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Abstract 49 

Background 50 

Obesity traits are causally implicated with risk of cardiometabolic diseases. It remains unclear whether 51 

there are similar causal effects of obesity traits on other non-communicable diseases. Also, it is largely 52 

unexplored whether there are any sex-specific differences in the causal effects of obesity traits on 53 

cardiometabolic diseases and other leading causes of death. We therefore tested associations of sex-54 

specific genetic risk scores (GRSs) for body mass index (BMI), waist-hip-ratio (WHR), and WHR 55 

adjusted for BMI (WHRadjBMI) with leading causes of mortality, using a Mendelian randomization 56 

(MR) framework. 57 

Methods and Findings 58 

We constructed sex-specific GRSs for BMI, WHR, and WHRadjBMI, including 565, 324, and 338 59 

genetic variants, respectively. These GRSs were then used as instrumental variables to assess 60 

associations between the obesity traits and leading causes of mortality using an MR design in up to 61 

422,414 participants from the UK Biobank. We also investigated associations with potential mediators 62 

and risk factors, including smoking, glycemic and blood pressure traits. Sex-differences were 63 

subsequently assessed by Cochran’s Q-test (Phet).   64 

Up to 227,717 women and 194,697 men with mean (standard deviation) age 56.6 (7.9) and 57.0 (8.1) 65 

years, body mass index 27.0 (5.1) and 27.9 (4.2) kg/m2 and waist-hip-ratio 0.82 (0.07) and 0.94 (0.07), 66 

respectively, were included. Mendelian randomization analysis showed that obesity causes coronary 67 

artery disease, stroke (particularly ischemic), chronic obstructive pulmonary disease, lung cancer, type 68 

2 and 1 diabetes mellitus, non-alcoholic fatty liver disease, chronic liver disease, and acute and chronic 69 

renal failure. A 1 standard deviation higher body mass index led to higher risk of type 2 diabetes in 70 

women (OR 3.81; 95% CI 3.42-4.25, P=8.9×10-130) than in men (OR 2.78; 95% CI 2.57-3.02, 71 

P=1.0×10-133, Phet=5.1×10-6). Waist-hip-ratio led to a higher risk of chronic obstructive pulmonary 72 

disease (Phet=5.5×10-6) and higher risk of chronic renal failure (Phet=1.3×10-4) in men than women. 73 
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A limitation of MR studies is potential bias if the genetic variants are directly associated with 74 

confounders (pleiotropy), but sensitivity analyses such as MR-Egger supported the main findings. Our 75 

study was also limited to people of European descent and results may differ in people of other 76 

ancestries.   77 

Conclusions  78 

Obesity traits have an etiological role in the majority of the leading global causes of death. Sex 79 

differences exist in the effects of obesity traits on risk of type 2 diabetes, chronic obstructive 80 

pulmonary disease, and renal failure, which may have implications on public health. 81 
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Abbreviations 95 

BMI, Body mass index; CAD: coronary artery disease; CLD, chronic liver disease; COPD, chronic 96 

obstructive pulmonary disease; DBP, diastolic blood pressure; FG, fasting glucose; FI, fasting insulin; 97 

GIANT, Genetic Investigation of ANthropometric Traits; GRS, genetic risk score; GWAS, genome-98 

wide association study; MAGIC, the Meta-Analyses of Glucose and Insulin-related traits Consortium; 99 

MR, Mendelian randomization; NAFLD, non-alcoholic fatty liver disease; OR, odds ratio; T1D, type 100 

1 diabetes; T2D, type 2 diabetes; SBP, systolic blood pressure; SD, standard deviation; SNP, single 101 

nucleotide polymorphism; WHO, the World Health Organization; WHR, waist-hip-ratio; 102 

WHRadjBMI, waist-hip-ratio adjusted for body mass index. 103 
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Introduction 122 

It is increasingly evident that obesity negatively impacts human health and the prevalence of obesity is 123 

increasing world-wide (1). Obesity and central fat distribution, commonly measured by body mass 124 

index (BMI; obesity usually defined as BMI >30 kg/m2) and waist-hip-ratio (WHR), respectively, 125 

have been linked to cardiometabolic diseases and death in observational studies (2–5). However, 126 

conventional observational studies can be affected by bias, confounding, and reverse causation, which 127 

might lead to erroneous findings. Mendelian randomization (MR) offers an approach to circumvent 128 

these issues by using single nucleotide polymorphisms (SNPs) that reliably associate with an exposure 129 

as an instrument to test the causal relationship between an exposure and outcome (6). Owing to the 130 

nature of genotypes and therefore genetic associations, MR estimates should be less affected by 131 

confounding and reverse causation (S1 Supporting Information) (6). Previous studies have found 132 

causal relationships between for example higher BMI and WHR adjusted for BMI (WHRadjBMI) and 133 

type 2 diabetes (T2D) and coronary artery disease (CAD), mostly using a limited number of 134 

previously known obesity-associated SNPs (7–12). However, previous studies have not thoroughly 135 

investigated causal sex-specific relationships, nor have they comprehensively investigated the role that 136 

obesity traits play in the leading causes of death beyond these cardiometabolic diseases.  137 

