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Abstract10

Learning biases decision-making towards higher expected outcomes. Cognitive theories describe11

this through the tracking of value and outcome evaluations within striatum and prefrontal cortex.12

Decisions however first require processing of sensory input, and to-date, far less is known about the13

learning perception interplay. This fMRI study (N=43), relates visual BOLD responses to value-beliefs14

during choice, and, signed prediction errors after outcomes. To understand these relationships, which15

co-occurred in striatum, we next evaluated relevance with the prediction of future value-based choices,16

using a separate transfer-phase with learning already established. We decoded choice outcomes with a17

69% accuracy with a machine learning algorithm that was given trial-by-trial BOLD from visual regions18

alongside traditional prefrontal, and striatal regions. Importantly, this decoding of value-driven choice19

outcomes again showed an important role for visual activity. These results raise the intriguing possibility20

that value learning in visual cortex is supportive for the striatal bias towards valued options.21
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Introduction25

In decision-making, our value beliefs bias future choices. This bias is shaped by the outcomes of similar26

decisions made in the past where the action, or stimulus chosen, becomes associated with a positive or27

negative outcome (‘value beliefs’). The evaluation of value after an outcome, or the comparison of value in28

decisions, is traditionally associated with activity in the prefrontal cortex and striatum1–7.29

To underset the bias in action selection midbrain dopamine neurons are thought to send a teaching signal30

towards the striatum and prefrontal cortex after an outcome8–10. In the striatum, future actions are facilitated31

by bursts in dopamine after positive outcomes or discouraged by dopamine dips after negative outcomes. The32

dorsal and ventral parts of the striatum are known to receive differential, but also overlapping, inputs from33

midbrain neurons7,11. Ventral and dorsal striatum have also been ascribed a differential role during learning34

by reinforcement learning theories. Here, the ventral parts of the striatum are involved with the prediction35

of future outcomes through the processing of prediction errors, whereas the dorsal striatum uses the same36

information to maintain action values as a way to bias future actions towards the most favored option4,12,13.37

Intriguingly, however, before many of these value-based computations can take place, stimuli first have to38

be parsed from the natural world, an environment where most reward predicting events are perceptually39

complex. This suggests that sensory processing might be an important integral part of optimized value-based40

decision-making.41

Here, we investigate whether choice outcomes can modulate the early sensory processing of perceptually42

complex stimuli to help bias future decisions. Recent neurophysiological studies find visually responsive43

neurons in the tail of the caudate nucleus, which is part of the dorsal striatum14,15. These neurons encode and44

differentiate stable reward values of visual objects to facilitate eye movements towards the most valued target,45

while at the same time inhibiting a movement towards the lesser valued object16. Critically, differential46

modulations are also observed in the primary visual cortex where stronger cortical responses are seen for47

objects with higher values17,18, which is consistent with the response of visual neurons in the caudate. As48

visual cortex is densely connected to the striatum19,20, prioritized visual processing of high-value stimuli49

could aid the integration of information regarding the most-valued choice in the striatum21–24. To understand50

these visual-striatal interactions, we focus on a more detailed parsing of the underlying computations.51

Specifically, we explored two questions by reanalyzing fMRI data from a probabilistic reinforcement learning52

task using faces as visual stimuli25 (Figure 1a). First, we focus on the interplay between learning and visual53

activity in the fusiform face area (FFA) and occipital cortex (OC). Here, with the use of a Bayesian hierarchical54

reinforcement learning model (Figure 1b) we outline how trial-by-trial estimates of action values (Q-value)55

and reward prediction errors (RPE) relate to the BOLD response of visual regions and the striatum26,27
56

(Figure 1c). Second, we analyze data from a follow-up transfer phase, where the learning of value was already57

established. In our analysis, the importance of visual brain activity in the prediction, or decoding, of future58

value-based decisions is evaluated by using a supervised Random Forest (RF) machine learning algorithm28,29.59

Specifically, transfer phase single-trial BOLD estimates from anatomically defined visual, prefrontal, and60

subcortical regions are combined by RF to predict, or decode, choice outcomes in a seperate validation61

set. We focus on classification accuracy, and the relative importance of each brain region in the correct62

classification of future value-based decisions.63
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Figure 1: Design and Model. a) Reinforcement learning task using faces. During learning, two faces
were presented on each trial, and participants learned to select the optimal face identity (A, C, E) through
probabilistic feedback (% of correct is shown beneath each stimulus). The learning-phase contained three
face pairs (AB, CD, ED) for which feedback was given. In a follow-up transfer phase these faces were
rearranged into 12 novel combinations to asses learning. These trials were identical to learning trials, with
the exception of feedback. *Example faces were removed for the publication on BioRxiv, for an impression
see 25, or the Radboud face database from where the faces were originally selected (http://www.socsci.ru.nl:
8180/RaFD2/RaFD). b) Graphical Q-learning model with hierarchical Bayesian parameter estimation. The
model consists of an outer subject (i = 1, . . . .., N), and an inner trial plane (t = 1, . . . , T ). Nodes represent
variables of interest. Arrows are used to indicate dependencies between variables. Double borders indicate
deterministic variables. Continuous variables are denoted with circular nodes, and discrete with square nodes.
Observed variables are shaded in grey (see methods for details about the fitting procedure). c) Illustration of
the observed trial-by-trial input (i.e., the choice made, and feedback received), and output (i.e., Q for the
chosen and unchosen stimulus, ∆Value, and RPE) of the model given the estimated variability in learning
rates from either positive (αGi) or negative (αLi) feedback, and the tendency to exploit β higher values i.
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Results64

