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 24 
ABSTRACT  25 
 26 
Discovery of polymorphisms under co-selective pressure or epistasis has received considerable 27 
recent attention in population genomics. Both statistical modeling of the population level co-variation 28 
of alleles across the chromosome and model-free testing of dependencies between pairs of 29 
polymorphisms have been shown to successfully uncover patterns of selection in bacterial 30 
populations. Here we introduce a model-free method, SpydrPick, whose computational efficiency 31 
enables analysis at the scale of pan-genomes of many bacteria. SpydrPick incorporates an efficient 32 
correction for population structure, which is demonstrated to maintain a very low rate of false positive 33 
findings among those SNP pairs highlighted to deviate significantly from the null hypothesis of neutral 34 
co-evolution in simulated data. We also introduce a new type of visualization of the results similar to 35 
the Manhattan plots used in genome-wide association studies, which enables rapid exploration of the 36 
identified signals of co-evolution. Application of the method to large population genomic data sets of 37 
two major human pathogens, Streptococcus pneumoniae and Neisseria meningitidis, revealed both 38 
previously identified and novel putative targets of co-selection related to virulence and antibiotic 39 
resistance, highlighting the potential of this approach to drive molecular discoveries, even in the 40 
absence of phenotypic data. 41 
 42 
 43 
INTRODUCTION 44 
 45 

Statistical analysis of co-variation between non-adjacent sites in large protein alignments has matured 46 

since its inception, over 20 years ago (1-7). More recently, attention has also been directed towards 47 

performing a similar type of exploratory analysis of genome-wide nucleotide alignments for bacterial 48 

populations to reveal putative sites evolving under co-selective pressures and possibly being involved 49 

in epistatic interactions (8-10). Genome-scale analysis of co-variation at single-nucleotide resolution, 50 

here termed as genome-wide epistasis and co-selection study (GWES), poses considerable 51 

computational challenges as the number of pairs to be considered increases quadratically with the 52 

number of sites. Previous GWES approaches have been based on either straightforward pairwise 53 

tests (8), which do not distinguish between indirect and direct interactions, or a more elaborate model-54 

based technique known as direct coupling analysis (DCA) (9, 10). 55 
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The main motivation behind pairwise methods has typically been scalability, however, a 56 

recent simulation study on high-dimensional structure learning of synthetic network models showed 57 

that a family of pairwise methods based on mutual information (MI) may be as accurate as and even 58 

outperform model-based methods in the small sample regime (arXiv:1901.04345), which is the typical 59 

setting for most bacterial population genomic data. While MI has been proposed for the analysis of 60 

protein alignments (1, 11), it has not yet been systematically applied to bacterial population genomics. 61 

Here we introduce a novel MI-based GWES method, SpydrPick, which is scalable to an order of 62 

magnitude larger data sets than those considered so far in DCA-based GWES (9, 10).  63 

To account for population structure, we use a sequence reweighting technique commonly 64 

employed when analysing protein sequence alignments (3, 4, 11), and also more recently when 65 

performing GWES (9, 10). However, a different route is taken towards selecting the best candidates 66 

of directly co-selected or interacting mutations among the identified signals of co-variation. These are 67 

chosen as the significant outliers in terms of a global background distribution estimated across the 68 

genome, combined with a pruning method introduced for analyses of gene expression data (12). The 69 

focus on the statistical quantification of the background pattern across the genome lends itself well to 70 

an intuitive and efficient visualization of the results akin to a Manhattan plot used in genome-wide 71 

association studies, which we term as the GWES Manhattan plot.  72 

We demonstrate the usefulness and reliability of SpydrPick by application to both simulated 73 

sequences evolving under a neutral model, and to two large population genomic data sets of the 74 

major human pathogens Streptococcus pneumoniae and Neisseria meningitidis. For the latter 75 

pathogen, we analysed the entire pan-genome, which contains so many mutations that most model-76 

based approaches are computationally infeasible, including even the recent highly optimized DCA-77 

based software (10).  78 

 79 

MATERIAL AND METHODS 80 

 81 

Method 82 

An overview of the SpydrPick pipeline is shown in Figure 1. The different steps are described in detail 83 

in the following sections. 84 

 85 

Mutual information. Mutual information (MI) is an information theoretic measure of the mutual 86 

dependence between two random variables. More specifically, let 𝑋 and 𝑌 be two discrete random 87 

variables with outcome spaces 𝑣𝑎𝑙(𝑋) and 𝑣𝑎𝑙(𝑌). The MI between 𝑋 and 𝑌 is then formally defined 88 

by 89 

𝑀𝐼(𝑋, 𝑌) = ∑ ∑ 𝑝(𝑥, 𝑦) log (
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦))
𝑦∈𝑣𝑎𝑙(𝑌)𝑥∈𝑣𝑎𝑙(𝑋)

  , (1) 90 

where 𝑝(𝑥, 𝑦)  is the joint probability of 𝑋 = 𝑥  and 𝑌 = 𝑦 , while 𝑝(𝑥) = ∑ 𝑝(𝑥, 𝑦)𝑦∈𝑣𝑎𝑙(𝑌)  and 𝑝(𝑦) =91 