Obesity traits differ between women and men—for example, regional obesity prevalence rates often 138 

vary between the sexes (13,14), women have higher SNP-based heritability for WHR (15), and >90% 139 

of WHRadjBMI-associated SNPs that show evidence of sexual dimorphism have larger effect sizes in 140 

women than men (15). Observational studies have indicated that waist-related traits might be more 141 

strongly associated with cardiometabolic outcomes in women, although previous studies are 142 

inconclusive (16–20). Only a few studies have investigated sex differences in the effect of genetic risk 143 

for obesity-related traits on disease risk (7,10,12). These studies have mostly been restricted to waist-144 

related traits and T2D and CAD, using a limited number of analyses and/or SNPs, but without finding 145 

evidence of differences in disease risk between men and women (7,10,12).   146 

A sex difference in the effect of obesity traits on major causes of death could signify that disease 147 

burden arising from obesity may be differential in women and men, allowing prioritizing of public 148 
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health resources and potentially, sex-specific preventative strategies. We therefore investigated the 149 

extent to which obesity traits causally impact the risk of the major global causes of death, and whether 150 

relationships with disease are differential between women and men, exploiting recent advances in 151 

discovery of obesity-associated SNPs (15). 152 

Methods 153 

Data sources and study participants 154 

The UK Biobank is a prospective UK-based cohort study, with 488,377 genotyped individuals aged 155 

40-69 when recruited (21). UK Biobank has a Research Tissue Bank approval (Research Ethics 156 

Committee reference 16/NW/0274, this study’s application ID 11867), and all participants gave 157 

informed consent.  158 

In the present study, genotype data for up to 422,414 individuals were included, after general genotype 159 

and sample quality control procedures, and exclusion of people of non-European ancestry (S1 160 

Supporting Information). Participant characteristics are in Table 1.  161 

Table 1. Characteristics of UK Biobank Participants included in the study.  162 

Characteristic Men Women 

Individuals, N (%) 194,697 (46.1) 227,717 (53.9) 

British, N (%)a 173,947 (89.3) 201,278 (88.4) 

Age, mean (SD), years 57.0 (8.1) 56.6 (7.9) 

UK BiLEVE array, N (%)b 23,187 (11.9) 22,755 (10.0) 

Body mass index, mean (SD), kg/m2 27.9 (4.2) 27.0 (5.1) 

Waist circumference, mean (SD), cm 97.1 (11.3) 84.5 (12.5) 

Hip circumference, mean (SD), cm 103.5 (7.6) 103.3 (10.3) 

Waist-hip-ratio, mean (SD) 0.94 (0.07) 0.82 (0.07) 

Systolic blood pressure, mean (SD), mmHg 144.8 (19.4) 138.0 (21.2) 

Diastolic blood pressure, mean (SD), mmHg 86.6 (11.0) 82.3 (11.1) 

Type 2 diabetes cases, N (%) 11,768 (6.0) 6,533 (2.9) 

Coronary artery disease cases, N (%) 24,430 (12.5) 11,565 (5.1) 

Breast cancer cases, N (%) - 14,294 (6.3) 

Chronic liver disease cases, N (%) 822 (0.4) 542 (0.2) 

Colorectal cancer cases, N (%) 3,145 (1.6) 2,368 (1.0) 

COPD cases, N (%) 7,890 (4.1) 6,789 (3.0) 

Dementia cases, N (%) 580 (0.3) 448 (0.2) 

Infertility cases, N (%) 85 (0.0) 1,588 (0.7) 

Lung cancer cases, N (%) 1,473 (0.8) 1,244 (0.5) 
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Characteristic Men Women 

NAFLD cases, N (%) 912 (0.5) 778 (0.3) 

Renal failure cases, N (%) 5,704 (2.9) 3,902 (1.7) 

Renal failure, acute, cases, N (%) 3,045 (1.6) 1,643 (0.7) 

Renal failure, chronic, cases, N (%) 2,581 (1.3) 2,019 (0.9) 

Stroke cases, N (%) 6,329 (3.3) 4,437 (1.9) 

Stroke, hemorrhagic, cases, N (%) 929 (0.5) 972 (0.4) 

Stroke, ischemic, cases, N (%) 2,167 (1.1) 1,177 (0.5) 

Type 1 diabetes cases, N (%) 824 (0.4) 675 (0.3) 
COPD, chronic obstructive pulmonary disease; NAFLD, non-alcoholic fatty liver disease; SD, standard deviation. 163 
aParticipants were denoted as “British” if they were in the British ancestry subset as defined by the UK Biobank (21) (based 164 
on self-report of British ancestry and similar ancestry according to principal components analysis) 165 
bUK BiLEVE array is the number of participants genotyped on that array as opposed to the UK Biobank Axiom array  166 
 167 