To understand how value learning relates to the activity pattern in perceptual regions we reanalyzed the65

behavioral and fMRI recordings of a recent study25. In this study, BOLD signals were recorded while66

participants performed a reinforcement learning task using male or female faces, and a stop-signal task (which67

was discussed in 25). The fusiform face area (FFA) was localized using a separate experimental run. 4968

young adults (25 male; mean age = 22 years; range 19-29 years, 43 analyzed, see Methods) participated in69

the study. As shown in Figure 1a, in the reinforcement learning task participants learned to select among70

choices with different probabilities of reinforcement (i.e., AB 80:20, CD 70:30, and EF 60:40). A subsequent71

transfer phase, where feedback was omitted, required participants to select the optimal option among novel72

pair combinations of the faces that were used during the learning phase (Figure 1a).73

Model and Behavior74

In the learning phase, subjects reliably learned to choose the most optimal face option in all pairs. For each75

pair the probability of choosing the better option was above chance (p’s < .001), and the effect of learning76

decreased from AB (80:20) and CD (70:30) to the most uncertain EF (60:40) pair (F (2, 84) = 13.74, p < .0001).77

At the end of learning, value beliefs differentiating the optimal (A, C, E) from the sub-optimal (B, D, F) action78

were very distinct for the AB and CD face pairs but decreased with uncertainty (F (2, 84) = 39.70, p < 0.0001,79

Figure 2a). Value beliefs were estimated using the individual subject parameters of the Q-learning model80

that best captured the observed data (Figure 2b-e; reproduced from 25 to show performance).81
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Figure 2: Value differentiation and model performance. a) Value differentiation (∆Value) for the
selection of the optimal (A,C,E) stimuli over the suboptimal (B,D,F) stimuli decreased as a function of
feedback reliability, and was smallest for the most uncertain EF stimuli. ∗ ∗ ∗ = p < 0.0001, Bonferroni
corrected. b) Group-level posteriors for all Q-learning parameters. The bottom row shows model performance,
where data was simulated with the estimated individual subject parameters and evaluated against the observed
data for the AB (c), CD (d), or EF (e) pairs. Bins contain +/− 16 trials. Error bars represent standard
error of the mean (SEM).

BOLD is modulated by reliable value differences between faces in striatal and82

visual regions83

For each pair of faces presented during the learning phase (AB, CD, EF) we asked how the BOLD signal84

time-course in striatal and visual regions relates to trial-by-trial value beliefs about the two faces presented85

as a choice. First, as a reference, we focused on the activity pattern of three striatal regions. Results showed86

BOLD responses in dorsal (caudate, putamen) but not ventral (accumbens) striatum to be differentially87

modulated by the estimated value beliefs of the chosen face (Qchosen), in comparison to value beliefs about88

the face that was not chosen (Qunchosen). Thus, BOLD responses in the dorsal striatum were modulated89

more strongly by value beliefs about the chosen stimulus (Qchosen; Figure 3a bottom row). Critically, this90

differential modulation was only observed with the presentation of AB faces where value differences were91

most distinct because of the reliable feedback scheme. Next, we evaluated the relationship between value and92

BOLD in the FFA, and OC. Again, only with the presentation of the AB face option, trial-by-trial BOLD93

fluctuations were differentially modulated by values of the chosen versus not chosen face option (Figure94

3b bottom row). These evaluations highlight how the BOLD response in striatal and perceptual regions is95

especially sensitive to values of the (to-be) chosen stimulus when belief representations are stable and distinct.96
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Figure 3: BOLD and the modulation of ∆Value in the learning phase. Top row shows the BOLD
signal time course, time-locked to presentations of AB (80:20, red lines), CD (70:30, green lines), and EF
(60:40, blue lines) face pairs, for three striatal regions (a) and two perceptual regions (b). Bottom row
displays differential modulation by value (∆Value = modulation Qchosen – modulation Qunchosen). Horizontal
lines show the interval in which modulation was significantly stronger for Qchosen. With the presentation of
AB faces, BOLD responses in the dorsal striatum (caudate and putamen) and visual regions (FFA and OC)
were modulated more by values of the chosen stimulus when compared to values of the unchosen stimulus.
Differential AB value modulation was not significant in the ventral striatum (i.e., accumbens). Nor did we
observe any differential value modulations with the presentation of the more uncertain CD and EF pairs.
Confidence intervals were estimated using bootstrap analysis across participants (n = 1000), where the shaded
region represents the standard error of the mean across participants (bootstrapped 68% confidence interval).

