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The Hamiltonian function of a network, derived from the intrinsic distributions of nodes and edges,
magnified by resolution parameter has information on the distribution of energy in the network.
In brain networks, the Hamiltonian function follows hierarchical features reflecting a power-law
behavior which can be a signature of self-organization. Further, the transition of three distinct
phases driven by resolution parameter is observed which could correspond to various important
brain states. This resolution parameter could thus reflect a key parameter that controls and
balances the energy distribution in the brain network.
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Brain is a complex universe of neurons in which its functional and structural network properties have diverse features,
such as, small worldness (minimizing wiring costs) [1], significant emergence of modules (local signal processing and
propagation) [2], and a distribution of rich club of key hubs (crucial for global signal integration) [3]. These properties
indicate that a brain has structurally and functionally defined modules with short-ranged characteristics, where
perturbations are localized, and then these local signals are propagated due to long-ranged interaction driven by rich
club of key hubs. Moreover, weak interaction among these functional modules is essential for efficient information
processing with minimum energy cost [4], and the dynamics and stabilization of the wiring/rewiring provide the
basis for the adaptive nature of the brain network [6]. The modules are also arranged in a hierarchical manner with
bunch of interacting key hubs exhibiting system level organization of the brain network, and through which a local
information is distributed globally [5]. Further, the key hubs in the brain network are important for information
integration and thus for performing complex cognitive functions, because these hubs are multifunctional, capable of
long range information processing, and dynamically complex in nature [7]. However, still debatable open question is
on how the energy management, distributions, and minimization happen among the interacting units (neurons or
clusters of neurons) of a brain.

Study of a complex networks within the framework of Potts model was done in order to extract patterns and properties
of the networks [13], and the formalism has been used as a powerful method for finding communities specially
in hierarchical networks [14]. The simplified version of the Potts model, constant Potts model (CPM), in which
Hamiltonian operator of the network is constructed from the evolved nodes and edges in the network, can be used to
characterize various properties of the network. In this work, we used CPM in order to study properties of complex
brain networks specially focusing on energy distributions in the network. Since brain networks follow hierarchical
features [2, 8, 9], we apply the formalism to brain networks of C. elegans, cat, and macaque monkey [8], and studied
how energy is distributed in the brain networks.

Properties of Hamiltonian function in complex brain networks
The energy stored in a complex system represented by a complex network may be interpreted as the energy
spent in the distribution and organization of interacting edges (wiring/rewiring of edges), with specified weights
and directions, among the constituting nodes in the network. Hierarchical networks, which have the features
of system level organization [10], involve the emergence of modules/communities which are also interacting in a
certain fashion [11]. Each module/community has its own organization, consisting of cross-talking sub-modules/sub-
communities in the next level of organization, which is less affected by sub-modules/sub-communities of other
remaining modules/communities (Fig. 1). Similarly, the sub-modules/sub-communities will have their organization
of sub-sub-modules/sub-sub-communities at the next further level, and so on. This system level organization of
modules/communities at various levels amounts to the complexity in the network organization.
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The modules/communities are relatively more densely connected groups of nodes, which could reflect different func-
tions and cross-talk within the network. Here, we focus on the energy stored in a complex network at various levels of
organization, and the way of using the stored energy in the network in organizing the network within the formalism of
CPM [14]. Consider a network given by a graph, G = G(E, V ), with sets of constituting nodes V = {k}, k = 1, 2, ..., n,
and edges E = {eij}, ∀i, j ∈ n. The distribution of edges among the nodes is given by adjacency matrix Aij , ∀i, j ∈ n,
such that Aij = 1 if ith and jth nodes are connected, otherwise zero. The Potts model [12] can be used to analyze
properties of complex network [13], and its simplified form, known as CPM, is used as a technique to detect commu-
nities in complex network [14]. For an undirected and unweighted network, the total number of edges in the network
is L =

∑

ij Aij , where A is n×n matrix. The Hamiltonian of this network within the CPM formalism [13–16] is given
by

H(c, γ) = −
∑

i,j

(Aij − γ) δ(ci, cj) (1)

where ci and cj are ith and jth communities of the network, and γ is the resolution parameter of the network. Now
rearranging equation (1), the Hamiltonian can be written as

H(Lc, Nc, γ) = −
∑

c

[Lc − γNc] (2)

where Lc is the total number of internal edges in community c, and Nc = nc × nc, with nc is the total number of
nodes in the community c. Complex natural networks are generally self-organized [17, 18], and have various levels
of organization, with self-similar democratic constitution at each level of organization [19], down to the fundamental
level where basic organizational units are motifs [20]. C. elegans’ neuronal network, consisting of N = 277 nodes, is
one such type which have hierarchical organization of communities/sub-communities at various levels of organization
(Fig. 1), and similar nature of topological organization was obtained in cat (N = 52) and macaque monkey (N = 71)
brain networks also [8]. If such a network is defined by G(L,N), then network at level-2 is organized by a set of m

communities defined by a set of sub-graphs {G
[2]
i }, i = 1, 2, ...,m constructed from level-1, i.e., the whole network.

