 185 

advantage of the Bru-seq approach to probe mechanisms underlying highly-dynamic activity-186 

dependent transcription.  187 

We next examined the cell-type specificity of activity-dependent genes in our datasets. Recent 188 

studies have reported that different cell types such as astrocytes and neuronal subtypes induce 189 

distinct sets of genes in an activity-dependent manner (Hasel et al., 2017; Hrvatin et al., 2018). 190 

Using immunocytochemistry of a set of well-established markers, NeuN, GAD67, GFAP, 191 

CD11b, and Olig2, we estimated that our cultures consist of 41% excitatory neurons, 11% 192 

inhibitory neurons, 33% astrocytes, 15% of cells within the oligodendrocyte lineage, and no 193 

microglia (Fig. S2A-B). Indeed, several non-neuronal genes are represented in our dataset, 194 

including Thbs1, a known synaptic regulator specifically expressed in astrocytes (Risher and 195 
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Eroglu, 2012). Gene ontology analysis of the Bru-seq data detected enrichment of biological 196 

processes specific for both neurons and non-neuronal cell types (Table S2). For example, 197 

regulation of axon diameter (padj = 2.6 x 10−5), axonal transport of mitochondrion (padj =3.5 x 198 

10−4), and glial cell proliferation (padj: 7.8 x 10−3) represent genes that are transcriptionally 199 

induced upon BIC treatment, while transcription of genes involved in astrocyte activation are 200 

down-regulated by BIC (padj: 9.8x10−5). TTX treatment leads to increased transcription of myelin 201 

maintenance genes (padj: 7.4x10−3). Reciprocally enriched biological processes include 202 

interneuron migration (BIC Down, padj: 1.7x10−3, TTX Up, padj: 7.0x10−2) and neuropeptide 203 

signaling pathway (BIC Up, padj: 8.5x10-7, TTX down, padj: 4.7x10-5).  When we intersected 204 

published cell type-enriched genes (Zhang et al., 2014) (see Methods) with the Bru-seq data, 205 

indeed, some neuronal- and non-neuronal genes transcriptionally respond to activity shifts (Fig. 206 

S2C).  207 

 208 

RAI1 suppresses the TTX-induced transcriptional program in resting network   209 

The superior sensitivity of Bru-seq over conventional RNA-seq prompted us to assess the role 210 

of RAI1 in activity-dependent gene expression. We first determined RAI1 expression in our 211 

culture systems. Publically-available databases indicate ubiquitous Rai1 expression in a broad 212 

array of cell types in the brain (Fig. S3). Previous studies have demonstrated that Rai1 mRNA 213 

expression rises from E13.5 to peak at P7, and its expression continues throughout adulthood 214 

across brain regions (Fragoso et al., 2014; Huang et al., 2016). We developed an anti-RAI1 215 

antibody and confirmed that RAI1 protein was expressed in virtually all MAP2-positive neurons 216 

and primarily localized to the nucleus with subtle but detectable extra-nuclear signals in the 217 

soma (Fig. S4A). We found relatively low RAI1 levels in non-neuronal (MAP2-negative) cell 218 

nuclei (Fig. S4A). To examine if RAI1 protein levels or nuclear localization is altered by activity, 219 

we probed for RAI1 in cortical neurons treated with BIC, TTX, or Vehicle for 15 min, 1 hr, 2 hr, 4 220 

hr, 8 hr, or 24 hr, using Western blots and fluorescent microscopy. Neither RAI1 protein levels 221 

nor localization were visibly altered in response to drug treatment at any time-point (Fig. S4 and 222 

S5). RAI1 has been shown to occupy a large fraction of active promoters in the mouse adult 223 

cortex (Huang et al., 2016). To examine whether RAI1 preferentially occupies activity-response 224 

genes, we utilized the published RAI1 chromatin immunoprecipitation sequencing (ChIP-seq) 225 

data obtained from the cortices of 8-week old mice (Huang et al., 2016). RAI1 ChIP-seq peaks 226 

were found at promoters of ~80% genes that are expressed at detectable levels, regardless of 227 

their activity-dependent transcriptional changes (Fig. S6A). We did not find any statistically-228 
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significant enrichment or depletion of RAI1 occupancy of TTX- or BIC-response genes (Fig. 229 

S6A). Thus, these data indicate that neuronal activity does not influence RAI1’s expression level 230 

or subcellular localization and that steady-state chromatin occupancy by RAI1 is not selective 231 

between BIC or TTX-response genes. 232 

To directly test RAI1’s role in activity-dependent transcription, we went on to perform Rai1 233 

knockdown (KD) in the primary cultures using lentiviral vectors (LV) carrying Rai1- or scramble 234 

shRNAs (sh-Ctrl). To minimize impact of RAI1 loss on network connectivity, we delivered LV 235 

shRNA at DIV14, a time by which functional synapses have formed. Near complete loss of RAI1 236 

protein was achieved by 3 days post-LV infection (Fig. 2A). Next, we modulated network activity 237 

of LV-treated cultures by applying TTX or BIC for four hours. Genome-wide transcription events 238 

were assessed by Bru-seq as described above.  239 

We initially sought to establish if Rai1-KD alone was sufficient to alter nascent transcription in 240 

resting neuronal cultures. DESeq2 analysis revealed that 104 genes were downregulated and 241 

18 genes were upregulated by Rai1-KD in the Vehicle-treated condition (padj <0.05, Fig. 2B, 242 

Table S3). The greater number of downregulated genes is consistent with previous studies 243 

demonstrating that RAI1 functions predominately as a transcriptional activator (Burns et al., 244 

2010; Carmona-Mora et al., 2012; Carmona-Mora et al., 2010; Elsea and Williams, 2011; 245 

Girirajan et al., 2009; Huang et al., 2016). A majority of genes altered by Rai1-KD at baseline 246 

were either BIC- or TTX-response genes (Fig. 2C).  Of note, however, BIC- or TTX-response 247 

genes were not significantly enriched in RAI1-dependent genes when gene groups were 248 

corrected for their expression levels (data not shown).  249 

To further characterize the relationship between RAI1 deficiency and BIC- or TTX-response 250 

genes, we examined how individual genes behave upon Rai1-KD. We found a clear positive 251 

correlation between the normal transcriptional response to TTX and the transcriptional 252 

impairment by Rai1-KD at baseline (r=0.53, p=2.2x10-16, Spearman rank correlation coefficient, 253 

t-test, Fig. 2D, left panel). No correlation was found in BIC-response genes and Rai1-KD (Fig. 254 