∑ 𝑝(𝑥, 𝑦)𝑥∈𝑣𝑎𝑙(𝑋)  are the corresponding marginal probabilities. In practice, the joint distribution is 92 

typically unknown and has to be estimated from data. Let 𝑛(𝑥, 𝑦)  denote the count of the joint 93 
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outcome 𝑋 = 𝑥 and 𝑌 = 𝑦 occurring in a data set containing 𝑛 independent and identically distributed 94 

(IID) observations generated from 𝑝(𝑋, 𝑌) . Typically, the joint probabilities are estimated by the 95 

relative frequencies of the joint outcomes corresponding to maximum likelihood estimates. To avoid 96 

issues related to zero counts and increase the stability of the estimator, we add 0.5 to the joint counts 97 

according to   98 

�̂�(𝑥, 𝑦) =
𝑛(𝑥, 𝑦) + 0.5
𝑛 + 𝑟𝑋𝑟𝑌 ∙ 0.5

  , (2) 99 

where 𝑟𝑋 and 𝑟𝑌 denote the number of possible outcomes for 𝑋 and 𝑌, respectively. In the Bayesian 100 

framework, the above point estimator corresponds to the posterior mean under a Dirichlet prior 101 

distribution with the hyperparameters set to 0.5, corresponding to Jeffreys’ prior (13).   102 

  103 

Sequence reweighting. In the context of this work, 𝑋 and 𝑌 in the previous paragraph correspond to 104 

single-nucleotide polymorphisms (SNPs) and the outcome spaces represent the four nucleotides 105 

𝐴, 𝐶, 𝐺, 𝑇 with an additional outcome representing gaps. The observed data is in form of a multiple 106 

sequence alignment (MSA) containing 𝑛 sequences (𝑆1, … , 𝑆𝑛) of length 𝐿. In general, the sequences 107 

in an MSA strongly violate the IID assumption since they share a linkage through an evolutionary 108 

relationship. This is problematic from a practical point of view, since potentially interesting signals may 109 

be hidden behind background noise caused by the population structure within an MSA. Consequently, 110 

to adjust for the population structure in the MI estimator, we apply a technique known as sequence 111 

reweighting, which has successfully been used previously for both protein contact prediction (3, 4) 112 

and GWES (9, 10). Reweighting assigns a weight to each sequence according to how different it is 113 

from the other sequences in the MSA, such that the counts of allele pairs occurring in the MI estimator 114 

will reflect the level of clusteredness across the MSA.    115 

Let 𝑚𝑖  denote the number of sequences (including 𝑆𝑖 ) whose mean per-site Hamming 116 

distance to 𝑆𝑖 is smaller than a similarity threshold, for which we used a default value of 0.10. The 117 

weight given to sequence 𝑆𝑖 is then calculated by 118 

𝑤𝑖 =
1

𝑚𝑖
  .  119 

The effective count 𝑛eff(𝑥, 𝑦)  is calculated by summing the weights of all sequences with the 120 

corresponding joint configuration over the SNP sites represented by 𝑋 and 𝑌. The counts in (2) are 121 

then replaced with the corresponding effective counts: 122 

�̂�eff(𝑥, 𝑦) =
𝑛eff(𝑥, 𝑦) + 0.5
𝑛eff + 𝑟𝑋𝑟𝑌 ∙ 0.5

  .  123 

The above estimates are finally plugged into (1) resulting in the reweighted MI estimator. 124 

 125 

Filtering out indirect links. An unavoidable issue with methods based solely on pairwise association 126 

tests is their inability to distinguish between direct and indirect associations. In particular, in the 127 

GWES context it is typically expected that a strong direct dependence between two distant SNP sites 128 
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would be accompanied by a collection of slightly weaker indirect dependencies between sites in close 129 

proximity of the coupled sites due to genetic linkage. As a result, pinpointing the exact locations of co-130 

evolving loci at SNP resolution in a bacterial GWES is in general very difficult due to strong linkage 131 

disequilibrium between nearby sites. Still, considering that the identified links need to be examined 132 

manually, our aim is to produce as compact a list of SNP pairs as possible, containing the most likely 133 

candidates of mutations co-evolving under a shared selection pressure. 134 

To select a subset of SNP pairs containing only the most promising links, we use the same 135 

filtering technique as ARACNE, which was originally introduced as a method for inferring gene 136 

expression networks (12). The filtering technique is based on a property known as the data 137 

processing inequality, which states that if two variables 𝑋 and 𝑌 only interact through a third variable 138 