Since the networks at level-1 and level-2 represent the same set of nodes but with different network organization, we

have G[1] = G
[2]
1 ∪G

[2]
2 ∪ ...G

[2]
m ∪ I [2], where I [2] is the set of isolated nodes and their degrees. Hamiltonian at level-1 is

given by, H [1] = −
(

L[1] − γN [1]
)

with L[1] =
∑

ij A
[1]
ij andN [1] = n×n. Now, the Hamiltonian of the network at level-2

is given by H [2] = −
∑m[2]

c0
c1=1 H

[2]
c1 , where c1th Hamiltonian at level-2 is H

[2]
c1 = L

[2]
c1 −γN

[2]
c1 with L

[2]
c1 =

∑

ij

(

A
[2]
c1

)

ij
, and

N
[2]
c1 = nc1 ×nc1. Similarly, organization of sub-communities in level-3 is constructed from the respective communities

in level-2. Therefore, Hamiltonian of the network at level-3 can be derived as H [3] = −
∑m[2]

c0
c1=1

∑m[3]
c1

c2=1 H
[3]
c1c2 , where

Hamiltonian of c2th sub-community at level-3 derived from the c1th community at level-2 is H
[3]
c1c2 = L

[3]
c1c2 − γN

[3]
c1c2

with L
[3]
c1c2 =

∑

ij

(

A
[3]
c1c2

)

ij
, and N

[3]
c1c2 = nc1c2 × nc1c2 . Hence, the Hamiltonian of the complete network H [1] can be

derived from the Hamiltonians at the lower levels (i.e., level-2, level-3,...,level-U) and is given by

H [U ] = −

m[2]
c0

∑

c1=1

m[3]
c1

∑

c2=1

m[4]
c2

∑

c3=1

· · ·

m[U]
cU−2
∑

cU−1=1

H [U ]
c1c2...cU−1

; H [U ]
c1c2...cU−1

= L[U ]
c1c2...cU−1

− γN [U ]
c1c2...cU−1

(3)

Here, m
[2]
c0 , m

[3]
c1 , ..., m

[U ]
cU−2 are numbers of communities at levels level-2, level-3,...,level-U, respectively. The sizes of

the communities reduce as one goes from level-1 to level-U, and this size reduction of communities with levels persists
until the communities are reduced to motifs, which are building blocks of the network. Some communities have short
histories of existence, and some have long histories. Nodes in communities having long histories generally have the
tendency to regulate the network.

Theorem 1. In hierarchical networks having systems level organizations, the fluctuations in the number of nodes in
going from one level of organization to the other (∆N [k+1→k] = N [k] −N [k+1] satisfy the conditions:
(a) |∆N [k+1→k]| ≥ 0,
(b) |∆N [k+1→1]| ≥ 0,
(c) |∆N [k+1→1]| ≥ |∆N [k+1→k]|.

Proof. Equation (1) allows us to connect the size of the network at level-1 to the size of the network at level-2, which
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is the sum of sizes of individual modules and isolated nodes at level-2, given by

N [1] =

m[2]
c0

∑

c1=1

N [2]
c1

+ S[2] = N [2] + S[2] (4)

where m
[2]
c0 is the number of modules at level-2. N

[2]
c1 is the size of the c1th module at level-2. S[2] is the total number

of isolated nodes at level-2 of the network. The fluctuations in the number of nodes in retreating from level-2 to
level-1 is given by |∆N [2→1]| = N [1] − N [2] ≥ 0 for S[2] ≥ 0. The condition |∆N [k+1→k]| = 0 satisfies only when
S[2] = 0, i.e., all the nodes at level-1 are distributed to modules at level-2.

Proceeding in the same way, the number of nodes at level-k can be derived from the level-(k+1) expression using
Equations (1) and (3):

N [1] =

m[2]
c0

∑

c1=1

m[3]
c1

∑

c2=1

· · ·

m[k]
c
k−2

∑

ck−1=1

N [k]
c1c2...ck−1

N [k]
c1c2...ck−1

=

m[k+1]
c
k−1

∑

ck=1

N [k+1]
c1c2...ck

+ S[k+1]; S[k+1] =

m[2]
c0

∑

c1=1

m[3]
c1

∑

c2=1

· · ·

m[k]
c
k−2

∑

ck−1=1

S[k+1]
c1c2...ck−1

(5)

where m
[k+1]
ck−1 is the number of sub-modules at level-(k+1) constructed from ckth module at level-k. N