2D, right panel). The group of genes that respond reciprocally to TTX and BIC (Fig. 1E) showed 255 

similar correlation with all TTX-responsive genes (Fig. S6B). When we removed all DE genes 256 

upon Rai1-KD from the plot, the correlation remained significant (r=0.52, p=2.2x10-16, Fig. S6C), 257 

suggesting that the correlation was not solely driven by the DE genes. We also analyzed the 258 

published mRNA-seq of the Rai1-KO cortices (Huang et al., 2016) and found a similar trend in 259 

expression pattern of the TTX- and BIC-response genes (Fig. S6D). These data indicate that 260 

RAI1 deficiency shifts the transcriptional profile towards the TTX-treated state without drug 261 
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application and that Rai1-KD does not impact transcription of non-reciprocal BIC-responsive 262 

genes. 263 

 264 

RAI1 deficiency promotes synaptic upscaling 265 

Chronic perturbation of neuronal activity by BIC or TTX is known to induce decreases and 266 

increases in synaptic strength, which respectively, underlie homeostatic synaptic downscaling 267 

and upscaling (Abbott and Nelson, 2000; Miller and MacKay, 1994; Turrigiano, 2008). Given 268 

that Rai1-KD shifted the nascent transcriptome towards the TTX-like state, we next asked 269 

whether Rai1-KD would similarly shift excitatory synapse function towards a state similar to 270 

synaptic upscaling. We used sparse transfection of DIV12-14 hippocampal cultures with either 271 

Rai1- or scrambled shRNA, and recorded miniature excitatory postsynaptic currents (mEPSCs) 272 

from transfected pyramidal-like neurons 48 hours later. If Rai1-KD induces synaptic 273 

strengthening in a cell-autonomous manner, we would expect to see a rightward shift in the 274 

distribution of mEPSC amplitudes as is observed during synaptic upscaling following chronic 275 

activity suppression with TTX. Consistent with this idea, we found that expression of two distinct 276 

shRNAs targeting Rai1 mRNA each induced a significant increase in baseline mEPSC 277 

amplitude (sh-Ctrl vs. sh-Rai1 #1: n = 21-21, p=0.019, sh-Ctrl vs. sh-Rai1 #2: n = 18-19, p = 278 

0.0011), without significantly altering mEPSC frequency or decay time (Fig 3A-D). Moreover, 279 

Rai1-KD induced a clear rightward shift in the cumulative probability distribution of mEPSC 280 

amplitudes in a manner that bears a striking similarity to changes in mEPSC distributions 281 

following chronic TTX treatment (Fig. 3E). An increase in surface expression of AMPA receptors 282 

(AMPARs) at synapses is a signature of synaptic upscaling following activity suppression. 283 

Consistent with previous observations, surface expression of the GluA1 AMPAR subunit at 284 

PSD-95-labeled excitatory synapses is significantly increased following chronic (24 hr) TTX 285 

treatment (sh-Ctrl Vehicle vs. TTX: n = 13-12, p = 0.0019, Fig. 3F). Likewise, we found a similar 286 

enhancement of surface GluA1 at synapses following 48 hr Rai1-KD (sh-Ctrl vs. sh-Rai1: n = 6-287 

6 p = 0.0065, Fig 3F). Together, these results suggest that reduced Rai1 expression induces 288 

functional changes in excitatory synaptic function that mimic synaptic upscaling induced by 289 

activity suppression.    290 

 291 

RAI1 promotes the transcriptional response to reduction in network activity  292 
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Having uncovered that RAI1 is essential to suppress the TTX-associated transcriptional 293 

program under baseline activity conditions (Fig. 2), we next tested if Rai1-KD has any impact on 294 

transcriptional induction and suppression upon TTX and BIC treatments. By calculating fold-295 

changes of transcription, we found that Rai1-KD led to a significant impairment of transcriptional 296 

response to TTX, while transcriptional response to BIC was slightly weakened only for 297 

downregulation (Fig. 4A). However, in contrast to the 130 genes transcriptionally altered at 298 

baseline, DESeq2 gave only 8 genes as DE genes by Rai1-KD post TTX or BIC treatment, 299 

indicating that the impact of Rai1-KD is larger in resting neurons compared to drug-treated 300 

neurons (Fig. 4A, Table S3).  301 

We then sought to determine if the strongly-impaired transcriptional response to TTX (Fig. 4A) 302 

was due entirely to the TTX-like transcriptional state of Rai1-KD culture at baseline or if RAI1 303 

also contributes to the transcriptional response to TTX. Differential gene expression analysis by 304 

DESeq2 relies on an arbitrary statistical significance cutoff to report differentially expressed 305 

genes. However, the individual gene plot in the baseline condition revealed a global 306 

transcriptional trend resulting from small changes in many genes including those that failed to 307 

achieve statistical significance (Fig. 2E and S6B). To define the impact of RAI1 loss after TTX- 308 

and BIC-treatment, we therefore employed this individual-gene plot approach. We found that, 309 

after TTX treatment, the transcriptional changes of TTX-response genes in Rai1-KD cultures 310 

inversely correlate with their changes upon TTX treatment in the control condition (Fig. 4C, 311 

r=0.32, p=2.2x10-16, Spearman rank correlation coefficient, t-test). No correlation of TTX-312 

response genes was observed after BIC treatment, suggesting RAI1 regulates TTX-associated 313 

transcription in baseline and TTX-treated conditions, but not under neural hyperactivation (Fig. 314 

S7A). Additionally, transcription of the BIC-response genes did not correlate with the 315 

transcription of genes in Rai1-KD cultures under any condition (Fig. 4A).  Thus, Rai1-deficiency 316 

leads to subtle yet widespread impairment of the transcriptional response to TTX but not to BIC. 317 

Taken together, the Bru-seq results led us to conclude that  1) RAI1-deficiency shifts 318 

transcriptional profiles towards an activity-suppressed state in the resting network (Fig. 2), and 319 

2) RAI1 is selectively required for the transcriptional response driven by network activity 320 

suppression (Fig. 3).  321 

We sought to explore biological implications for such small but pervasive deficits in 322 

transcriptional response to TTX. We utilized RNA-Enrich, a gene ontology algorithm, in which 323 

the entire output of DESeq2 is analyzed, such that the program takes into account statistically-324 

weaker changes in gene expression (Kim et al., 2012; Lee et al., 2016). Surprisingly, although 325 
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Rai1-KD resulted in the greatest number of DE-genes in the vehicle-treated condition, RNA-326 