Reward prediction errors in striatal and visual regions97

Our findings so far described relationships between BOLD and value time-locked to the moment of stimulus98

presentation – i.e., when a choice is requested. Learning occurs when an outcome is different from what99

was expected. We therefore next focused on modulations of the BOLD response when participants received100

feedback. Learning modulations were explored by asking how trial-by-trial BOLD responses in perceptual and101

striatal regions relate to either signed (outcome was better or worse than expected) or unsigned (magnitude of102

expected violation) reward prediction errors30. Consistent with the literature, BOLD responses in all striatal103

regions were modulated by signed RPEs, with larger responses after positive RPEs or smaller responses after104

negative RPEs (Figure 4a bottom row). Activity in the accumbens (ventral striatum) was additionally tied105

to unsigned RPEs in the tail of the BOLD time-course, with larger violations (either positive or negative)106

tied to smaller dips. Consistently, estimated BOLD responses in both visual regions were modulated by the107
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signed RPE, and once more mirrored the striatal modulations with stronger positive RPEs eliciting stronger108

BOLD responses (Figure 4b bottom row). FFA BOLD responses were additionally modulated by unsigned109

RPEs. However, in contrast to the relationship found between unsigned RPEs and the accumbens, the FFA110

modulation was positive and co-occurred with the modulation of the signed RPE. That is, bigger violations111

and more positive outcomes each elicited a stronger response in the FFA.112

Figure 4: Reward prediction errors modulate BOLD in striatal and visual regions. The top row
shows the FIR-estimated BOLD signal time-course, which was time-locked to the presentation of choice
feedback and evaluated for three striatal regions (a) and two perceptual regions (b). Bottom row displays
modulations of the estimated BOLD time-course by singed (green lines), or unsigned (orange lines) RPEs.
The horizontal lines represent the interval in which signed or unsigned RPEs contributed significantly to the
modulation of BOLD in the multiple regression. Note that both variables were always evaluated simultaneously
in one GLM.

Can past learning in visual regions support the prediction of future value-based113

decisions?114

Stable value representations and reward prediction errors both modulated the activity of visual and striatal115

regions. These modulations in the striatum are described to bias future actions towards the most favored116

option (the dorsal striatum), or to predict future reward outcomes (the ventral striatum). To better understand117

the value and RPE modulations observed in visual regions, we next assessed the importance of these visual118

regions alongside the striatum in the correct classification (decoding) of future value-driven choice outcomes.119

Here, activity of prefrontal regions was added to the importance evaluation based on our previous work with120
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this data in the transfer phase25 (please see supplementary Figures 1&2 for the evaluation of these regions121

during learning).122

In the transfer phase, participants had to make a value-driven choice based on what was learned before, i.e.,123

during the learning phase. To specify the relevance of visual regions in the resolve of value-driven choice124

outcomes, in the transfer phase, a random forest (RF) classifier was used28,29 (Please see Figure 5a-c for the125

procedure). The RF classifier relies on an ensemble of decision trees as base learners, where the prediction of126

each trial outcome is obtained by a majority vote that combines the prediction of all decision trees (Figure 6a).127

To achieve controlled variation, each decision tree is trained on a random subset of the variables (i.e. subset of128

columns shown in Figure 5a), and a bootstrapped sample of data points (i.e. trials). Importantly, we ensured129

that the forest was not simply learning the proportion of optimal choices in the transfer phase by training all130

models on balanced draws from the training set with equal numbers of optimal and sub-optimal choices.131

Figure 5: Random Forest input and data-structure. a) Trial-by-subject data matrix with the % signal
change drawn for each choice trial in the transfer-phase (rows) from 9 a-priori defined regions of interest
(columns). In addition to the ROI data, the matrix contained a column with the identity of participants
(sub-01, etc) and Trial Sign, which specified a choice between two positives (+/+; AC, AE, CE), negatives
(-/-, BD, BF, DF), or between a negative and positive option (+/-, e.g., AD, CF, etc) given the feedback
scheme in the learning-phase. b) The individual subject data frames were then combined into one matrix,
in which the rows were subsequently shuffled to randomly distribute trials and subjects across the rows. c)
This matrix was then divided into a training set (2/3 of the data) for the creation of 2000 decision trees of
which the majority vote on each trial is then used to evaluate the predictive accuracy of optimal/suboptimal
choices in a separate validation set (1/3 of the data).