𝑍, then  139 

𝑀𝐼(𝑋, 𝑌) ≤ min[𝑀𝐼(𝑋, 𝑍), 𝑀𝐼(𝑍, 𝑌)] .  140 

In other words, the indirect dependence between 𝑋 and 𝑌 cannot be larger than either of the two 141 

direct dependencies through which it is mediated. Formally, ARACNE starts from a graph containing a 142 

link for each non-zero MI value. The algorithm then examines each triplet of mutually linked variables 143 

and removes the weakest link (see Figure 2). In the degenerate case, where there is no unique 144 

weakest link in a triplet, no link is removed. The algorithm is order-independent in the sense that a link 145 

that has been marked for removal from one triplet is still considered present with respect to a non-146 

examined triplet containing that link. 147 

Naively applying the ARACNE filtering step would be computationally intractable, since there 148 

are in total (𝐿
3) possible triplets. However, in practice it is sufficient to run the procedure over a small 149 

list containing only the top estimated links. Consequently, the main computational part will still be to 150 

estimate the MI values over the (𝐿
2)  pairs. The ARACNE approach is not only appealing due to its 151 

computational simplicity, but also its ability to produce a small representative set of links that are most 152 

likely to be direct. One of the drawbacks with this approach is that it will never output a triplet of 153 

mutually linked sites (except in the degenerate case) even if such a triplet existed. However, three 154 

mutually linked sites will still be contained in a single connected component and thus the association 155 

between the three loci will remain visible. 156 

 157 

Threshold for result storage. Saving the complete output of a GWES to disk would typically result in 158 

such large files that they would become unwieldy. Nevertheless, since the main target is to identify 159 

the largest MI values, estimation results can be filtered online (i.e. as each new value is calculated) to 160 

reduce the amount of storage required. To this end, we use a subsampling procedure to determine a 161 

threshold for saving a user-specified top fraction of the MI values. This is done by randomly selecting 162 

a subset of SNP pairs for which the MI values are calculated. The empirical cumulative distribution 163 

function is then used to estimate an appropriate saving threshold that corresponds to the user-164 

specified top fraction. To increase stability, the procedure is repeated several times and the median 165 

threshold value is selected for final filtering.  166 
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 167 

Outlier analysis. To assess if a link is strong enough to warrant further study, we perform an outlier 168 

analysis. Due to genetic linkage, SNPs in close chromosomal proximity tend to be in strong linkage 169 

disequilibrium (LD). Note that LD here refers to SNPs showing a significant association specifically 170 

due to close genetic linkage. Since strong LD masks any potential signal of shared co-evolutionary 171 

selection pressure, we restrict the outlier analysis to non-LD pairs. The default approach for filtering 172 

out LD-pairs is to use a simple distance-based cut-off. For this, we used a default cut-off value of 10 173 

kbp.  174 

To estimate an outlier threshold among the non-LD pairs, we use a data-driven procedure 175 

based on Tukey’s outlier test (14). The test assesses how extreme an MI value is in comparison to a 176 

global background distribution observed for the analysed data set. If the MI value of a direct link is 177 

flagged as an outlier, the corresponding SNP pair will automatically be carried forward for further 178 

analysis. As background distribution for the outlier test, we use an extreme value distribution by which 179 

we effectively attempt to model the distribution of maximum MI values for a site (w.r.t. non-LD pairs). 180 

In practice, we save the maximum MI value of each site and calculate the lower (𝑄1) and upper (𝑄3) 181 

quartiles of empirical extreme value distribution. Following Tukey’s criterion, we then label an MI value 182 

larger than 𝑄3 + 1.5 × (𝑄3 − 𝑄1) as an outlier. In addition to the default threshold, we label an MI value 183 

larger than 𝑄3 + 3 × (𝑄3 − 𝑄1) as an extreme outlier. 184 

The typical approach for determining significance in this type of problem is to run a 185 

permutation analysis (12, 15). For this application, such an approach would be too inclusive since the 186 

maximum MI values observed in the background distribution of real MSAs exceed those observed 187 

under a null model in which the sites are unlinked through permutations. Moreover, the extent of the 188 

tail region of the background distribution may vary significantly between data sets due to differences 189 

in population structure, recombination rate, etc. For this reason, our significance analysis is based on 190 

identification of outliers among the actual MI values observed for a particular population. Being based 191 

on quartiles, Tukey’s outlier test is by design very robust against extreme values. The critical 192 

assumption behind this procedure is that the majority of SNPs are not linked to other SNPs beyond 193 

LD. 194 

 195 

MutuaI information without gaps. When calculating the MI values, gaps are by default considered an 196 

outcome. While some gaps can be informative, others may simply be due to difficulties in the 197 

sequencing process: difficult-to-sequence regions may be systematically absent from all lower-quality 198 

sequences, resulting in distinct patches of gap characters that appear in parallel across samples. 199 

Hence, some interactions may be artificially amplified in regions with low-quality sequence data. To 200 

facilitate discovery of such cases in the subsequent manual analysis, we also calculate the MI value 201 

of the top pairs using only sequences where neither site of a pair contains a gap. Since the collection 202 

of sequences without gaps varies between pairs, it is difficult to compare gap-free MI values between 203 

SNP pairs in a meaningful way, however, the gap-free MI value can still be informative for a given pair 204 

in the sense that a large decrease in MI when dropping the gap sequences is an indication of a gap-205 

driven interaction.   206 
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 207 

Implementation. SpydrPick was implemented in C++ and supports parallel execution in a shared 208 

memory environment. Its space-efficient data structure, indexing strategy and online filtering of output 209 

jointly enable excellent scalability to an order of magnitude larger genome data sets than previous 210 

software developed for epistasis and co-selection analysis. 211 

 212 

GWES Manhattan plot. For compactly visualizing the results of a GWES, we use a modified version of 213 

the GWAS Manhattan scatter plot. In a standard GWAS Manhattan plot, the association strength 214 

between a SNP and some phenotype (y-axis) is plotted against the chromosomal location of the SNP 215 