Enrich identified many more RAI1-dependent biological processes after TTX treatment than 327 

vehicle- or BIC treatments (45 in TTX-, 3 in vehicle-, and 7 in BIC-treated cultures, Fig. 4B). The 328 

padj values were evidently lower in the post-TTX transcriptome data compared to BIC conditions 329 

(Fig. 4D). Furthermore, the RAI1-dependent gene ontologies after TTX treatment represent 330 

synapse-related processes, whereas those altered in the BIC and Vehicle-treated conditions 331 

show fewer ontologies directly relevant to neuronal activity (Fig. 4B and Table S4). The RNA-332 

enrich provides the identity of signature genes, called Sig-genes, which significantly contributed 333 

to the enrichment of a given ontology (Kim et al., 2012; Lee et al., 2016). As expected, the 334 

genes that contributed to the enrichment of the synapse-related ontologies (e.g. Ngf, Syn3, 335 

Cacna1b, Rab3a) showed mild transcriptional changes upon Rai1-KD, yet the changes are 336 

consistent across biological replicates (Fig. 4E and Fig. S7B).  337 

 338 

Loss of RAI1 prevents synaptic upscaling but not downscaling 339 

We next examined RAI1’s role in homeostatic synaptic scaling induced by chronic activity 340 

suppression (TTX, 24 hr) or chronic network hyperactivation (BIC, 24 hr). Consistent with the 341 

misregulation of TTX-responsive genes by Rai1-KD after TTX treatment (Fig. 4), we found that 342 

loss of RAI1 significantly impaired the induction of homeostatic upscaling during activity 343 

suppression in a cell-autonomous manner. Following transfection of scrambled or Rai1-targeted 344 

shRNAs (24 hr prior to TTX/BIC), we found that control neurons expressing the scrambled 345 

shRNA exhibited the normal increase in mEPSC amplitude 24 hr post-TTX (sh-Ctrl Veh vs TTX: 346 

n = 14-15, p = 0.0003, Fig. 6B) and the distribution of mEPSCs exhibited a clear and 347 

multiplicative rightward shift in cumulative frequency plots.  By contrast, mEPSCs from neurons 348 

expressing either of two distinct Rai1 shRNAs did not significantly increase following TTX 349 

exposure, and in fact, demonstrated a nominal trend for a decrease in amplitude (Fig. 5A-C).  350 

Despite this clear impairment of homeostatic upscaling, Rai1-KD had no effect on the induction 351 

of homeostatic downscaling following network hyperactivation with BIC (Fig. 5D-F).  Both control 352 

neurons expressing scrambled shRNA and those neurons expressing Rai1 shRNA exhibited 353 

significantly decreased mEPSC amplitudes (sh-Ctrl Veh vs BIC: n = 14-17, p = 0.0002, sh-Rai1 354 

#1 Veh vs. BIC: n = 9-8, p=0.026 and sh-Rai1 #2 Veh vs. BIC: n = 7-8, p = 0.0002, Fig. 6E), as 355 

well as a clear leftward multiplicative shift in mEPSC cumulative probability distributions.  These 356 

results demonstrate that RAI is essential for homeostatic upscaling during activity suppression, 357 
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but is otherwise dispensable for homeostatic downscaling during periods of network 358 

hyperactivation.  359 

 360 

  361 
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Discussion 362 
 363 

Our Bru-seq method and analyses have provided novel insights into activity-dependent 364 

transcription. We found widespread transcriptional responses to network activity shifts and its 365 

high sensitivity in detecting transcriptional downregulation. Furthermore, our data indicate that 366 

most dynamically regulated genes altered by hyperactivity or suppression are unique, not 367 

reciprocal. (Fig. 1). This is particularly interesting given that gene expression studies have 368 

tended to focus on bidirectional regulation of target genes (e.g. Arc, Fos, Homer1, Bdnf) 369 

(Okuno, 2011). Our results agree with a nascent proteome study on rat hippocampal neurons, in 370 

which the authors observed unique, common, and reciprocal changes in protein synthesis upon 371 

TTX and BIC treatments (Schanzenbächer et al., 2016). These observations suggest that in 372 

addition to the reciprocal transcriptional changes of key factors, distinct transcriptional 373 

mechanisms to low- and high-activity states may underlie upscaling and downscaling. Our data 374 

therefore provide a resource to begin exploration of distinct molecular machineries underlying 375 

homeostatic up- and down-scaling and regulation of bidirectional activity-dependent 376 

transcription.    377 

 378 

Our data indicate that RAI1 is as a chromatin regulator that is selectively required for the 379 

transcription program of activity-suppression. Loss of RAI1 leads to misregulation of TTX-380 

response genes, while leaving the uniquely BIC-genes unaffected (Fig. 2). In addition to its 381 

exclusive impact on TTX-response genes, an intriguing feature of RAI1 is its state-dependent 382 

roles in synaptic scaling. RAI1 deficiency shifts gene expression towards TTX-associated 383 

transcriptional states at baseline, and promotes the same transcriptional state once TTX is 384 

applied (Figs. 2 and 4). Under a hyperactivity condition, RAI1 is not required for transcription of 385 

TTX-associated genes (Fig. S7A, right panel). Since the correlation between Rai1-KD and TTX-386 

associated transcription is stronger at baseline than TTX condition (baseline: r=0.53; TTX: 387 

r=0.32), RAI1’s influence on transcription appears greatest in the neurons without sensory 388 

inputs. In contrast to the RAI1’s roles in TTX-associated transcription, RAI1 is clearly 389 

dispensable for BIC-triggered transcription and synaptic downscaling at any activity state (Figs. 390 

2 and 4). Thus, despite RAI1’s opposite roles in regulating TTX-associated genes between low- 391 

and baseline activity states, the ultimate role of RAI1 appears consistent — a specialized 392 

transcriptional regulator for TTX-associated genes (Fig. 6). This selective requirement of RAI1 is 393 

further corroborated with electrophysiological assessments (Figs. 3 and 5)  394 

 395 
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The mechanisms by which RAI1 performs this function remain to be resolved. RAI1 is a 396 

nucleosome-binding protein, which can act as a transcriptional coactivator (Bi et al., 2005; 397 

Burns et al., 2010; Carmona-Mora et al., 2012; Carmona-Mora et al., 2010; Darvekar et al., 398 