Evaluation of all participants resulted in a classification accuracy of 65% (AUC = 0.75) using the trial-by-trial132

BOLD estimates from the ROIs and increased to 69% with the evaluation of the good learners (AUC = 0.76;133

N = 34, criteria: accuracy > 60% across all three learning pairs). Hence, in 65 (all participants) or 69 (good134

learners) out of 100 trials the forest correctly classified whether participants would pick the option with135

the highest value (optimal choice) or not (sub-optimal choice) in the validation set. RF predictions were136

substantially lower when labels of the validation set were randomly shuffled (accuracy: all participants= 52%;137
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good learners= 56%).138

The improvement of accuracy with the evaluation of only the good learners is remarkable because the classifier139

was given less data to learn the correct labelling (fewer subjects/trials) and implied that the 2000 decision140

trees were picking up information related to past learning. Further support for this important observation141

was found by asking how the uncertainty of each prediction (defined as the proportion of agreement in the142

predicted outcome among the 2000 trees for each trial) relates to the difference in value beliefs (∆Value)143

about the two options presented on each trial (computed using the end Qbeliefs of participants at the end144

of learning about face A-to-E). As plotted in Figure 6c, the uncertainty in predicting that a trial choice145

outcome is optimal – defined as the proportion of disagreement among the 2000 decision trees - decreased146

with larger belief differences in the assigned values (please see supplementary Figure 3 for the evaluation of147

all participants).148

Besides providing insights into how BOLD responses in the transfer-phase contribute to predict value-driven149

choice outcomes (i.e., whether participants would choose the option with the highest value given past learning)150

the RF algorithm additionally outputs a hierarchy, thereby ranking the contribution of each region in the151

achieved classification accuracy. Figure 6d shows the ranking of all ROIs for good learners where the model152

had the highest predictive accuracy. First, regions in the dorsal striatum were most important, which aligned153

well with both the literature and the BOLD modulations we found by ∆Value and RPE during the learning154

phase. These regions were next followed by the preSMA. Evaluation of this region during the learning phase155

showed no modulations by ∆Value or RPE on BOLD ( supplementary Figure 1&2). Nevertheless, this region156

is typically associated with choice difficulty/conflict and might be essential in the resolve of a choice when157

value differences are small. Remarkably, the third region in this hierarchy was the FFA. In a task where158

participants pick the most valued face based on past learning, this ranking of the FFA just above the vmPFC159

and accumbens (ventral striatum) implies that the ∆Value and RPE modulations of BOLD observed during160

learning could function to strengthen the recognition of valuable features. Note, however, that with the161

evaluation of all participants – including some who were less good in learning – the ranking of both the FFA162

and vmPFC was much lower (please see supplementary Figure 3b), which might be caused by more noise163

across the group in learning. We will return to this point in the discussion.164
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Figure 6: Random Forest performance and importance ranking. The prediction of value-driven
choice outcomes in the transfer phase using trial-by-trial BOLD responses from striatal, perceptual, and
prefrontal cortex regions. a) Overview of the Random Forest approach where the training-set is used to
predict choice outcomes for each trial by using the majority vote of 2000 different decision trees. Each tree is
build using a different set, or sample, of trials and predictors from the training set. The forest is trained
on a training set sampled from all participants (N=43), or only ‘the good learners’ (N=34). b) Shows the
classification, or decoding, accuracy (green) given the separate unseen validation sets, for all participants and
good learners. c) Plotted relationship between forest uncertainty (i.e., proportion of agreement across 2000
trees), on each prediction/trial (x-axis) and ∆Value (y-axis) for the model with the highest accuracy (i.e., the
good learners). ∆Value was computed for each trial in the transfer phase by using the end beliefs (Q) that
participants had about each stimulus (A-to-F) at the end of the learning phase. Forest uncertainty is defined
as the proportion of trees saying ‘yes! the choice on this trial was optimal’. When this ratio is bellow 0.5 the
forest will predict ‘no’ (sub-optimal), otherwise the prediction is ‘yes! the choice on this trial was optimal’
(optimal). R2=adjusted R2. Note that, the same pattern was found for all participants (R2= 0.41∗∗∗, please
see supplementary Figure 3). d) Plotted ranking of the ROI’s in their contribution to the predictive accuracy
of the best performing model (i.e., good learners).
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Discussion165

This study provides novel insights into how reinforcements modulate visual activity and specifies its potential166

in the prediction of future value-driven choice outcomes. First, by focusing on how participants learn, we find167

BOLD in visual regions to change with trial-by-trial adaptations in value beliefs about the faces presented,168

and then to be subsequently scaled by the signed RPE after feedback. Next, the relevance of these observed169

value and feedback modulations was sought by exploring the prediction of future value-driven choice outcomes170

in a follow-up transfer phase where feedback was omitted. Our machine learning algorithm here shows a171

classification accuracy of 69% for participants who were efficient in learning by combining trial-by-trial BOLD172

estimates from perceptual, striatal, and prefrontal regions. The evaluation of region importance in these173

predictions ranked the FFA just after the dorsal striatum and the preSMA, thereby showing an important174

role for visual regions in the prediction of future value-driven choice outcomes in a phase where learning is175

established.176

In a choice between two faces, BOLD responses in both the dorsal striatum and perceptual regions were177

affected more by values of the chosen face, relative to the unchosen face. Across three levels of uncertainty,178

we only observed the differential modulation of value on BOLD when belief representations were stable.179