(x-axis), meaning that each point represents a single SNP. A GWES Manhattan plot has a similar 216 

design, however, each point now represents a pair of SNPs such that the x-axis displays the distance 217 

between the chromosomal locations of the SNPs and the y-axis displays the association strength 218 

between the SNPs, which is determined by their MI value.  219 

 220 

Data  221 

 222 

Neutral model. To ensure that the designed method maintains a sufficiently low rate of false positive 223 

findings indicated as outliers, we generated genomic data with realistic LD under a neutral population 224 

model using the population simulator introduced in (16). Thus, the simulation illustrates the output of 225 

the method in a controlled, yet challenging scenario where there are no co-evolving SNP pairs 226 

beyond the LD pattern imposed by the neutral model.  227 

The genome was a linear chromosome of 200 kbp and the parameters of the simulator model 228 

were set to represent a challenging heavily structured population with 20 inter-connected 229 

subpopulations, (see Table S1 for exact simulator settings). The simulation was repeated ten times 230 

with different random seeds. From each population of 20,000 isolates, a random sample covering 5% 231 

of the population was drawn, resulting in 886 – 912 unique sequences per sample. The simulated 232 

alignments were filtered for bi- and multi-allelic loci with a minor allele frequency (MAF) greater than 233 

1% and a gap frequency (GF) smaller than 15%. The number of SNPs per filtered alignment was in 234 

the range of 10,568 – 12,400. For one of the simulated alignments, a phylogenetic tree was estimated 235 

using RAxML with the default settings and GTR+Gamma model (17). 236 

 237 

Streptococcus pneumoniae. Our first real alignment contained 3,042 S. pneumoniae strains collected 238 

in Maela, a refugee camp close to the border between Thailand and Myanmar (18). The whole 239 

genome alignment was generated from short-read data aligned to the reference sequence of S. 240 

pneumoniae ATCC 700669 whose genome is a circular chromosome of 2,221,315 bp (19). For the 241 

GWES, bi- and multi-allelic loci with MAF greater than 1% and GF smaller than 15% were included in 242 

the analyses. The filtered alignment contained 94,880 SNPs. 243 

The diverse population structure in the data, together with the recombinant nature of S. 244 

pneumoniae, make the data ideal for GWES (9). Moreover, this particular data set has previously 245 

been analysed by DCA approaches, which successfully discovered several interacting regions with 246 
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plausible biological explanations (9, 10). Hence, the main aim for this data set was to investigate how 247 

well the earlier highlight findings could be rediscovered using our model-free method. 248 

  249 

Neisseria meningitidis. Our second real alignment contained 2,148 N. meningitidis strains, of which 250 

543 were published by Lucidarme et al. 2015 (20) and the rest were obtained from different 251 

sequencing projects run in the Wellcome Sanger Institute, Cambridge (see Table S4 for more details). 252 

The pan-genome of the strains included in the study was created using Roary (21), with a percentage 253 

of isolates needed to consider a gene as core set to 95%. The core gene alignment and individual 254 

gene alignments of the 13,052 genes conforming the pan-genome under the above criteria were 255 

obtained directly from the output. All individual genes were concatenated to obtain a pan-genome-256 

wide alignment of 11,375,926 bp using the Alignment Manipulation and Summary (AMAS) tool (22). 257 

For the GWES, bi- and multi-allelic loci with MAF greater than 1% and GF smaller than 70% were 258 

included. The filtered alignment contained 137,814 SNPs. An approximately-maximum likelihood 259 

phylogenetic tree was estimated with FastTree (23) from the SNP sites in the core alignment 260 

(obtained with SNP-sites (24)) using the GTR model of nucleotide substitution and gamma rate 261 

heterogeneity among sites. 262 

In contrast to the S. pneumoniae alignment, where all sequences were mapped to a reference 263 

sequence, this pan-genome-wide alignment was constructed by concatenating individual gene 264 

alignments. As a result, we can no longer use a straightforward distance-based cut-off to filter out LD-265 

mediated links. Instead, we simply define two sites within the same gene as an LD-pair and two sites 266 

from different genes as a non-LD pair. The main aim for this data set was to investigate if our method 267 

would still be able to extract plausible signals of co-selection under this modified setup. 268 