Instruments 168 

We evaluated several approaches to construct sex-specific genetic risk scores (GRSs) for BMI, WHR, 169 

and WHRadjBMI (S1 Supporting Information, Fig A-B in S1 Supporting Information). The approach 170 

with the highest ranges of trait variance explained and F-statistics for the relevant obesity trait, and 171 

with no demonstrable heterogeneity between men and women, was selected as the main model. In this 172 

model, GRSs were constructed by including the primary (“index”) genome-wide significant (P<5×10-173 

9) SNPs in the men, women, or combined-sexes analyses in the largest genome-wide association study 174 

(GWAS) available with sex-specific European summary statistics, a meta-analysis of the Genetic 175 

Investigation of ANthropometric Traits (GIANT) (22,23) and the UK Biobank (Fig 1, S1 Supporting 176 

Information) (15). Primary SNPs were identified in the original GWAS (15) by proximal and joint 177 

conditional analysis using GCTA in associated loci. Associated loci included all SNPs (associated 178 

with the GWAS obesity trait P<0.05) ±5 Mb around a top SNP (P<5×10-9) and that were in linkage 179 

disequilibrium (LD; r2>0.05) with the top SNP; overlapping loci were merged (15). We then kept the 180 

SNP with the lowest combined-sexes P-value within each 1 Mb sliding window to limit correlation 181 

between SNPs discovered in different sex-strata in each obesity trait. We excluded non-biallelic SNPs 182 

(N=2), SNPs that failed quality control (N=2), and one SNP per pair with long-distance linkage 183 

disequilibrium (r2>0.05, N=2) (S1 Supporting Information). For the combined-sexes analyses, SNPs 184 

were weighted using estimates from the combined-sexes European meta-analyzed GWASs. For the 185 

men- and women-only analyses, SNPs were weighted by their sex-specific European estimates. All 186 
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SNPs were orientated so that the effect allele corresponded to a higher level of the investigated obesity 187 

trait.  188 

 189 

Fig 1. SNP- and weight selection flowchart with number of SNPs for each obesity trait.  190 
SNPs were selected by including the primary (“index”) variants for each associated (with SNPs P<5×10-9) locus 191 
(assessed for a minimum of ±5 Mb around the top SNP and including all SNPs in linkage disequilibrium 192 
R2>0.05 and P<0.05, and with primary variants as determined through joint and conditional testing using GCTA 193 
in the original study (15)), in any of the men, women, and combined-sexes genome-wide association studies for 194 
each obesity trait (15). To further ascertain independence for SNPs selected from different sex-stratified genome-195 
wide association studies and to have the same set of SNPs for all sex-strata, only the SNP with the lowest 196 
combined-sexes P-value within each 1 Mb-window was kept. SNPs that were non-biallelic (N=2) or that failed 197 
quality control (N=2) were removed, as was one SNP in each pair with long-distance linkage disequilibrium 198 
(N=2, using a linkage disequilibrium threshold of r2<0.05 and removing the SNP with the highest combined-199 
sexes P-value). All SNPs were then weighted by their sex-specific Europeans estimates for the men- and women 200 
analyses, and by the combined-sexes European estimates for the combined-sexes analyses, using estimates from 201 
the original genome-wide association study (15). BMI, body mass index; SNP, single nucleotide polymorphism; 202 
WHR, waist-hip-ratio; WHRadjBMI, waist-hip-ratio adjusted for body mass index. 203 
 204 
Outcomes 205 

We investigated associations between three obesity traits (BMI, WHR, and WHRadjBMI) with all 206 

non-communicable diseases on the World Health Organization’s (WHO) list of leading mortality 207 
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causes world-wide and in high-income countries (24); CAD, stroke (including ischemic, hemorrhagic, 208 

and of any cause), chronic obstructive pulmonary disease (COPD), dementia, lung cancer, T2D and 209 

type 1 diabetes (T1D), colorectal cancer, renal failure (including acute, chronic and of any cause) and 210 

breast cancer in women (Table A in S1 Supporting Information). In addition, we included infertility, 211 

non-alcoholic fatty liver disease (NAFLD) and chronic liver disease (CLD) as they have previously 212 

been linked to obesity and represent important and increasing burdens of disease (25–31). For T2D 213 

and T1D, we drew case definitions from a validated algorithm for prevalent T2D and T1D (using 214 