This specificity aligns with neuronal responses to perceptual stimuli in the caudate tail16, visual cortex31,32,180

and imaging work across sensory modalities17,18,33–35, where it fuels theories in which the learning of stable181

reward expectations can develop to modulate, or sharpen, the representation of sensory information critical182

for perceptual decision making31,35.183

After a choice was made, feedback modulations of signed (‘valence’) and unsigned (‘surprise’) RPEs30 were184

evaluated on BOLD responses, by using an orthogonal design where the unsigned and signed RPE compete to185

explain BOLD variances. Both visual and striatal regions respond to prediction errors36. In the striatum both186

valence and surprise are thought to optimize future action selection in the dorsal striatum, or the prediction of187

future rewards in the ventral striatum. In perceptual regions, a mismatch between the expected and received188

outcome is often explained as surprise where a boost in attention or salience changes the representation of189

an image without a representation of value per se. We found positive modulatory effects of signed RPEs190

in all striatal regions, as well as, in the FFA and OC. Concurrently, modulations of unsigned RPEs were191

only observed in the accumbens (ventral striatum) and FFA, where notably the direction of modulation192

was reversed. We speculate that this contrast arises from the differential role of the regions. In the FFA,193

specialized and dedicated information processing is essential to quickly recognize valuable face features.194

Complementary boosts of surprise and valence here could prioritize attention towards the most rewarding195

face feature to strengthen the reward association in memory, or help speed up future recognition37–39. In196

the accumbens, boosted effects of positive valence on BOLD were dampened by larger mismatches. Large197

mismatches in what was expected are rare in stable environments. We therefore reason that in the accumbens198

the contrast between valence and surprise could function as a scale to refine learning, eventually leading to199

more reliable predictions of future rewards.200

Whereas BOLD in the ventral striatum was shaped by both signed and unsigned RPEs, the dorsal striatum201

was sensitive to differential value up-to a choice and signed RPEs with the presentation of feedback34,40–43.202

The concurrent modulation of differential value in the primary motor cortex (please see M1 in supplementary203

Figure 1) associates the dorsal striatum with the integration of sensory information16,44–46, where increased204

visual cortex BOLD responses to faces with the highest value could potentially help bias the outcome of a205
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value-driven choice.206

We explored this line of reasoning with the prediction of value-driven choice outcomes in a follow-up transfer207

phase after leaning. In recent years, machine learning approaches have become increasingly important in208

neuroscience47–50, where the ease of interpretation has often motivated a choice for linear methods above209

non-linear methods49,51. Despite the latter being less constrained and able to reach a better classification210

accuracy by capturing non-arbitrary, or unexpected relationships52. Value-driven choices after a phase of211

initial learning are influenced by the consistency of past learning, memory updating, and attention. All212

of these processes are affected by both linear and non-linear neurotransmitter modulations53–56. Our RF213

approach was unconstrained by linearity with classification accuracies well above chance and improved with214

the evaluation of only the good learners; despite substantial decreases in data given to the algorithm to215

learn the correct labelling. Critically, we additionally found that the uncertainty of trial-by-trial predictions216

made by RF is tied to the differentiability of value beliefs – an index that we could compute for the novel217

pair combination in the transfer phase by using the value (Q) beliefs that participants had about each face218

at the end of learning. These results showcase how trial-by-trial BOLD fluctuations in striatal, prefrontal,219

and sensory regions can be combined by machine learning, or decoding, algorithms to reliably predict the220

outcome of a value-driven choice. Where we refine the interpretation of non-linear predictions by combining221

the RF output with cognitive computational modelling. With this combiantion we essentially show how the222

uncertainty of RF predictions is tied to value beliefs acquired with learning in the past.223

An important evaluation intended with our machine learning approach was the ranking of regions by their224

contribution to the predictive (decoding) accuracy in the transfer phase. After the observed modulations of225

BOLD in the learning phase this explorative analysis sought the relevance of learning-BOLD relationships in226

the resolve of future choices. Here, the ranking made by RF first identified signals from the dorsal striatum227

(putamen and caudate) as most important followed by the preSMA, and then most notably, visual regions.228