 269 

RESULTS 270 

 271 

Neutral model 272 

 273 

The complex structure of the population generated under the neutral model is visible in the estimated 274 

phylogenetic tree, which has a large number of well separated clades (Fig 3a). High clonality within 275 

the clades is reflected by a low effective sample size, 𝑛eff = 16.22, which is only 1.8% of the original 276 

sample size, n = 897. The Manhattan plot illustrating the output of SpydrPick is shown in Fig 3b. For 277 

short-distance SNP pairs we observe a peak in MI values due to LD. As the distance increases, the 278 

background distribution flattens out and remains at a constant level. The LD threshold at 10 kbp is 279 

marked with a red vertical line. The lower and upper horizontal red lines in the plot mark the outlier 280 

and extreme outlier threshold, respectively.  281 

Blue points located right of the vertical line and above the horizontal line(s) can be considered 282 

false positives (FPs), since the simulator does not let any specific site patterns influence reproductive 283 

fitness. For the default outlier threshold, the average number of FPs over ten generated sequence 284 

alignments was 122.2 and the corresponding average FP rate was 2.1u10-6. For the extreme outlier 285 
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threshold, the average number of FPs was 2.7 and the average FP rate 4.9u10-8. This shows that our 286 

method is able to maintain a low FP rate even under a very challenging population structure.  287 

Finally, to illustrate the difference between the background distribution observed in Fig 3b and 288 

a corresponding null distribution, which was obtained by permuting the columns of the alignment used 289 

in Fig 3b, we have included a Manhattan plot of the SpydrPick output for the null distribution in Fig 3c. 290 

First, and as expected, the short-distance peak is no longer present in Fig 3c, since the permutation 291 

breaks the LD. Second, the level of the background distributions in Fig 3b clearly exceeds the 292 

corresponding null distribution in Fig 3c. As a result, any outlier threshold estimated from the 293 

permutation null distribution would likely be too inclusive with respect to the true background 294 

distribution, resulting in a high FP rate. 295 

 296 

Streptococcus pneumoniae 297 

 298 

After reweighting with respect to the filtered alignment, the effective sample size was reduced to 𝑛eff =299 

130.26. The Manhattan plot of the analysis output is shown in Fig 4a. There is a high LD peak for 300 

short-distance pairs which eventually flattens out around 10 kbp (see Fig 4b) into a global background 301 

distribution. The striking difference from the simulated data is that there are now several distinct 302 

peaks clearly rising above the background distribution. Each peak is made up of a large collection of 303 

potential links. However, the ARACNE step filters out the vast majority as indirect, and only a few 304 

representative links (blue points) are singled out for further examination. In total, 163 direct links were 305 

flagged as outliers and 16 as extreme outliers. Here, we look closer at the extreme outliers, which are 306 

listed in Table S2. To facilitate the interpretation of the results, we have annotated the most 307 

interesting peaks in the Manhattan plot in Fig 4a using the distance column in Table S2. Finally, the 308 

Phandango plot (25) in Fig 5 shows the allele distributions across the population of the loci involved in 309 

the top links alongside phenotypic information about encapsulation and beta-lactam resistance. 310 

The majority of the top-ranking links discovered in the earlier DCA-based GWES (9, 10) were 311 

between three genes encoding penicillin-binding proteins (PBPs): SPN23F03410 (pbp1a), 312 

SPN23F16740 (pbp2b) and SPN23F03080 (pbp2x). These three proteins are involved in cell wall 313 

metabolism, and are the primary targets of beta lactam antibiotics. Modification of all three sequences 314 

is required for S. pneumoniae to exhibit high-level resistance to beta lactam antibiotics (26-29). 315 

Among the top 16 SpyderPick hits, 7 are between PBPs and the corresponding peaks are at 316 

distances 0.4u105, 9.0u105 and 9.4u105 bp in the Manhattan plot. In addition to the links between the 317 

PBPs, there is also one link from pbp2b to SPN23F03090 (mraY), which is located directly 318 

downstream of pbp2x. The mraY gene encodes a phospho-N-acetylmuramoyl-pentapeptide-319 

transferase also involved in cell wall biogenesis and, as noted by (9), it has been predicted that 320 

mutations in this transferase could be compensating for the costs of evolving beta lactam resistance 321 

(29). 322 

 In addition to the PBP-related links, there are 4 links involving SPN23F19490, which is part 323 

of the gene cluster SPN23F19480 - 19500 located directly upstream of SPN23F19470 (ply), encoding 324 

the toxin and key virulence factor pneumolysin. The ply-associated gene is coupled with 325 
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SPN23F16620 (divIVA), SPN23F01290 (pspA) and SPN23F03150 (dexB), corresponding to the 326 

peaks at distances 2.9u105, 4.3u105 and 6.3u105 bp in the Manhattan plot. The divIVA gene encodes 327 

a cell morphogenesis regulator and pspA encodes a surface protein associated with virulence. Links 328 

between ply-associated genes, divIVA and pspA were discovered as significant by the initial DCA 329 

method (9), but not by the more recent DCA method (10). A plausible reason for this is that the more 330 

recent DCA method fits a global model over all sites, whereas the initial DCA method uses a 331 

subsampling technique that makes it more similar to our local approach. The final link involving dexB 332 

has not been previously detected by any method. The dexB gene is located adjacent to the capsule 333 

polysaccharide synthesis locus in most S. pneumoniae, suggesting a possible link between the 334 

extracellular polysaccharide and the surface-associated PspA, Ply and DivIVA proteins. Further 335 

examination revealed the minor alleles at these loci were confined to several phylogenetically distinct 336 

clusters of non-typeable (unencapsulated) isolates, which lack a functional capsule polysaccharide 337 

synthesis locus (see Fig 5). This suggests non-typeable S. pneumoniae are not simply bacteria that 338 

have lost their capsule, but have also undergone other adaptive changes in specialising to a distinct 339 

niche. This may account for the distinct pathogenesis of unencapsulated strains, which do not cause 340 

severe invasive disease (30), but are known to cause outbreaks of conjunctivitis (31). 341 