“probable” and “possible” cases) and those the algorithm denoted as “diabetes unlikely” were used as 215 

controls (32). For CAD, we used the same case and control definitions as a large GWAS (33). Case 216 

and control criteria for the other disease outcomes were defined using self-report data, data from an 217 

interview with a trained nurse, and hospital health outcome codes in discussion between two licensed 218 

medical practitioners (Table A in S1 Supporting Information). For CAD, acute renal failure, chronic 219 

renal failure, stroke of any cause, ischemic stroke and hemorrhagic stroke, exclusions for certain codes 220 

were also made in the control groups after defining the case groups. 221 

To assess potential mediation, we also investigated associations between the obesity traits and the 222 

potential cardiometabolic risk factors systolic blood pressure (SBP), diastolic blood pressure (DBP), 223 

fasting glucose (FG), fasting insulin (FI), and smoking status. 224 

Baseline measurements were used for all continuous traits, including BMI, WHR, WHRadjBMI, SBP 225 

and DBP. For SBP and DBP, the mean of the up to two baseline measurements were used. Fifteen 226 

mmHg to SBP and 10 mmHg to DBP were added if blood pressure lowering medications were used 227 

(defined as self-reported use of such in data-fields 6153 and 6177), as in previous blood pressure 228 

GWASs and as suggested in simulation studies (34,35). These anthropometric and blood pressure 229 

measurements were then standardized by rank inverse normal transformation of the residuals after 230 

regression of the trait on baseline age, age2, assessment centre, and, if applicable, sex. This was done 231 

separately in the men and women only analyses, but jointly in the combined analyses, after any sample 232 

quality exclusions (S1 Supporting Information). WHRadjBMI was generated in a similar manner, but 233 

with adjustment for BMI as well, as in the original GWAS (15).  234 
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Sex-specific summary-level data for plasma FG (in mmol/L, untransformed, corrected to plasma levels 235 

using a correction factor of 1.13 if measured in whole blood in the original GWAS) and serum FI (in 236 

pmol/L, ln-transformed) were kindly provided by the Meta-Analyses of Glucose and Insulin-related 237 

traits Consortium (MAGIC) investigators and can be downloaded from 238 

https://www.magicinvestigators.org/downloads/ (36). SNPs in chromosome:position format were 239 

converted to rsIDs using the file All_20150605.vcf.gz from the National Center for Biotechnology 240 

Information (NCBI) (37) (available at 241 

ftp://ftp.ncbi.nih.gov/snp/organisms/archive/human_9606_b144_GRCh37p13/VCF/). All SNPs were 242 

then updated to dbSNP build 151 using the file RsMergeArch.bcp.gz, also from the NCBI (37) 243 

(available at ftp://ftp.ncbi.nlm.nih.gov/snp/organisms/human_9606/database/organism_data/). 244 

Smoking status was defined as self-report of being a current or previous smoker or having smoked or 245 

currently smoking (most days or occasionally; any code 1 or 2 in any of the data fields 1239, 1249, 246 

and 20116).  247 

Statistical analyses 248 

The GRSs were first assessed if they were robustly associated with their respective obesity traits by 249 

computing trait variance explained and the F-statistics (S1 Supporting Information, Table B in S1 250 

Supporting Information).  251 

We explored the associations of sex-specific GRSs with outcomes in the UK Biobank (21). For 252 

disease outcomes and smoking status, logistic regression was used while for continuous traits 253 

(including evaluation of the GRSs in their respective obesity traits and the blood pressure traits) linear 254 

regression was used. Associations of sex-specific GRSs with outcome traits that surpassed our P-value 255 

thresholds were taken forward for MR to more formally quantify the effect of the obesity trait on the 256 

outcome.  257 

Individual-level MR was performed using the Wald method, with the instrumental variable estimate 258 

being the ratio between the outcome and risk factor regressed separately on each GRS (38). Standard 259 

errors were adjusted to take the uncertainty in both regressions into account by using the first two 260 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 26, 2019. ; https://doi.org/10.1101/523217doi: bioRxiv preprint 

https://doi.org/10.1101/523217


12 
 

terms of the delta method (39–41). MR regressions of the risk factors on the GRSs was performed in 261 

controls only for the binary outcomes.  262 

Adjustments were made for baseline age, age2, array type, assessment centre, 10 principal 263 

components, and sex if applicable, for all traits when in clinical units, and array and 10 principal 264 

components if rank inverse normal transformed (where adjustment for age, age2, assessment centre, 265 

and if applicable sex had already been performed in the rank inverse normal transformation of the 266 

residuals).  267 

Two-sample MR was performed for the effect of the obesity traits on FG and FI, including the inverse-268 

variance weighted (IVW), MR-Egger, and weighted median methods (42–45). 269 

For the obesity trait-risk factor analyses, the P-value threshold was set at <0.003 (=0.05/15) for the 270 

regressions and the MRs, for the total of 15 obesity trait-risk factor combinations investigated in the 271 

study. We conducted MRs for all obesity traits with smoking status for completeness, since we 272 

performed analyses adjusting for smoking status as a sensitivity analysis. We also performed 273 

summary-level MRs for the potential risk factors FG and FI directly, as we only had summary-level 274 

data for these traits. For the obesity trait-disease analyses, the P-value thresholds for both the 275 