That is, when the quality of leaning was high across participants, FFA ranked just above traditional regions229

such as the vmPFC and the accumbens2,5,6,57. Notably, FFA was replaced by OC in ranking with the230

evaluation of all participants (please see supplementary Figure 3b). This difference could occur because231

the quality of learning was more variable across all participants, or because RF predictions based on the232

heterogeneous data from all participants were less accurate. In general, the shift in ranking implies that when233

learning is less consistent choice outcomes are better predicted by fluctuations in OC - perhaps with the234

identification of rewarding low-level features. With better or more consistent learning, however, participants235

should increasingly rely on memory and specialized visual areas. Thus, search for specific face features236

associated with high value by recruiting the FFA in the visual ventral stream. Consistent with this reasoning237

recent neuronal recordings show rapid visual processing of category-specific value cues in the ventral visual238

stream. These specific value cues are only seen for well-learned reward categories, and critically, precede the239

processing of value in prefrontal cortex59.240

We note that although BOLD fluctuations in the preSMA ranked second in the prediction of value-driven241

choice outcomes, no reliable modulations of BOLD were observed by either differential value or RPEs in the242

learning phase. The preSMA is densely connected to the dorsal striatum and consistently associated with243

action-reward learning60, or choice difficulty61. The lack of associations in this study might result from our244

noisier estimates of the BOLD response that is typical for regions in the prefrontal cortex62,63, the anatomical245

masks selected, or smaller variability across trials in the learning phase (i.e., 3 pairs in learning-phase vs 15246

pairs in transfer-phase). Nevertheless, the importance indicated by RF, combined with our previous analysis247
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of this transfer phase data25, implies an important role for the preSMA in the resolve of value-driven choices248

in concert with the striatum. More research with optimized sequences to estimate BOLD in PFC is required249

to clarify the link between learning and transfer.250

To summarize, we find an important role for perceptual regions in the prediction of future value-driven choice251

outcomes, which coincides with the sensitivity of BOLD in visual regions to differential value and signed252

feedback. These findings imply visual regions to learn prioritize high value features with the integration of253

feedback, to support and fasten, optimal response selection via the dorsal striatum in future encounters.254

Methods255

Participants256

All participants had normal or corrected-to-normal vision and provided written consent before the scanning257

session, in accordance with the declaration of Helsinki. The ethics committee of the University of Amsterdam258

approved the experiment, and all procedures were in accordance with relevant laws and institutional guidelines.259

In total, six participants were excluded from all analyses due to movement (2), incomplete sessions (3), or260

misunderstanding of task instructions (1).261

Reinforcement learning task262

Full details of the reinforcement learning task are provided in 25. In brief, the task consisted of two phases263

(Figure 1a). In the first learning phase, three male or female face pairs (AB, CD, EF) were presented in a264

random order, and participants learned to select the most optimal face (A, C, E) in each pair solely through265

probabilistic feedback (‘correct’: happy smiley, ‘incorrect’: sad smiley). Choosing face-A lead to ‘correct’ on266

80% of the trials, whereas a choice for face-B only lead to the feedback ‘correct’ for 20% of the trials. Other267

ratios for ‘correct’ were 70:30 (CD) and 60:40 (EF). Participants were not informed about the complementary268

relationship in pairs. All trials started with a jitter interval where only a white fixation cross was presented269

and had a duration of 0, 500, 1000 or 1500ms to obtain an interpolated temporal resolution of 500ms. Two270

faces were then shown left and right of the fixation-cross and remained on screen up to response, or trial end271

(4000ms). If a response was given on time, a white box surrounding the chosen face was then shown (300ms)272

and followed (interval 0-450ms) by feedback (500ms). Omissions were followed by the text ‘miss’ (2000ms).273

The transfer-phase contained the three face-pairs from the learning phase, and 12 novel combinations, in which274

participants had to select which item they thought had been more rewarding during learning. Transfer-phase275

trials were identical to the learning phase, with the exception that no feedback was provided. All trials had276

a fixed duration of 4000ms, where in addition to the jitter used at the beginning of each trial, null trials277

(4000ms) were randomly interspersed across the learning (60 trials; 20%) and transfer (72 trials; 20%) phase.278

Each face was presented equally often on the left or right side, and choices were indicated with the right-hand279

index (left) or middle (right) finger. Before the MRI session, participants performed a complete learning280

phase to familiarize with the task (300 trials with different faces). In the MRI scanner, participants performed281

two learning blocks of 150 trials each (300 trials total; equal numbers of AB, CD and EF), and three transfer282

phase blocks of 120 trials each (360 total; 24 presentations of each pair). All stimuli were presented on a283

black-projection screen that was viewed via a mirror-system attached to the MRI head coil.284
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Reinforcement learning model285

Trial-by-trial updating in value beliefs about the face selected in the learning phase, and reward predic-286

tion errors (signed expectancy violations) were estimated with a variant of the computational Q-learning287

algorithm27,64,65 that is frequently used with this reinforcement learning task and contains two separate288

learning rate parameters for positive (αgain) and negative (αloss) reward prediction errors4,23,25,58. Q-learning289

assumes participants to maintain reward expectations for each of the six (A-to-F) stimuli presented during290

the learning phase. The expected value (Q) for selecting a stimulus i (could be A-to-F) upon the next291

presentation is then updated as follows:292

Qi(t+ 1) = Qi(t) +

αGain[ri(t) −Qi(t)], if r = 1

αLoss[ri(t) −Qi(t)], if r = 0

Where 0 ≤ αgain or αloss ≤ 1 represent learning rates, t is trial number, and r = 1 (positive feedback) or r = 0293

(negative feedback). The probability of selecting one response over the other (i.e., A over B) is computed as:294