2013; Elsea and Williams, 2011; Girirajan et al., 2009; Huang et al., 2016). Key genes for 399 

cognitive development, including Bdnf, are shown to be direct targets of RAI1 (Burns et al., 400 

2010; Girirajan et al., 2009; Molina et al., 2008; Williams et al., 2012). Our Bru-seq data indicate 401 

that, under baseline levels of activity, RAI1 suppresses TTX-induced genes, while the same set 402 

of genes are positively regulated by RAI1 during activity suppression (Fig.6). An integrative 403 

analysis of published ChIP-seq data suggest the majority of these genes are directly bound by 404 

RAI1 (Fig. S6A). It is plausible that RAI1’s role in transcription switches between a coactivator 405 

and a corepressor, in response to altered activity states. Alternatively, RAI1 binding to gene 406 

promoters might be dynamically regulated during activity shifts, as was the case with L3MBTL1 407 

(Mao et al., 2018). TET3 and EHMT1/2 share their roles in homeostatic upscaling with RAI1 408 

(Benevento et al., 2016; Yu et al., 2015). While TET3 positively regulates transcription by 409 

removing CpG methylation (Ito et al., 2010), EHMT1/2 generally act as transcriptional 410 

repressors by placing the repressive histone mark, H3K9 methylation (Tachibana et al., 2005). 411 

How RAI1 functionally interacts with other chromatin regulators with roles in activity-dependent 412 

gene expression remains to be resolved.   413 

 414 

It is noteworthy that the four previously-characterized chromatin regulators in synaptic scaling, 415 

i.e. Tet3, EHMT2, L3MBTL1 were all identified based on their expression changes or their target 416 

histone modifications by network activity shifts (Benevento et al., 2016; Mao et al., 2018; Yu et 417 

al., 2015). However, we found no indication that expression or sub-cellular localization of RAI1 418 

is regulated by neuronal activity (Fig. S4-S5). The stable expression is similar to the case of 419 

EHMT1, in which EHMT1 levels remained constant while its binding partner EHMT2 levels 420 

varied in response to activity (Benevento et al., 2016). Chromatin regulators tend to show 421 

ubiquitous and stable expression. These observations raise a possibility that chromatin 422 

regulators that are implicated in human cognitive disorders could be involved in transcriptional 423 

response to activity shifts, even when their expression does not change during the process. Bru-424 

seq and our analytical strategies employed in this study may prove useful to decipher how 425 

chromatin remodeling sculpts neural networks and plasticity.  426 

 427 

How do RAI1’s new roles in synaptic scaling relate to cognitive function?  As discussed earlier, 428 

RAI1 is implicated Smith-Magenis Syndrome (SMS) (Bi et al., 2004; Girirajan et al., 2005; 429 
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Slager et al., 2003) and mouse models of heterozygous and homozygous Rai1-KO displayed 430 

learning deficits, abnormal circadian behavior, altered social behavior, and obesity (Bi et al., 431 

2005; Bi et al., 2007; Huang et al., 2018; Lacaria et al., 2013). Thorough characterization of cell-432 

type specific Rai1-KO mice attributed the learning deficits to GABAergic interneurons rather 433 

than glutamatergic excitatory neurons (Huang et al., 2016). Since our mEPSC recording was 434 

performed in the pyramidal cells that incorporated Rai1-shRNA plasmid, and the transfection 435 

efficiency is low (~0.1%), RAI1’s role in synaptic scaling is likely cell-autonomous to excitatory 436 

neurons. The lack of learning deficits in forebrain-specific Rai1-KO (Emx1-Cre:  Rai1flox/flox) may 437 

suggest that RAI1’s roles in synaptic scaling is irrelevant to cognitive function. Alternatively, 438 

synaptic scaling deficits by acute Rai1 depletion might be compensated during development by 439 

unknown genes. The mice lacking RAI1 only in excitatory neurons may undergo compensatory 440 

neurodevelopment processes that involve RAI1-positive cell types, in which case the mouse 441 

model may not reflect neurodevelopmental deficits in human that is caused by RAI1 442 

heterozygosity in all cells.  Additionally, the recent finding of reduced dendritic spine density in 443 

the prefrontal cortex of 4 week old Rai1-heterozygous mice, (Huang et al., 2018) may be result 444 

in part from impaired upscaling in RAI1-deficient excitatory neurons during development.  445 

 446 

In addition to cognitive function, sleep-wake cycle is another behavior in which RAI1’s roles in 447 

synaptic scaling might be involved. Sleeping problems of SMS patients have been associated 448 

with inverted circadian rhythms (Boone et al., 2011; Elsea and Williams, 2011; Gropman et al., 449 

2006; Potocki et al., 2000; Williams et al., 2012). Regulation of CLOCK gene by RAI1 has 450 

provided a molecular mechanism, which potentially explains the inverted circadian rhythm 451 

(Williams et al., 2012). Meanwhile, accumulating evidence has indicated that the brain 452 

undergoes synaptic downscaling during sleep, which normalizes the strengthened synaptic 453 

connection by experience during the awake state (Kuhn et al., 2016) (de Vivo et al., 2017; 454 

Diering et al., 2017). Our work demonstrates that reduced network activity elicits unique 455 

transcriptional responses (Fig. 1). Together, these observations predict that, during sleep, 456 

network activity becomes low due to fewer sensory inputs, reminiscent of TTX-treated neurons, 457 

which would trigger transcriptional responses that in turn upscale synapses during the awake 458 

state. It is tempting to speculate that RAI1-dependent synaptic upscaling might contribute to the 459 

higher synaptic efficacy during the awake state. Future studies should address how activity-460 

dependent transcription and circadian gene oscillation interact, where RAI1 acts, and how 461 

disruption of these processes underlies cognitive and/or sleeping issues of SMS and related 462 

cognitive deficits.  463 
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 464 

In addition to Bru-seq, several nascent RNA-seq approaches have been employed to examine 465 

gene expression in neurons. Schaukowitch et al. adopted Gro-seq, a nuclear run-on assay 466 

coupled with deep sequencing, to profile transcriptional activity in TTX-treated neurons 467 

(Schaukowitch et al., 2017). Gro-seq involves isolation of nuclei and incorporation of BrUTP 468 

during the run-on reaction in vitro (Core et al., 2008). We found that Gro-seq is more 469 

advantageous to detect unstable RNAs, such as eRNAs, compared to Bru-seq (Agarwal et al., 470 