regressions and the MRs were set at <0.001 (=0.05/51) for 51 obesity trait-disease combinations 276 

investigated in the study. If a combined-sexes regression analysis identified evidence against the null 277 

hypothesis it was taken forward for MR; if a regression analysis identified evidence against the null 278 

hypothesis in either men or women, MR was performed in both sexes so sexual heterogeneity could be 279 

assessed. Sexual heterogeneity between male and female estimates from the linear and logistic 280 

regressions and the MRs was assessed using P-values from Cochran’s Q test (46). To facilitate 281 

comparisons between the obesity traits and sex-strata, estimates were computed per 1 standard 282 

deviation (SD) higher obesity trait. 283 

Sensitivity analyses 284 

We performed several sensitivity analyses to ascertain robustness; we performed (a) analyses adjusting 285 

for smoking status and (b) analyses restricted to those of genetically confirmed British ancestry only 286 
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(S1 Supporting Information). We also (c) evaluated the robustness of the MR findings by comparing 287 

different weighting strategies, including use of unweighted and externally weighted (using weights 288 

from the GIANT 2015 studies (22,23)) GRSs, and (d) investigated for pleiotropy and performed more 289 

pleiotropy-robust sensitivity analyses (44,45) (S1 Supporting Information). We also (e) performed 290 

logistic regressions using the same number of cases and controls in men and women for the disease 291 

outcomes and (f) conducted analyses using stricter T2D and T1D case definitions (S1 Supporting 292 

Information). 293 

Software 294 

The genotype data was handled PLINK v2.00aLM and PLINK v1.90b3 (47) (S1 Supporting 295 

Information). Further data handling was performed in Python 3.5.2 (48) using the packages “pandas” 296 

(49) and “numpy” (50), R version 3.4.3 (51) and the package “dplyr” (52), bash version 4.1.2(2) (53) 297 

and awk (54). Statistical analyses and plots were performed using R version 3.4.3 (51) and packages 298 

“ggplot2” (55), “mada” (56), “dplyr” (52), “gridExtra” (57), “lattice” (58), “grid” (51), “grDevices” 299 

(51), “ggpubr” (59), and “MendelianRandomization” (42).  300 

Results 301 

Evaluation of genetic risk scores 302 

The GRSs included 565 SNPs for BMI, 324 for WHR and 338 for WHRadjBMI. Trait variance 303 

explained varied between 2.5-7.1% and the F-statistic between 4,941-26,311, depending on trait and 304 

sex-stratum (Table B in S1 Supporting Information). After having assessed the associations between 305 

GRSs and risk factors and disease outcomes using regression analyses, associations that surpassed 306 

correction for multiple testing were taken forward for MR (Table C-E and Fig C in S1 Supporting 307 

Information).  308 

Several instruments were positively associated with smoking status and with higher estimates in men 309 

than in women for both BMI as well as WHR (BMI: Phet=4.7×10-4; WHR: Phet=1.3×10-13; 310 

WHRadjBMI Phet=0.007) (Table D in S1 Supporting Information). We therefore ran the individual-311 

level MRs adjusting for smoking status to assess potential mediation.  312 
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Mendelian randomization of obesity with disease outcomes: all individuals 313 

Obesity traits were causally implicated with diseases that represent the major causes of death (Fig 2 314 

and 3). All measures of obesity were strongly causally related to risk of CAD (odds ratio (OR) ranging 315 

from 1.39 for WHRadjBMI to 1.73 for WHR in the combined analyses per 1-SD higher obesity trait). 316 

For stroke, both BMI and WHR conferred higher risk (ORs 1.41 and 1.33, respectively). Strong effects 317 

were seen for all obesity traits with T2D (OR range 2.13 to 3.64) and BMI also associated with risk of 318 

T1D (OR 1.68). Obesity traits increased the risk of kidney disease, including both acute (ORs 1.55 for 319 

WHR and 1.80 for BMI) and chronic (ORs 1.72 for WHR and 1.79 for BMI) renal failure. Measures 320 

of obesity also causally impacted on risks of COPD (OR 1.68 for BMI and 1.45 for WHR) and lung 321 

cancer (BMI OR 1.34). Adjusting for smoking status resulted in reduced magnitudes of effects for 322 

COPD and lung cancer traits, suggesting potential mediation (Table F in S1 Supporting Information). 323 

In addition to these endpoints, strong effects were seen for risk of NAFLD (OR range 1.61-2.85) and 324 