PA(t) = exp(β ∗Qt(A))
exp(β ∗Qt(B)) + exp(β ∗Qt(A))

With 0 ≤ β ≤ 100 known as the inverse temperature.295

Bayesian hierarchical estimation procedure296

To fit this Q-learning algorithm with two learning rate parameters we used Bayesian hierarchical estimation297

procedure. The full estimation procedure is explained in25. To summarize, this implementation assumes that298

probit-transformed model parameters for each participant are drawn from a group-level normal distribution299

characterized by group level mean and standard deviation parameters: z ∼ N(µz, σz). A normal prior was300

assigned to group-level means µz ∼ N(0, 1), and a uniform prior to the group-level standard deviations301

σz ∼ U(1, 1.5). Model fits were implemented in Stan, where multiple chains were generated to ensure302

convergence.303

Image acquisition304

The fMRI data for the Reinforcement learning task was acquired in a single scanning session with two learning305

and three transfer phase runs on a 3-T scanner (Philips Achieva TX, Andover, MA) using a 32-channel head306

coil. Each scanning run contained 340 functional T2∗-weighted echo-planar images for the learning phase,307

and 290 T2∗-weighted echo planar images for the transfer phase (TR = 2000 ms; TE = 27.63 ms; FA =308

76.1°; 3 mm slice thickness; 0.3 mm slice spacing; FOV = 240 × 121.8 × 240; 80 × 80 matrix; 37 slices,309

ascending slice order). After a short break of 10 minutes with no scanning, data collection was continued310

with a three-dimensional T1 scan for registration purposes (repetition time [TR] = 8.5080 ms; echo time [TE]311

= 3.95ms; flip angle [FA] = 8°; 1 mm slice thickness; 0 mm slice spacing; field of view [FOV] = 240 × 220312

× 188), the fMRI data collection using a stop signal task (described in 25), and a localizer task with faces,313

houses, objects, and scrambled scenes to identify FFA responsive regions on an individual level (317 T2∗
314
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weighted echo-planar images; TR = 1500 msec; TE = 27.6 msec; FA = 70°; 2.5 mm slice thickness; 0.25 mm315

slice spacing; FOV = 240 × 79.5 × 240; 96 × 96 matrix; 29 slices, ascending slice order). Here, participants316

viewed a series of houses, faces, objects as well as phase-scrambled scenes. To sustain attention during317

functional localization, subjects pressed a button when an image was directly repeated (12.5% likelihood).318

fMRI analysis learning phase319

The interplay between learning and perceptual activity was examined by evaluating how trial-by-trial320

computations of value-beliefs, and reward prediction errors relate to BOLD responses in the occipital cortex321

(OC) and fusiform face area (FFA). To compare perceptual responses with the more traditional literature, we322

first show how value-beliefs and RPEs relate to the activity pattern of the dorsal (i.e., caudate, or putamen)323

or ventral (i.e., accumbens) parts of the striatum. Regions of interest (ROI) templates were defined using324

anatomical atlases available in FSL, or the localizer task for FFA. For this purpose, the localizer scans were325

preprocessed using motion correction, slice-time correction, and pre-whitening66. For each subject, a GLM326

was fitted with the following EVs: for FFA, faces > (houses and objects), for PPA, houses > (faces and327

objects) and for LOC, intact scenes > scrambled scenes. Higher-level analysis was performed using FLAME328

Stage 1 and Stage 2 with automatic outlier detection67. For the whole-brain analysis Z (Gaussianized T/F)329

statistic images were thresholded using clusters determined by z > 2.3 and p < .05 (GRFT) to define a330

group-level binary FFA region. Templates used for the caudate [center of gravity (cog): (-) 13, 10, 10],331

putamen [cog: (-) 25, 1, 1], and Nucleus accumbens [cog: (-)19, 12, -7] were based on binary masks. Because332

participants were asked to differentiate faces, for each participant, we multiplied the binary templates of OC333

(V1) [cog: 1, -83, 5], FFA [cog: 23, -48, -18] with the individual t-stats from the localizer task contrast faces334

> (houses and objects). All anatomical masks, and the localizer group-level FFA mask can be downloaded335

from github (see acknowledgements).336

Deconvolution analysis learning phase337

To more precisely examine the time course of activation in the striatal and perceptual regions, we performed338

finite impulse response estimation (FIR) on the BOLD signals. After motion correction, temporal filtering339

(3rd order savitzky-golay filter with window of 120 s) and percent signal change conversion, data from each340

region was averaged across voxels while weighting voxels according to ROI probability masks, and upsampled341

from 0.5 to 3 Hz. This allows the FIR fitting procedure to capitalize on the random timings (relative to342