2017). The highly-sensitive detection of unstable RNAs is likely due the lack of active exosomes 471 

in the run-on reaction, which however points to a potential risk to observe in vitro artifacts. In 472 

contrast, Bru-seq faithfully monitors transcription within the cells at a given moment (Paulsen et 473 

al., 2014; Paulsen et al., 2013). A limitation of the Bru-seq approach is the lack of cell-type 474 

specificity. Recently, Zajaczkowski et al. reported nascent RNA-sequencing specifically in 475 

neurons that were depolarized by KCl (Zajaczkowski et al., 2018). In this approach, neuron-476 

specific RNA labeling was achieved by the Synapsin I promoter-driven expression of a 477 

Toxoplasma gondii enzyme, uracil phophoribosyltransferase (UPRT). UPRT enables 478 

incorporation 5-ethynyl-uracil (5EU) into RNA. The labeled RNAs were biotinylated, isolated, 479 

and subjected for sequencing (Cleary et al., 2005). The UPRT-5EU system identified over 3,000 480 

depolarization-regulated genes over the 3 hr KCl treatments, which likely detected both nascent 481 

transcripts and steady-state mRNAs. Cell-type specificity of the UPRT-5EU system comes with 482 

the cost of introducing the UPRT transgene and additional experimental steps to label RNAs. 483 

Recent transcriptome studies of brain cell types and single-cell RNA-seq have allowed us to 484 

retrospectively attribute the transcriptional changes in Bru-seq data to certain cell types to some 485 

extent (Fig. S2). Thus, one can choose the most suitable experimental approach for nascent 486 

RNA profiling depending on their goals of the study.   487 

 488 

 489 

490 
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Figure legends 491 

 492 

Figure 1. Genome-wide transcriptional response to bi-directional activity alterations. (A) 493 

Experimental procedure. (B) UCSC Browser views of Bru-seq signals at Arc and Fos. Intronic 494 

reads are characteristic of nascent RNA. (C) Differential gene expression analysis (DESeq2) 495 

reveals widespread transcriptional changes in response to TTX and BIC (padj<0.05). (D) BIC-496 

response genes show a greater median fold change (Wilcoxon rank-sum test, upregulated 497 

genes: p=2.2 x 10−16, downregulated genes: p=6.9 x 10−16). Whiskers represent 1.5 times the 498 

inter-quartile range (IQR) and the notch represents the 95% confidence interval of the median. 499 

(E) The majority of TTX and BIC response genes are uniquely regulated (70%). 24% of genes 500 

are reciprocally regulated and 6% are commonly regulated. (F) Downregulation of immediate 501 

early gene in the TTX condition is captured more sensitively in Bru-seq data compared to 502 

mRNA-seq data (Yu et al., 2015).  503 

 504 

Figure 2. Rai1-KD alters transcription of TTX-response genes at the baseline. (A) 505 

Validation of Rai1-KD with Western blot. Mouse forebrain neuron cultures were transduced with 506 

lentivirus expressing sh-Rai1 or sh-Ctrl for three days. (B) Number of DESeq2-called 507 

differentially expressed genes (sh-Ctrl v sh-Rai1, padj<0.05) after Vehicle treatment. (C) Many 508 

Rai1-KD DE-genes are TTX and BIC-response genes. (D) The fold changes of TTX- and BIC-509 

response genes by Rai1-KD at baseline. Note that Rai1-KD cultures displays transcriptional 510 

profile similar to TTX-treated normal cultures. r= Spearman’s rank correlation coefficient.  511 

 512 

Figure 3. Rai1-KD increases the synaptic efficacy at baseline activity condition. (A-D) 513 

Example traces and mean ± SEM mEPSC amplitude (B), frequency (C), and decay time (D) for 514 

cultured rat hippocampal primary neurons recorded after transient transfection (48 hr) with 515 

either non-targeting shRNA (sh-Ctrl) or Rai1 targeting shRNA (sh-Rai1 #1 or #2) at DIV12-14. 516 

Scale bar, 20 pA, 125 ms (sh-Ctrl, sh-Rai1 #1, n = 21-21, and sh-Ctrl, sh-Rai1 #2, n = 18-20) 517 

(E) Cumulative distribution of mEPSC amplitudes of sh-Ctrl transfected neurons treated by 518 

either vehicle or 1 µM TTX (left) and sh-Ctrl or sh-Rai1 transfected neurons (right). (F) 519 

Representative images of surface GluA1 (sGluA1, fire), PSD-95 (green) and sGluA1 & PSD-95 520 

(merge) of sh-Ctrl and sh-Rai1 infected dendrites. Scale bar 10 µm. Bar graph of mean sGluA1 521 

signal intensity in PSD-95 positive regions for vehicle or TTX (n = 13-12), and sh-Ctrl or sh-Rai1 522 
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(n = 6-6) treated neurons. All bar graphs represent mean ± SEM, and comparisons between sh-523 

Ctrl and sh-Rai1 were made with unpaired Student’s t-tests. *p < 0.05, **p < 0.01, ***p < 0.001. 524 

 525 

Figure 4. RAI1 positively regulates the transcriptional response to TTX. (A) The fold 526 

changes of TTX- and BIC-response genes in cultures treated by sh-Ctrl or sh-Rai1 (Wilcoxon 527 

rank-sum test). (B) Number of DESeq2-called differentially expressed genes (sh-Ctrl v sh-Rai1, 528 

padj<0.05) after TTX, Vehicle, or BIC treatment. (D) RAI1-dependent gene ontologies (Biological 529 

Process, padj <0.005) discovered by RNA-Enrich (Lee et al., 2016) and filtered by ReviGO 530 

software (Supek et al., 2011).  (E) RPKM values of four Sig-genes downregulated by Rai1-KD in 531 

the TTX-treated condition. The Sig-genes represent “neurotransmitter transport” (padj =9.3x10-8), 532 

the top-downregulated Biological Processes. The remaining Sig-genes are shown in Figure S7. 533 

Note slight but consistent inter-replicate changes upon Rai1-KD. r= Spearman’s rank correlation 534 

coefficient. In the box plots, whiskers represent 1.5 times IQR and the notch represents the 95% 535 

confidence interval of the median. 536 

 537 

Figure 5. Rai1-KD impairs synaptic upscaling but not synaptic downscaling. (A-C) 538 