CLD (ORs 1.62 for BMI and 1.83 for WHR).  325 
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326 
Fig 2. Causal effects of obesity traits on disease outcomes, overall and stratified by sex.  327 
The obesity trait-disease combinations brought forward for Mendelian randomization, with estimates given in 328 
odds ratio (95% CI) per 1-SD higher obesity trait. Filled diamonds indicate that the P-value for the obesity trait 329 
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to disease endpoint surpasses our threshold for multiple testing; empty diamonds indicate that the P-value does 330 
not surpass this threshold (Bonferroni-adjusted P-value-threshold set at <0.001 (=0.05/51) for 51 obesity trait-331 
disease outcome combinations in the study). * denotes that the P-value for heterogeneity (from Cochran’s Q test) 332 
surpasses our threshold for multiple testing; Phet-threshold set at <0.001 (=0.05/48) for 48 male-female 333 
comparisons in the study (fewer since breast cancer analyses were performed in women only). , combined-334 
sexes estimates; , male estimates; , female estimates; BMI, body mass index; CAD, coronary artery disease; 335 
COPD, chronic obstructive pulmonary disease; NAFLD, non-alcoholic fatty liver disease; SD standard 336 
deviation; WHR, waist-hip-ratio; WHRadjBMI, waist-hip-ratio adjusted for body mass index. 337 
 338 
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Fig 3. Overview of the sex-specific effect magnitudes and strengths of association of obesity traits on leading causes of death.  388 
Leading causes of death defined as non-communicable diseases on the WHO top 10 lists of causes of death, globally and in high-income countries, with additional separate389 
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analyses for subclasses of stroke, diabetes, and renal disease. No obesity trait (BMI, WHR, or WHRadjBMI) 390 
genetic risk score associated with dementia, colorectal cancer, breast cancer (investigated in women only) or 391 
hemorrhagic stroke – these are not shown on the plot. (A) Total number of deaths globally, in 1,000 deaths, as 392 
estimated by the WHO for 2016 (60), stratified by sex. For diabetes, estimates for annual number of deaths are 393 
for type 1 and type 2 diabetes combined. (B) Obesity trait-disease combinations taken forward for Mendelian 394 
randomization showed with circles. Mendelian randomization associations with P-values surpassing our 395 
threshold in yellow to red fill depending on P-value (-log10 P-value), white fill indicates a P-value not 396 
surpassing our threshold. The size of the circles corresponds to the magnitude of the odds ratio estimate for the 397 
Mendelian randomization estimate. Estimates and P-values from the MR analyses of the obesity traits with the 398 
disease outcomes using the sex-specific estimates approach. BMI, body mass index; P, P-value; WHR, waist-399 
hip-ratio; WHRadjBMI, waist-hip-ratio adjusted for body mass index; WHO, World Health Organization. 400 

 401 

Sensitivity analyses, including restricting analyses to those of genetically confirmed British ancestry 402 

only, use of different weighting strategies, analyses using more pleiotropy-robust methods, using the 403 

same number of cases and controls in men and women, and use of more stringent diabetes case 404 

definitions supported the main findings (S1 Supporting Information, Tables G,H and Fig D-F in S1 405 

Supporting Information).  406 

Mendelian randomization of obesity with disease outcomes: sex-stratified analyses 407 

Five obesity trait-disease associations differed between women and men (Fig 2). The risk of T2D from 408 

1-SD higher BMI was higher in women (OR 3.81; 95% CI 3.42-4.25, P=8.9×10-130) than men (OR 409 

2.78; 95% CI 2.57-3.02, P=1.0×10-133), with strong evidence for sexual heterogeneity (Phet=5.1×10-6, 410 

Phet-threshold set at <0.001 (=0.05/48) for 48 male-female disease estimate comparisons, since breast 411 

cancer was investigated in women only). This sexual heterogeneity could also be observed in 412 

sensitivity analyses where the number of cases in women and men was similar (Phet=4.4×10-5) (Table 413 

H in S1 Supporting Information). 414 

WHR increased risk of COPD to a greater extent in men (OR 1.87; 95% CI 1.61-2.17, P=1.2×10-16) 415 

than in women (OR 1.22; 95% CI 1.10-1.36, P=2.0×10-4, Phet=5.5×10-6), per 1-SD higher WHR. While 416 

the association of WHR with smoking was greater in men than in women (Table I in S1 Supporting 417 

Information) and estimates of WHR with COPD for both men and women attenuated after adjustment 418 

for smoking status, the association of WHR and COPD remained higher in men after adjusting for 419 

smoking (Phet=1.2×10-4; Table F in S1 Supporting Information).  420 

There was also evidence of WHR leading to a higher risk on renal failure in men than in women. Men 421 

had a higher risk of chronic renal failure per 1-SD higher WHR, with the risk in men being OR 2.32 422 
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(95% CI 1.81-2.98, P=4.4×10-11) and in women OR 1.25 (95% CI 1.03-1.52, P=0.02, Phet=1.3×10-4), 423 

with similar sex differences seen for WHRadjBMI. Men also had a higher risk of acute renal failure 424 

(men: OR 1.88; 95% CI 1.49-2.36, P=8.2×10-8; women: OR 1.23; 95% CI 1.00-1.53, P=0.05, per 1-SD 425 

higher WHR, Phet=0.009), although the Phet-value did not pass our Phet-threshold.  426 