 There are two remaining peaks in the Manhattan plot exceeding the extreme outlier 342 

threshold. The first peak at distance 7.4u105 bp corresponds to an interaction between pspA and 343 

divIVA. This peak is not represented in the top links since its consistently the weakest link in triplets 344 

connecting ply, pspA and divIVA, and has therefore been labeled as indirect. The second and final 345 

peak is an example of a gap-driven signal. The MI of the corresponding link drops from 0.352 to 0.006 346 

when excluding sequences that contain a gap on either site (see Table S2). 347 

 Finally, to illustrate the effect of the population structure, the result of running the analysis 348 

without sequence reweighting is shown in the Manhattan plot in Fig 4c. When comparing to the 349 

original plot in Fig 4a, it is clear that sequence reweighting is an essential step in separating the signal 350 

from the background distribution. 351 

 352 

Neisseria meningitidis 353 

 354 

After reweighting with respect to the filtered alignment, the effective sample size was reduced to  355 

𝑛eff = 515.86. The Manhattan plot of the analysis output for intra- and inter-gene pairs are shown in 356 

Figs 6a and 6b, respectively. Note that the distance between sites in Fig 6b is not a true distance, but 357 

a mock distance constructed for illustrative purposes from the ordering of the genes in the alignment. 358 

As expected, Fig 6a shows an abundance of high MI values among intra-gene pairs, especially 359 

among short-distance pairs. Fig 6b indicates that there is a collection of interaction signals rising 360 

above the global background distribution. Still, the overall signal-to-noise (or signal-to-background) 361 

ratio appears lower than in the S. pneumoniae analysis, which is also reflected by high outlier 362 

thresholds. A likely explanation for this is the inclusion of LD-mediated inter-gene links. In total, 48 363 

direct links are flagged as outliers. In the following, we look closer at the 28 top-ranked links, which 364 
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are listed in Table S3. The allele distributions of the loci involved in these links are visualized by the 365 

Phandango plot in Fig 7. 366 

The majority of the identified links are between proteins of unknown function, many of which 367 

display high similarity to other phage-associated proteins or phage repressors. Previous work has 368 

identified a certain bacteriophage as important to virulence in N. meningitidis (32, 33), but the phage-369 

associated proteins detected in this scan could not be further identified. To better assess the 370 

likelihood of LD causing the elevated MI values, we mapped the genes involved in the top links onto 371 

the reference genomes MC58 (34) and FAM18 (35), and calculated the inter-gene distances (Table 372 

S3). This revealed that most of the links were relatively short-distance, making it difficult to rule out 373 

the possibility of LD, especially for intra-phage-links. Hence, we looked closer at the 5 long-distance 374 

links for which the involved genes were more than 10 kbp apart in the reference genomes.    375 

Out of the 5 long-distance links, 4 links were between the gene besA, encoding ferri-376 

bacillibactin esterase, and the ferripyoverdine receptor fpvA. Both genes are involved in iron uptake 377 

during colonisation (36, 37). Iron uptake is an important pathway in most bacteria that colonise human 378 

hosts, and Neisseria is no exception, where iron uptake has been identified as an important 379 

determinant of virulence (38, 39), and essential for successful colonisation (39). The besA and fpvA 380 

genes are located 62,477 bp apart in the MC58 reference genome and 63,514 bp apart in the FAM18 381 

reference genome, and the strong links are thus very unlikely to be caused by the background LD.  382 

The final long-distance link is between the anthranilate synthase component I, trpE, involved 383 

in tryptophan synthesis, and a hypothetical gene, here referred to as group_5289 (name given by 384 

Roary). When searched against the non-redundant protein database with tblastx (40), group_5289 385 

showed similarities with a betaine transporter. The trpE and group_5289 genes are 361,849 bp apart 386 

in the MC58 reference genome and 722,196 bp apart in the FAM18 reference genome. From 387 

previous molecular biology work studying these pathways, we can see how these two genes might 388 

come to be under selection. Tryptophan synthesis is a crucial part of protein biosynthesis, and its 389 

synthesis has been linked to greater virulence in other bacterial species by allowing for immune 390 

evasion (41). As for group_5289, importing betaine has long been recognised as an important method 391 

of surviving in urinary tract infections (42, 43), a niche which N. meningitidis has long been known to 392 

have the ability to infect (44), and appears to be increasing in prevalence (45). 393 

The GWES results have this far been discussed at gene level. Even though SpydrPick 394 

outputs links between specific sites, we recommend that the initial examination of the discovered links 395 

is kept at gene resolution, since fine-mapping the exact location of SNPs under selection in a GWES 396 

is typically very difficult. However, once a link between an interesting gene pair has been identified, 397 

one might still want to zoom in and look for further evidence of co-selection at SNP resolution. In 398 

particular, when an identified SNP is located in a protein-coding region, one might want to check if the 399 