Representative mEPSC traces recorded from neurons transfected with either sh-Ctrl or sh-Rai1 539 

and treated with either vehicle or 1 µM TTX. Scale bar, 20 pA, 125 ms.  (B) mEPSC amplitude 540 

of sh-Ctrl, sh-Rai1 #1 and sh-Rai1 #2 treated either with vehicle or TTX (sh-Ctrl Veh, TTX n = 541 

14-15, sh-Rai1 #1 Veh, TTX n = 7-7, sh-Rai1 #2 Veh, TTX n = 6-8). (C) Cumulative distribution 542 

of mEPSC amplitude of sh-Ctrl (black), sh-Rai1 (teal; sh-Rai1 #1 + #2) treated with vehicle 543 

(solid line) or TTX (dotted line). (D-F) Representative mEPSC traces recorded from neurons 544 

transfected with either sh-Ctrl or sh-Rai1 and treated with either vehicle or 10 µM BIC. Scale 545 

bar, 20 pA, 125 ms. (E) mEPSC amplitude of sh-Ctrl, sh-Rai1 #1 and sh-Rai1 #2 treated either 546 

with vehicle or BIC (sh-Ctrl Veh, BIC n = 14-17, sh-Rai1 #1 Veh, BIC n = 9-8, sh-Rai1 #2 Veh, 547 

BIC n = 7-8). (F) Cumulative distribution of mEPSC amplitude of sh-Ctrl (black), sh-Rai1 (blue; 548 

sh-Rai1 #1 + #2) treated with vehicle (solid line) or BIC (dotted line). All bar graphs are 549 

represented as mean ± SEM. One-way ANOVA, followed by post-hoc Fisher’s LSD test were 550 

performed. *p < 0.05, **p < 0.01, ***p < 0.001. 551 

 552 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/523456doi: bioRxiv preprint 

https://doi.org/10.1101/523456
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

Figure 6. RAI1’s role as a state-dependent transcriptional regulator of TTX-response 553 

genes: RAI1 alters synaptic efficacy through selective regulation of TTX-response genes under 554 

baseline and activity-suppressed states.  555 
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Supplementary Figure legends 556 

 557 

Figure S1. Bru-seq vs. mRNA-seq. (A) Overlap of DE genes in Bru-seq and mRNA-seq. DE 558 

genes were called using identical DESeq2 parameters. mRNA-seq datasets were obtained from 559 

from (Yu et al., 2015). (B) Expression changes of DE-genes upon BIC and TTX treatments in 560 

Bru-seq and mRNA-seq (4 hr post-treatment) (Yu et al., 2015). (C) Comparison of Bru-seq data 561 

and mRNA-seq data of 6 hr post-treatment (Schaukowitch et al., 2017). 562 

Figure S2. Cell-type analysis of the primary forebrain neuron cultures. (A) Representative 563 

immunofluorescence images of the primary forebrain neuron culture (DIV17) with antibodies 564 

against NeuN, Gad67, GFAP, or Olig2. Nuclei were visualized by DAPI. Scale bar: 20 µm. (B) 565 

Quantification of cell types. Cell types were determined as follow. Excitatory neurons; NeuN(+), 566 

Gad67(−), Inhibitory neurons; NeuN(+), Gad67(+), Astrocytes; NeuN(−),GFAP(+), Olig2(−).  567 

33.5%, and Oligodendrocyte lineage cells; NeuN(−), Olig2(+). We did not observe cells with 568 

CD11b, a microglia marker. Each cell type was calculated as the % of all DAPI+ cells and 569 

shown as an average of two biological replicates. (C) The number of cell type-specific genes 570 

and their response to TTX or BIC in the Bru-seq data. Cell type-specific genes were obtained 571 

from mRNA-seq data of separated cells by immunopanning of P7-P17 mouse cortices (Zhang et 572 

al., 2014). Oligo: cells within the oligodendrocyte lineage. NR: Non-responsive genes. Both: 573 

Genes that respond to both TTX and BIC.  574 

Figure S3. RAI1 expression in publicly-available datasets. (A) Rai1 mRNA levels in neurons 575 

and non-neuronal cells of the adult mouse cortices (Zhang et al., 2014). (B) Rai1 mRNA levels 576 

in single cell mRNA-seq data of mouse visual cortex (Tasic et al., 2016).   577 

Figure S4.  RAI1 protein level during neuronal-activity shifts. Rat cortical neurons (DIV14) 578 

were treated with TTX (T), BIC (B) or vehicle (V) for the indicated times. Cells were harvested in 579 
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3 biological replicates and analyzed by Western blot with a custom anti-RAI1 antibody. The 270-580 

kDa full-length RAI1 protein band intensity was visualized and quantified in the linear range 581 

using LI-COR C-Digit and Image Studio software. Statistical significance was evaluated with 582 

one-way ANOVA. No treatment reached p<0.05. 583 

Figure S5. Sub-cellular localization of RAI1 during neuronal-activity shifts. Sub-cellular 584 

RAI1 localization was assessed by immunofluorescence in the mouse forebrain neuron culture 585 

(DIV17) using an anti-RAI1 antibody. RAI1 displayed nuclear localization in excitatory and 586 

inhibitory neurons. RAI1 did not show any sub-cellular or sub-nuclear localization by TTX and 587 

BIC treatments for 4 hr. We obtained similar results at other timepoints (15 minutes, 1 hr, 2 hr, 8 588 

hr, and 24 hr, data not shown). 589 

Figure S6.  Integrative analysis of the Bru-seq, RAI1 ChIP-seq, and mRNA-seq data of 590 

Rai1-knockout mice. (A) RAI1 occupancy at the promoters of TTX- and BIC-response genes. 591 

RAI1 ChIP-seq data were obtained from the cortices of 8-week old mice (Huang et al., 2016). 592 

RAI1 occupies ~80% of activity-dependent genes with no apparent enrichment in any group. 593 

Promoters were defined by ± 1 kb of annotated transcription start sites and overlap with RAI1 594 

ChIP-seq peaks were computed using MACS2 (Zhang et al., 2008). (B) Transcription of 595 

reciprocal genes in the Rai1-KD culture at baseline show a positive correlation with TTX-treated 596 

transcriptome and a negative correlation with BIC-treated transcriptome of the normal culture.  597 

 (C) Premature TTX-response of Rai1-KD culture is still observed after excluding the RAI1-598 

dependent genes at baseline. (D) Expression of TTX- and BIC-response genes in the pan-599 

neuronal Rai1-knockout cortex. mRNA-seq data were obtained from 3 week-old Rai1flox/flox: 600 