Sensitivity analyses using different GRS weighting strategies strongly supported sex-differences in the 427 

effect of BMI on T2D and WHR on chronic renal failure and COPD, but only weakly supported a sex-428 

difference in the effect of WHR on renal failure of any cause (S1 Supporting Information, Fig D,E in 429 

S1 Supporting Information).  430 

Potential mechanisms 431 

To identify potential mediators, we assessed the relationship of obesity traits with blood pressure 432 

(SBP, DBP), glycemic traits (FG, FI), and smoking status (Tables I-M in S1 Supporting Information). 433 

All obesity traits causally impacted risk on SBP, DBP, FG and FI. The increase in DBP arising from 434 

elevated BMI was greater in women than men (Phet=3.5×10-5, Phet-threshold set at <0.003 (=0.05/15) 435 

for 15 obesity trait-risk factor combinations). BMI and WHR both associated with higher risk of being 436 

a smoker, with the magnitudes of effect being larger in men than women (BMI Phet=0.002; WHR 437 

Phet=3.7×10-14). WHRadjBMI was only associated with smoking status in men.  438 

Discussion 439 

Our study demonstrates that obesity is causally implicated in the etiology of two thirds of the leading 440 

causes of death from non-communicable diseases (globally and in high-income countries) (24). 441 

Furthermore, we identify that for some diseases, obesity conveys altered magnitudes of risk in men 442 

and women. Such sexual dimorphism could be observed in the effects of BMI on T2D and waist-443 

related traits on COPD and renal failure. These findings have potential implications for public health 444 

policy.  445 

Obesity traits were causally related to higher risk of T2D, in alignment with previous studies (7–446 

12,20,61). We could not detect a sex difference in risk of T2D from higher WHR or WHRadjBMI. 447 

Even though some observational studies have suggested that WHR may be a stronger predictor of T2D 448 
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risk in women than in men (19,20), studies investigating the effect on T2D risk from genetic 449 

predisposition to higher WHRadjBMI have not found evidence of sexual heterogeneity (7,10,12). In 450 

contrast, we found that BMI conferred a higher T2D risk in women than in men. Whereas men tend to 451 

be diagnosed with T2D at lower BMI than women (62), there may be a stronger association between 452 

increase of BMI and T2D risk in women than in men (16,19,61,63–66). Whether this reflects a 453 

stronger causal effect of BMI on T2D risk in women has hitherto been unknown. We found no 454 

evidence for sexual heterogeneity of the causal effect of BMI on potential glycemic trait risk 455 

mediators (FG and FI). There have been indications of higher BMI being observationally associated 456 

with lower insulin sensitivity in men than in women, but this observed sex-difference may not reflect a 457 

causal pathway or we are not capturing it by our glycemic measurements (67–69). We also found 458 

evidence of BMI causally increasing risk of T1D. Previous observational (70) and MR (71) studies 459 

have implicated childhood BMI in risk of T1D. As SNPs associated with adult BMI have also been 460 

found to affect childhood BMI (71,72), our results may well reflect the consequences of childhood 461 

BMI on T1D rather than adult BMI. The results were robust to use of a stricter T1D case definition, 462 

minimizing risk of erroneous finding due to misclassification of diabetes type.  463 

Higher BMI, WHR and WHRadjBMI increased risk of CAD in both sexes, as shown previously (4,7–464 

9,11,12,16,18). Our obesity trait-CAD analyses did not show evidence for sexual heterogeneity. 465 

Observational studies have indicated that waist-related traits may be more strongly associated with 466 

cardiovascular disease in women and men, but have not been conclusive (16,18,73). However, a recent 467 

study (12) investigated the effect of higher WHRadjBMI, lower gluteofemoral fat distribution, and 468 

higher abdominal fat distribution, proxied by genetic variants, on CAD and T2D risk and found no 469 

evidence that relationships differed between men and women, similar to our findings. BMI and WHR 470 

have previously been observationally associated with risk of stroke (74–76) and a previous MR study 471 

found a causal effect of BMI on ischemic stroke (77). However, some studies have found WHR to be 472 

an epidemiological risk factor for stroke in men only (74,75). Our results confirm BMI as a causal risk 473 

factor for overall stroke in both men and women. In women, the effects of WHR were directionally 474 
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consistent with harm, but the estimates were imprecise, probably reflecting insufficient power in the 475 

sex-stratified analysis. 476 

Our results also indicate that higher BMI and WHR increase risk of COPD and higher BMI the risk of 477 

lung cancer; a likely common mechanism is through smoking. BMI has previously been implicated in 478 