TR onset) of the stimulus presentation and feedback events in the experiment. Separate response time343

courses were simultaneously estimated triggered on two separate events: stimulus onset, feedback onset. FIR344

time courses for all trial types were estimated simultaneously using a penalized (ridge) least-squares fit, as345

implemented in the FIRDeconvolution package68, and the appropriate penalization parameter was estimated346

using cross-validation. For stimulus onset events (i.e., onset presentation of face pairs) response time courses347

were fit separately for the AB, CD and EF pairs, while also estimating the time courses of signal covariation348

with chosen and unchosen value for these pairs. For these events, our analysis corrected for the duration of349

the decision process. For the feedback events, the co-variation response time course with signed and unsigned350

prediction errors were estimated. These signal response time courses were analysed using across-subjects351

GLMs at each time-point using the statsmodels package69. The α value for the contributions of Q or RPE352

was set to 0.0125 (i.e. a Bonferroni corrected value of 0.05 given the interval of interest between 0 and 8 s).353
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Random Forest classification354

To specify the relevance of perceptual regions in the resolve of future value-driven choices a random forest355

(RF) classifier was used28. The RF classifier relies on an ensemble of decision trees as base learners, where356

the final prediction (e.g., for a given trial is the choice going to be correct/optimal? or incorrect/suboptimal?357

given past learning) is obtained by a majority vote that combines the prediction of all decision trees. To358

achieve controlled variation, each decision tree is trained on a random subset of the variables (i.e. regions359

of interest chosen), and a bootstrapped sample of data points (i.e. trials). In the construction of each tree360

about 1/3 of all trials is left out - termed as the out-of-bag sample – and later used to see how well each tree361

preforms on unseen data. The generalized error for predictions is calculated by aggregating the prediction for362

every out-of-bag sample across all trees. An important feature of the RF classification method is the ease to363

measure the relative importance of each variable (i.e., region), in the overall predictive performance. That is,364

it allows for the ranking of all regions evaluated in the prediction of future value-based decisions.365

ROI selection and Random Forest procedure366

This study used the ‘Breiman and Cutler’s Random Forests for Classification and Regression’ package in R,367

termed randomForest. RF evaluations relied on the fMRI data recorded during the transfer phase, in a set368

of 9 regions of interest (ROIs). These ROIs included all templates from the learning phase (i.e., caudate,369

putamen, accumbens, OC, and FFA), as well as, the ventromedial prefrontal cortex (vmPFC), dorsolateral370

prefrontal cortex (DLPFC), pre-supplementary motor area (preSMA), and the primary motor cortex (M1).371

The selection of these additional anatomical templates was inspired by our previous analysis of this data372

with those templates focusing on networks25,62,70. From each ROI a single parameter estimate (averaged373

normalized β estimate across voxels in each ROI) was obtained per trial, per subject. All, pre-processing steps374

to obtain single-trial images are described in 25. Single-trial activity estimates were used as input variables375

in RF to predict choice outcomes (optimal/sub-optimal) in the transfer phase. Here, participants choose the376

best/optimal option based on values learned during the learning phase. We defined optimal choices as correct377

(i.e, when participants choose the option with the higher value), and sub-optimal choices as incorrect. Misses378

were excluded from RF evaluations.379

By design, the transfer-phase contained 360 trials including 15 different pairs (12 novel), where each pair was380

presented 24 times with the higher value presented left in 12 of the 24 presentations, and on the right for the381

other half. With so many subtle value differences across the options presented and only one BOLD estimate382

per trial/region the prediction of future choices is under powered (Figure 5a). Therefore, assuming that all383

participants come from the same population, a fixed effects approach was taken for evaluations with RF. Here,384

the trial∗region activity matrices for all participants were combined into one big data matrix (Figure 5b)385

and subsequently shuffled across the rows, so that both participants and trials were re-arranged in a random386

order across rows. Besides the single trial BOLD estimates from the 9 ROI’s, this shuffled matrix contained387

two additional columns, which specified subject_id (to which subject does each trial belong), and Trial Sign –388

i.e., is the choice between the two faces about two positive (+/+; AC, AE, CE), negative (-/-; BD, BF, DF),389

or a positive-negative (+/-; e.g. AD, CF etc. ) associations given the task manipulation during learning.390

Subject_id was included to control for different BOLD fluctuations across participants, whereas Trial Sign391

was added because both BOLD and choice patterns differ across these options (please see 25). The shuffled392

fixed effect matrix was divided into a separate training (2/3 of whole matrix), and validation (1/3) set, to393
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be used for RF evaluations (Figure 5c). Learning was based on the training set, using 2000 trees with the394

number of variables (regions) used by each tree optimized with the tuneRF function in R, and accordingly395

set to 5. For the construction of each tree about 1/3 of all trials is left out - termed as the out-of-bag sample396

– and later used to see how well each tree preforms on unseen data. The generalized error for predictions is397

calculated by aggregating the prediction for every out-of-bag sample across all trees. Besides this out-of-bag398

approximation we evaluated the predictive accuracy of the whole RF on the separate unseen validation-set.399

The single trial data used as input, the RF evaluation codes, and ROI templates can all be downloaded from400

the github link provided in acknowledgements.401
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