Nestin-Cre and control mice (Huang et al., 2016). Fold changes in KO vs Control mice were 601 

calculated using the RPKM values. The Rai1-KO mRNA expression shows a trend of TTX-602 

treated transcription states.  603 
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Figure S7. Impact of RAI1 loss on transcription after TTX- or BIC-treatments. (A) The fold 604 

changes of TTX- and BIC-response genes by Rai1-KD after BIC or TTX treatment.  (B) RPKM 605 

values of Bru-seq data are represented for Sig-genes of “neurotransmitter transport”, which was 606 

downregulated by Rai1-KD in the post-TTX condition (padj: 9.3 x 10−8). Note consistent reduction 607 

in RPKM across biological replicates in Rai1-KD culture in the TTX-treated condition.  608 

 609 

  610 
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Materials and Methods 611 

 612 

Primary neuron culture and shRNA-mediated Rai1-KD 613 

The cortices and hippocampi from E18.5 mouse pups were pooled into biological replicates with 614 

identical female-male ratios. Sex of the pups was determined by PCR using primers for the ZFY 615 

gene (Table S5). Primary culture of neurons was carried out as previously described (Iwase et 616 

al., 2016) (Vallianatos et al., 2018). Briefly, dissociated tissues were plated at 4 million cells/6 617 

cm poly-D-lysine-coated plate (Sigma) grown in Neurobasal Media supplemented with B27 618 

(Gibco, #17504044). No mitotic inhibitors were added, allowing the growth of non-neuronal 619 

cells. Half the culture medium was freshened every 3-5 days. On DIV 14, cells were infected 620 

with lentiviral shRNA as previously described (Vallianatos et al., 2018). Lentivirus were 621 

generated using co-transfection into HEK-293t cells of psPAX2 (Addgene, 12260), pMD2.G 622 

(AddGene, 12259) and pLKO plasmids containing shRNA against Rai1 untranslated region 623 

(Rai1-shRNA #1: Sigma, TRCN0000124984) or coding region (Rai1-shRNA #2: Sigma, 624 

TRCN0000328334) or scramble shRNA (Sigma, SHC202). For Bru-seq experiments, we used 625 

SHC202 and Rai1-shRNA #1. For electrophysiology, we used SHC202, Rai1-shRNA #1 and #2, 626 

whose target sequences are identical between mouse and rat. The conditioned media 627 

containing lentiviruses was collected, concentrated with Lenti-X concentrator (Takara, 631232), 628 

and resuspended in Neurobasal medium, and stored at −80°C. The titer of lentivirus was 629 

determined by survival of transduced 293 cells under puromycin and a comparable amount of 630 

virus that result in >90% survival of infected neurons was used for all biological replicates. 631 

Puromycin was not added to cultured neurons for experiments.  632 

 633 

Network activity alterations and Bru-seq experiments 634 

On DIV17, cells were treated with bicuculline-methiodide (Abcam, ab120108, 20 µM), TTX 635 

(Tocris, 1069, 1 µM), or vehicle (sterile water), for 4 hours. 3 hours and 40 minutes post 636 

treatment, bromouridine (Bru, Sigma, dissolved in PBS) was added to cultures at 2 mM final 637 

concentration. Cultures were harvested in Tri-reagent BD (Sigma, T3809) and frozen 638 

immediately. RNA was purified using phenol-chloroform extraction and isopropaonol 639 

precipitation, treated with DNAse-I (NEB) then fragmented by high-magnesium, high 640 

temperature incubation. From 1 µg of total RNA, enrichment of Bru-containing RNA and library 641 

preparation were performed as previously described (Paulsen et al., 2014; Paulsen et al., 2013) 642 
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with minor modifications. We designed custom adaptors (Table S5) which were directly ligated 643 

to the 3’ ends of RNA using RNA ligase 1 (NEB Cat. No. M0437) and truncated RNA ligase KQ 644 

(NEB M0373). Bromouridine-labeled RNAs were immunoprecipitated using anti-BrdU antibody 645 

(Santa Cruz Biotechnology, sc-32323). Enriched RNAs were reverse transcribed using a primer 646 

complementary to the RNA adaptor (Table S5). Adaptor duplexes with 5- or 6-base pair random 647 

nucleotide overhangs were ligated to the 3’ end of the cDNA (Table S5). The cDNA libraries 648 

were amplified using primers that carry Illumina indices, then 180-400 bp DNA fragments were 649 

isolated using by an agarose gel. The nucleotide sequences of primers used for library 650 

amplification are found in Table S5. The libraries were subjected to single-end 50-bp 651 

sequencing using IIlumina HiSeq 2000 platform. We performed 2 to 3 biological replicates for all 652 

drug treatment and knockdown conditions.  653 

 654 

Sequencing data analysis 655 

After confirming the quality of sequencing data by FastQC, reads were mapped to mm9 656 

reference genome using Bowtie2 (Langmead and Salzberg, 2012) and annotated with Tophat2 657 

(Kim et al., 2013). Adaptors were trimmed using BBDUK (http://jgi.doe.gov/data-and-tools/bb-658 

tools/), when 2-30 bp on the left of the read matched the predicted adaptor (k=30, mink=2, 659 

minlength=15, hdist=1). Bru-seq signals were quantified by FeatureCounts (Liao et al., 2014). 660 

We excluded Rn45s, Lars2, Rn4.5s, Cdk8, Zc3h7a and the mitochondrial chromosome to avoid 661 

counts of overamplified genes that may skew RPKM normalization. DE-genes were identified 662 

using DESeq2 (Love et al., 2014) using the same parameters for the Bru-seq data and three 663 

published mRNA-seq datasets of neuron culture and Rai1-KO mice (Huang et al., 2016; 664 

Schaukowitch et al., 2017; Yu et al., 2015). We also used DESeq2 to calculate RPKM 665 

expression values across the entire genic regions, including introns. Gene ontology was 666 

examined using RNA-Enrich (Lee et al., 2016). Significance cutoff for reporting Sig-genes was 667 

an unadjusted p value< 0.05. We only presented GO terms that contain 5 to 250 genes.  668 

 669 

Western blot 670 

To validate Rai1-KD in mouse forebrain neuron culture, Rai1-KD and control cultures were 671 

harvested at 3 days after lentiviral transduction and subjected to Western blot analysis as 672 

described previously (Iwase et al., 2016). RAI1 antibodies were generated by immunizing 673 
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rabbits with a synthesized RAI1 peptide (aa 28 to 42, ENYRQPGQAGLSCDR, Thermo Fisher 674 