COPD, but is not an established epidemiological nor causative risk factor (8,78–80). Obesity may 479 

directly contribute to COPD as its diagnosis is partly based on spirometry values, and obesity is 480 

associated with lower lung function (80,81). Higher BMI also increased risk of lung cancer in our 481 

study, similar to a previous MR study (82). Observational studies tend to identify associations between 482 

smoking and lower body weight, but whereas smoking lowers body weight, higher BMI is associated 483 

with increased smoking (82–85). We found associations between particularly BMI and WHR with 484 

smoking propensity. To assess mediation, we therefore conducted analyses adjusting for smoking 485 

status. This attenuated the associations between the obesity markers and risk of COPD and lung 486 

cancer, suggesting that smoking status may be on the causal pathway between obesity, COPD and 487 

lung cancer. This diminution does not discredit the validity of the MR analyses unadjusted for 488 

smoking provided that the obesity instruments only affect smoking propensity through altered obesity 489 

(86). Rather, they suggest that higher BMI impacts on disease beyond the immediate physiological 490 

effects of obesity: by altering human behavior (i.e. increased smoking, likely motivated as a weight 491 

loss strategy (87,88)) and this increased propensity to smoking has additional, far-reaching, deleterious 492 

effects on human health, as evidenced by the higher risks of serious lung disease. Higher WHR was 493 

associated with higher effects on both COPD and being a smoker in men than in women. Whereas the 494 

sex difference in the effect of WHR on COPD persisted after adjustment for smoking status, we 495 

cannot rule out that WHR has a higher effect on COPD in men than women through its effect on 496 

smoking propensity, but that our smoking phenotype does not fully capture the life-long effects of 497 

smoking in men and women.  498 

Our results also provide further evidence for a role of obesity traits in both acute and chronic renal 499 

failure using an MR design — previous MR studies assessing these relationships have not been 500 

conclusive (7,8,89–91). Obesity may affect chronic renal disease through a number of mechanisms, 501 
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including structural changes in the kidney and through higher risks of mediating diseases, such as T2D 502 

and renal cell carcinoma (91–95). We found central fat distribution (as measured by WHR and 503 

WHRadjBMI) to have higher effects on chronic renal failure in men than in women, with evidence of 504 

sexual heterogeneity. The reason for this sex difference is unclear — a recent MR study found both 505 

BMI and WHR to increase risk of renal cell carcinoma but with no difference in risk between men and 506 

women (95).  507 

Obesity traits associated with increased risk of NAFLD and CLD (important and emerging causes of 508 

chronic disease and mortality (27–30)), with the effect on CLD possibly mediated by NAFLD, since 509 

CLD may be caused by NAFLD (28). A previous MR study found BMI to increase hepatic 510 

triglyceride content (96). Our study confirms a role of both general obesity and central fat distribution 511 

in NAFLD and CLD using an MR design. This strengthens evidence of a causal effect and emphasizes 512 

the risk of increased CLD burden if the obesity prevalence continues to increase (1,27–30). 513 

Strengths and limitations 514 

Genetic instruments should only affect the outcome through the risk factor of interest and not through 515 

any confounders (97,98). We performed sensitivity analyses (MR-Egger, weighted-median based 516 

methods) more robust to such bias, which supported the main findings (44,45). 517 

If instruments are weakly associated with their respective traits, it can introduce bias in MR studies 518 

(99). We therefore only used instruments strongly associated with their respective risk factor, and 519 

performed sensitivity analyses using a variety of SNP-selection and weighting approaches, including 520 

unweighted and externally weighted scores, which also supported the main results (41,99,100). 521 

Recent studies have also indicated that there may be slight population stratification in both GIANT 522 

and UKBB, although such bias is likely to be minor (101,102). Our study was restricted to individuals 523 

of Europeans ancestry; limiting our analyses to those of British ancestry only yielded near-identical 524 

results. Associations between the obesity traits and outcomes may differ in other ancestries. 525 

Finally, it is possible that our genetic instrument for WHRadjBMI might show features of collider bias 526 

whereby SNPs included in the GRS associate with both higher WHR and lower BMI leading to 527 
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potentially spurious findings (103). We note that a recent GWAS (15) evaluated the potential for 528 

collider bias in the WHRadjBMI GWAS and found limited evidence for such, although the GRS was 529 

associated with higher WHR and lower BMI. The directional consistency of associations between 530 

WHR and WHRadjBMI and disease endpoints in our analysis suggests that collider bias is unlikely to 531 

represent a major source of error in this study. 532 

Conclusion 533 

Global prevalence of obesity is increasing (1). Our results implicate major obesity traits (BMI, WHR, 534 

and WHRadjBMI) in the etiology of the leading causes of death globally, including CAD, stroke, type 535 

2 and 1 diabetes, COPD, lung cancer and renal failure, as well as NAFLD and CLD. The risk increase 536 

from obesity traits differs between men and women for T2D, renal failure and COPD. This 537 

emphasizes the importance of improved preventative measures and treatment of obesity-related 538 

disorders and implies that women and men may experience different disease sequelae from obesity, 539 

with potential implications for provision of health services and health policy.  540 
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