[k+1]
c1c2...ck is the

size of the ckth sub-module at level-(k+1) derived from ck−1th module at level-k. If ∆Nk+1→1 is considered, then the
sum over all nodes in modules/sub-modules and isolated nodes starting from level-(k+1) to level-1 should be added.
However, if ∆Nk+1→k is to be calculated then sum over all nodes in sub-modules and isolated nodes at level-(k+1)
have to be done. This can be done by removing the sum indices c1 to ck−1 in Equation (5). The results are:

∆N [k+1→1] =

m[2]
c0

∑

c1=1

m[3]
c1

∑

c2=1

· · ·

m[k]
c
k−2

∑

ck−1=1

S[k+1]
c1c2...ck−1

(6)

∆N [k+1→k] = S[k+1] (7)

Then, it is trivial to prove that |∆N [k+1→k]| = N [k] − N [k+1] = S[k+1] ≥ 0 from Equation (7). Similarly, it
can also be shown that |∆N [k+1→1]| ≥ 0 from Equation (6). It is also trivial from Equations (6) and (7) that
|∆N [k+1→1]| ≥ |∆N [k+1→1]|. They are equal only when all the nodes in each level are totally distributed among the
modules/sub-modules in the other level such that there are no isolated nodes.

Theorem 2. The variations in the number of edges as we move from one level of organization to the other
(∆L[k+1→k] = L[k] − L[k+1]) because of wiring or rewiring among the modules satisfy the following conditions:
(a) |∆L[k+1→k]| > 0,
(b) |∆L[k+1→1]| > 0,
(c) |∆L[k+1→1]| > |∆L[k+1→k]|.

Proof. The total number of edges at level-1 and level-2 can be related by using Equation (1), as given below:

L[1] =

m[2]
c0

∑

c1=1











L[2]
c1

+

m[2]
c0

∑

c′1=1,

c1 6=c′1

ǫ
[2]
c1c

′

1
δ(σ[2]

c1
, σ

[2]
c′1
)











+

s
[2]
i0

∑

i1=1

D
[2]
i1

(8)

where L
[2]
c1 is the number of edges in the c1th module at level-2, constructed from the network at level-1. δ(σ

[2]
c1 , σ

[2]
c′1
)

is delta function which is equal to one if modules σ
[2]
c and σ

[2]
c′ are connected, otherwise zero. ǫ

[2]
c1c

′

1
is the number of

inter-edges between the connected c1th and c′1 modules. D
[2]
i1

is the degree of ith isolated node at level-2, and s
[2]
i0

is

the number of isolated nodes in the network at level-2. Since the first term is L[2], we have

∆L[2→1] =

m[2]
c0

∑

c1,c
′

1=1,

c1 6=c′1

ǫ
[2]
c1c

′

1
δ(σ[2]

c1
, σ

[2]
c′1
) +

s
[2]
i0

∑

i1=1

D
[2]
i1

(9)
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The second term could be zero if the nodes at level-1 network are exactly distributed among the modules at level-2.
The number of inter-edges among the connected sub-modules at level-2 cannot be zero. Hence, |∆L[2→1]| > 0.

Similarly, following the same process, we can generalize and arrive at the expressions for L[1] constructed from the
network organization at any level-(k+1), and L[k] constructed from neighboring level of organization level-(k+1). The
respective expressions are

L[1] =

m[2]
c0

∑

c1,c
′

1=1,

c1 6=c′1

m[3]
c1

∑

c2,c
′

2=1,

c2 6=c′2

· · ·

m[k]
c
k−2

∑

ck−1,c
′

k−1=1,

ck−1 6=c′
k−1

L
[k]
c1c2...ck−1

c′1c
′

2...c
′

k−1

L
[k]
c1c2...ck−1

c′1c
′

2...c
′

k−1

=

m[k+1]
c
k−1

∑

ck=1






L[k+1]
c1c2...ck

+

m[k+1]
c
k−1

∑

c′
k
=1

ǫ
[k+1]
c1c2...ck
c′1c

′

2...c
′

k

δ(σc1c2...ck , σc′1c
′

2...c
′

k
)






+

s
[k+1]
i
k−1
∑

ik=1

D
[k+1]
i1i2...ik

(10)

D
[k+1]
i1i2...ik

=

s
[2]
i0

∑

i1=1

s
[3]
i1

∑

i2=1

· · ·

s
[k]
i
k−2
∑

ik−1=1

D
[k]
i1i2...ik−1

where L
[k]
c1c2...ck−1

c′1c
′

2...c
′

k−1

is the number of edges of ck−1th sub-sub-module at level-k constructed from ck−2th sub-module

at level-(k-1), starting from c1th module at level-2. From Equation (10) we know that the total number of edges at
level-(k+1) can be constructed from the edges at level-k. Then removing the running indices up to ck−1 in Equation
(10), we get the fluctuations in edges when there is a change from level-(k+1) to level-k or vice versa. Then, the
variations in edges due to changes from one level of organization to the other are given by