Scientific), followed by affinity purification using the peptide as the affinity ligand (Thermo Fisher 675 

Scientific). Anti-PCNA antibody (Santa Cruz sc-56, 1:1000) was used for a loading control. For 676 

analysis of RAI1 level during activity shifts, the cortices from E18.5 rat pups were dissected, 677 

dissociated, and plated at 700,000 cells/well in a PDL-coated 6-well dish. Neurons were grown 678 

in Neurobasal/B27 medium for 14 DIV. Vehicle (1% water), TTX (1 µM) or BIC (20 µM) were 679 

added to the culture and cells were harvested with a 1:1 mixture of 2X Laemmeli buffer (BioRad, 680 

1610737, 1:20 beta-mercaptoethanol) and radioimmunoprecipitation assay (RIPA) buffer 681 

supplemented with 50 mM BGP and 1 mM Na3VO4.  Protein samples were boiled for 10 682 

minutes at 100°C. 10-15 μg of each sample was loaded per lane, separated by 7.5% SDS-683 

PAGE, and transferred onto PVDF membrane (Millipore IPVH00010). Membranes were then 684 

blocked with 5% skim milk or 3% blotting-grade blocker (BioRad 1706404) for 1 hr, probed 685 

overnight with the following primary antibodies diluted in 3% BSA (Fisher Scientific BP1600): 686 

RAI1 (1:1000), beta-actin (Sigma A5441, 1:20,000). Horseradish peroxide (HRP)-conjugated 687 

secondary IgG antibodies (EMD Millipore AP132P or AQ160P) were also diluted in 3% BSA, 688 

and the HRP signal was developed with various chemiluminescent substrates from Thermo 689 

Fisher Scientific (34080 or 34095) and Li-COR Biosciences (926-95000). Protein band intensity 690 

was visualized and quantified in the linear range using LI-COR C-Digit and Image Studio 691 

software. Results were compared using one-way ANOVA.  692 

 693 

Immunocytochemistry 694 

Two biological replicates of forebrain neuron cultures were obtained from E17.5 mouse 695 

embryos. On DIV19, they were fixed with 4% paraformaldehyde in 16% sucrose/PBS, 696 

permeabilized with 0.25% Triton-X in 1X PBS, blocked for 30 minutes with 10% bovine albumin 697 

serum (Sigma A2153), and overnight incubation of antibodies in 3% BSA at 4°C.Primary 698 

antibodies used in the study are following. anti-NeuN (EMD Millipore, MAB377, 1:1000), anti-699 

GFAP (NeuroMab N206A/8, 1:1000), anti-MAP2 (EMD Millipore, AB5543, 1:1000), anti-OLIG2 700 

(EMD Millipore, AB9610, 1:1000), anti-CD11b (Abcam, ab133357, 1:500), anti-GAD67 (Santa 701 

Cruz, sc-5602, 1:1000). Secondary antibodies (Invitrogen Alexa Fluor 488, 555, or 647) were 702 

applied for 45 min at room temperature. Fluorescence images were acquired using an Olympus 703 

BX61 fluorescence microscope (60X oil-immersion lens) and CellSense software. 704 

Immunoreactivity was quantified semi-automatedly using a custom ImageJ script after 705 

confirming specific staining by visual inspection. 706 
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Electrophysiology  707 

All animal use followed NIH guidelines and was in compliance with the University of Michigan 708 

Committee on Use and Care of Animals. Dissociated postnatal (P0-2) rat hippocampal neuron 709 

cultures were prepared as previously described (Henry et al., 2012). Neurons were transfected 710 

with 1.0 µg of scrambled or Rai1-shRNA-expressing plasmids with the CalPhos Transfection kit 711 

(ClonTech) or Lipofectamine 2000 (ThermoFisher Scientific) according to the manufacturer’s 712 

protocols. All experiments were performed 48 hours after transfection. mEPSCs were recorded 713 

from a holding potential of – 70 mV with an Axopatch 200B amplifier from neurons bathed in 714 

HEPES buffered saline (HBS) containing: 119 mM NaCl, 5 mM KCl, 2 mM CaCl2, 2 mM MgCl2, 715 

30 mM Glucose, 10 mM HEPES (pH 7.4) plus 1 µM TTX and 10 µM bicuculine; mEPSCs were 716 

analyzed with Synaptosoft MiniAnalysis software. Whole-cell pipette internal solutions 717 

contained: 100 mM cesium gluconate, 0.2 mM EGTA, 5 mM MgCl2, 2 mM ATP, 0.3 mM GTP, 718 

40 mM HEPES (pH 7.2). Statistical differences between experimental conditions were 719 

determined by unpaired Student’s t-tests (Fig. 3) or one-way ANOVA followed by post-hoc 720 

Fisher’s LSD test (Fig. 6).  721 

Surface GluA1 expression analysis 722 

Surface GluA1 staining was conducted as previously described with slight modification (Henry 723 

et al., 2012). On DIV12, rat cultured hippocampal cells were infected either with lentivirus 724 

carrying sh-Ctrl or sh-Rai1 as described above. After 48 hours of incubation, cultured cells were 725 

live-labeled with rabbit anti-GluA1 antibody (EMD Millipore, ABN241, 1:1000) for 20 min at 726 

37°C, fixed with 2% paraformaldehyde, and further labeled with mouse anti-PSD-95 (EMD 727 

Millipore, MAB1596, 1:1000). Goat anti-mouse Alexa 488 and Goat anti-rabbit Alexa 555 728 

secondary antibodies (Abcam, 1:500) were applied for 60 min at room temperature to visualize 729 

PSD-95 and GluA1 staining. Images of PSD-95 and GluA1 were aquired using an inverted 730 

Olympus FV1000 laser-scanning confocal microscope using a Plan-Apochromat 63 X /1.4 oil 731 

objective. Then, synaptic GluA1 was defined as a particle that occupied > 10% of the PSD-95 732 

positive area, and the average integrated intensity of synapatic GluA1 was calculated using a 733 

custom macro for ImageJ. Statistical differences between experimental conditions were 734 

determined by unpaired Student’s t-tests. 735 

 736 

 737 
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Data Availability 738 

Sequencing data generated for this study have been submitted to the NCBI Gene Expression 739 

Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) under accession number GSE121749.   740 
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