SNP is synonymous or non-synonymous. As an illustrative example, we looked closer at the SNPs 400 

involved in the link between trpE and group_5289. While the SNP in the group_5289 was found to be 401 

non-synonymous, resulting in an arginine to lysine mutation, the SNP in trpE was found to be 402 

synonymous at the protein-coding level. As synonymous mutations are not typically expected to be 403 

under selection, we scanned the surrounding region of the trpE site to look for a biologically more 404 
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likely source of the signal. More specifically, using the SpydrPick output, we extracted all trpE sites 405 

that were in strong LD (measured by MI) with the original trpE site. Using the MI of the original link 406 

between trpE and group_5289 as a threshold, we found 14 candidate SNPs located 36 – 676 bp from 407 

the original trpE site. Among these, we found one non-synonymous SNP, coding an aspartic acid to 408 

alanine mutation. Finally, to predict the functional effect of the amino acid substitutions, we used 409 

SNAP2 which outputs a value between -100 (completely neutral) and 100 (high functional effect) (46). 410 

The predicted effects of the group_5289 and trpE mutations were 45 and 32, respectively, making 411 

both likely candidates for mutations under selection.  412 

 413 

Runtime 414 

 415 

Calculating the MI values and running the ARACNE post-processing step for the S. pneumoniae 416 

alignment (with 3,042 sequences and 94,880 sites) took 2 hours using 8 threads on a laptop with Intel 417 

Core i7-6820HQ CPU. In comparison, it took over a week for SuperDCA to run direct coupling 418 

analysis on the same alignment using a single 20-core dual-socket compute node (10). 419 

 420 

DISCUSSION 421 

 422 

The rapidly increasing availability of population-wide genome sequence data has boosted the 423 

potential for data-driven exploration of genetic variation associated with bacterial evolution. As a 424 

result, high-dimensional exploratory data analysis methods have become valuable tools for 425 

generating detailed hypotheses and identifying important targets for subsequent experimental work. 426 

For eukaryotes, genome-wide association studies (GWAS) have been the primary tool for this 427 

purpose for more than a decade, and more recent works have demonstrated the applicability and 428 

potential of GWAS also for bacteria (29, 47, 48). In addition to GWAS, the phenotype-free approach 429 

of genome-wide epistasis and co-selection studies (GWES) has recently emerged, and successfully 430 

been used to uncover mechanisms behind complex bacterial traits associated with survival, 431 

proliferation and virulence (8-10).  432 

The main advantage of GWES lies in its unsupervised approach. It does not require the 433 

definition and measurement of a phenotype, yet it can reveal co-evolutionary patterns behind many 434 

different traits shaped by selection. Bacterial genomes of a single species are likely sampled from 435 

diverse micro-niches, which create unique selective pressures that vary over space and time. These 436 

can include immune pressures, nutrient availability, antibiotic use, or interactions within ecological 437 

communities. Links identified by GWES may represent multilocus adaptation to these micro-niches, 438 

which will create combinations of mutations that are maintained by selection. This adaptive process 439 

may be facilitated by epistatic interactions between loci but may also be driven by independent 440 

selection on sets of mutations that are additively beneficial in a particular niche. Co-evolutionary 441 

signals may also be maintained in a population if negative frequency dependent selection (NFDS) 442 

acts on the same traits. In fact, it has recently been suggested that NFDS acts to prevent antibiotic 443 

resistance genes sweeping to fixation in S. pneumoniae (bioRxiv: https://doi.org/10.1101/233957). 444 
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In this work, we introduced the model-free GWES method SpydrPick, which is parallelizable 445 

and scalable to pan-genome-wide alignments of many bacteria. To illustrate the output of a GWES, 446 

we introduced a modified version of the Manhattan plot, which has served as the main illustrative tool 447 

for exploring the output of GWAS. Experiments on both synthetic and real bacterial population 448 

sequence data demonstrated the accuracy and potential of our method. In particular, a genome-wide 449 

analysis of a mapping-based alignment of S. pneumoniae isolates showed that SpydrPick was able to 450 

accurately pick out previously discovered and validated signals of co-selection, as well as a novel link 451 

with a plausible biological explanation. In addition, a pan-genome-wide analysis of a Roary generated 452 

alignment of N. meningitidis isolates illustrated the potential of our method in an even more 453 

challenging data set, by identifying several interesting signals likely to originate from genes under 454 

selection. Similar to previous GWES methods, SpydrPick operates on SNP resolution trying to fine-455 

map the co-selection signal to individual sites using only the co-variation pattern observed in the data. 456 

For any method, this task is very challenging and limited by several factors, including population 457 

structure, extent of LD and amount of available data. As illustrated by the identified trpE site in N. 458 

meningitidis, it is likely to be informative to check the surrounding region of the statistically linked sites 459 

to find the biologically most plausible source of the signal. 460 

 SpydrPick is conceptually very different to model-based DCA methods, which aim to fit a joint 461 

model over all SNPs, in that the pairwise interaction between two sites is evaluated independently of 462 

all other sites. This is similar in spirit to the approach by Cui et al. (8), who used Fisher’s exact test to 463 

scan for epistatic interactions among bi-allelic SNPs in a sample of Vibrio parahaemolyticus isolates. 464 

In contrast to our method, however, Cui et al. did not attempt to disentangle the direct interaction from 465 

the indirect interactions. In a recent hybrid approach, Gao et al. proposed filtering the data based on 466 

pairwise correlations and then fitting a joint model over the remaining sites in (49). The obvious 467 

advantage of a strict pairwise method, such as SpydrPick, is that its computational simplicity allows 468 

for scaling up to data sets beyond what is currently achievable by current DCA-based methods. In 469 

addition, and more importantly, recent numerical experiments on synthetic network models suggest 470 

that pairwise methods may be more accurate than the current state-of-the-art DCA-based methods in 471 

the high-dimensional setting (arXiv:1901.04345).  472 

To distinguish between LD-mediated and non-LD-mediated links, we used a distance-based 473 

threshold with a rather conservative default value set to 10 kbp. As the background distribution will 474 

depend on multiple factors, such as type of organism, mode of recombination, population structure of 475 

the sample etc, it might be necessary to adjust the threshold value accordingly. This may involve 476 

running the analysis twice, where the output of the initial run is solely used to re-adjust the LD 477 

threshold parameter according to the drop in LD observed in the Manhattan plot, for example, see Fig 478 

4b. A topic for future research will be to look into alternative and more sophisticated means for 479 

distinguishing between LD-mediated and non-LD-mediated links. This will be particularly important for 480 

alignments where a distance-based threshold cannot be used easily, for example in the analysis of 481 

the pan-genome. However, it might also open up opportunities for identifying signals of co-selection 482 

between closely located SNPs.  483 
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Another important topic for future research is to compare different techniques for adjusting for 484 

the population structure. In the work by Cui et al. (8), a subsample of 51 unrelated isolates was 485 

selected for the co-variation analysis. This corresponds to a hard reweighting technique where each 486 

weight is set to either zero or one, meaning that a collection of closely related isolates is represented 487 

by a single isolate. In contrast, the conceptual idea behind the soft reweighting technique used here 488 

can be thought of as taking the average over the same collection of isolates. The optimal technique 489 

for adjusting for the population structure will likely depend on certain properties in the data, for 490 

example, the level of clonality among the isolates.   491 

GWES is a relatively new data-driven approach for detecting co-evolutionary patterns shaped 492 

by selection, and it is currently gaining traction in bacterial genomics due its wide applicability. GWES 493 

is by design phenotype-free, however, if one has access to relevant phenotype data, the output of a 494 

GWES can also be used to effectively reduce the number of tests in a follow-up epistatic GWAS (50). 495 

Given its accuracy and computational scalability, SpydrPick pushes the boundaries of existing GWES 496 

methods and promises to uncover a wealth of previously-undiscovered evolutionary signals in 497 

bacterial genomic data. 498 

 499 
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Figure 1. An overview of the SpydrPick pipeline. 
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Figure 2. Illustration of the ARACNE step (the width of the links represents the interaction strength): 
(a) True interaction structure: Z is strongly linked to X and Y, which are not directly linked to each 
other. (b) A pairwise test outputs a significant association between X and Y due to the indirect link 
through Z. (c) The ARACNE step removes the indirect link between X and Y, being the weakest out of 
the three links.  
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Figure 3. Neutral model - (a) Phylogenetic tree, (b) GWES Manhattan plot, (c) GWES Manhattan plot 
when the positions have been unlinked through permutations. (b) – (c) Direct and indirect links are 
plotted in blue and grey, respectively. The red horizontal dotted lines show the outlier thresholds; 
outlier * and extreme outlier **. The red vertical dotted line shows the LD threshold. 
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Figure 4. S. pneumoniae - GWES Manhattan plots: (a) complete distance range and with annotated 
peaks, (b) distances in the range 0 – 20 kbp, (c) complete distance range but without sequence 
reweighting. Direct and indirect links are plotted in blue and grey, respectively. The red horizontal 
dotted lines show the outlier thresholds; outlier * and extreme outlier **. The red vertical dotted line 
shows the LD threshold.  
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Figure 5. Phenotype information (encapsulation and beta-lactam resistance) and allele distribution at 
loci involved in the top links for the S. pneumoniae population. The estimated phylogeny is shown on 
the left. The two first columns are labelled by phenotype information and the remaining columns are 
labelled by gene name/id. The loci are sorted component-wise such that all columns within two 
successive vertical lines belong to the same component. 
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Figure 6. N. meningitidis - GWES Manhattan plots: (a) intra-gene links, (b) inter-gene links. The mock 
distance in (b) was calculated using the gene order in the actual alignment and is therefore not a true 
distance. Direct and indirect links are plotted in blue and grey, respectively. The red horizontal dotted 
lines show the outlier thresholds; outlier * and extreme outlier *. 
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Figure 7. Allele distribution at loci involved in the top links for the N. meningitidis population. The 
estimated phylogeny is shown on the left and each column is labelled by gene name/id. The loci are 
sorted component-wise such that all columns within two successive vertical lines belong to the same 
component. 
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