∆L[k+1→k] =

m[k+1]
c
k−1

∑

ckc
′

k
=1

ck 6=c′
k

ǫ
[k+1]
ckc

′

k

δ(σck , σc′
k
) +

s
[k+1]
i
k−1
∑

ik=1

D
[k+1]
ik

(11)

∆L[k+1→1] =

m[2]
c0

∑

c1,c
′

1=1,

c1 6=c′1

m[3]
c1

∑

c2,c
′

2=1,

c2 6=c′2

· · ·

m[k+1]
c
k−1

∑

ck,c
′

k
=1,

ck 6=c′
k

ǫ
[k+1]
c1c2...ck
c′1c

′

2...c
′

k

δ(σc1c2...ck , σc′1c
′

2...c
′

k
) +

s
[2]
i0

∑

i1=1

s
[3]
i1

∑

i2=1

· · ·

s
[k+1]
i
k−1
∑

ik=1

D
[k+1]
i1i2...ik

(12)

The second terms in Equations (11) and (12) are larger than zero if isolated nodes are involved when one crosses from
one level of organization to another, otherwise the term equals to zero. However, the first terms in these equations
are always greater than zero. This means the organization of a larger network at a particular level from a smaller
network at another level needs significant number of edges for rewiring them to achieve the self-organization at that
level. Hence, ∆E[k+1→k] > 0 and ∆E[k+1→1] > 0. Further, it is trivial that ∆E[k+1→1] > ∆E[k+1→k].

Theorem 3. The shift in the Hamiltonian of a complex network due to change of levels of organization satisfies
|∆H | > 0.

Proof. Equations (3), (6), (7), (11), and (12) allow us to write the expression for shift in Hamiltonian due to change
in the levels of organization as

|∆H [2→1]| = |∆L[2→1] − γ∆N [2→1]| (13)

|∆H [k+1→k]| = |∆L[k+1→k] − γ∆N [k+1→k]| (14)

|∆H [k+1→1]| = |∆L[k+1→1] − γ∆N [k+1→1]| (15)

Since |∆L[2→1]| > 0, |L[k+1→k]| > 0, |L[k+1→1]| > 0 |N [2→1]| ≥ 0, |∆N [k+1→k]| ≥ 0, and |∆N [k+1→1]| ≥ 0, we can
straightforwardly prove that |∆H [2→1]| > 0. Further, it can also be proven that |∆H [k+1→k]| > 0 and |∆H [k+1→1]| >
0. Also, there is a competition between the two terms ∆L[k+1→k] and ∆N [k+1→k] magnified by resolution parameter
γ. From Equations (6) and (12), we can further prove that |∆H [k+1→1]| > |∆H [k+1→k]|.

Nature of Hamiltonian shift
Hamiltonian of a complex network is quantified by the contributions from the edges resulted from interactions among
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the nodes, and the mass of the network magnified by a resolution parameter γ. As this Hamiltonian function is related
to the balances between the nodes and edges in a network, it is in fact related to the energy contained in the network.
The organization of a network at various levels of organization have their own constitutions, which is most probably
democratic (no emergence of central control mechanisms), and self-similar in nature. Since the organizational changes
from on level of organization to another are connected, shifting one level of organization to another accounts to an
energy cost for the organizational changes. To understand the behavior of Hamiltonian change due to wiring/rewiring
in the network, we calculated the average Hamiltonian at each levels of organization (cf. Fig. 1) for the C. elegans,
cat, and macaque monkey brain networks, and the same has been plotted as a function of level of organization (s)
in Fig. 2 (upper three panels). Simulations for various values of resolution parameter γ are performed. There are
two behaviors exhibited by these plots. The first behavior we can see from the curves is that in two phases they all
follow power law behavior which is the signature of the self-organization in energy distributions. Hence, the behavior

is given by H(s) ∼ sΛ, where H → H
[s]
e or H

[s]
c or H

[s]
m corresponds to power Λ → σ or δ or ǫ. A second observation

from the plots is the variation in the sign and values of Λ as a function of γ: negative powers in Λ for large values of
γ (Phase I), positive power values in Λ for very small values of γ (Phase III), and transition from negative values of Λ
to positive values at moderate values of γ (Phase 2). These different phases driven by γ will have different properties
in the distribution of energy. Hence, this resolution parameter γ could be one key parameter that reveals the energy
distribution in brain networks.

Conclusion
One important quest in understanding variabilities in brain functionalities is how connectivities in complex brain
networks get changed in random/non-random way with dynamic behavior [2]. Brain diseases which generally
involve short and long range network dysfunctions could be due to the drastic change in the distributions of
wiring/rewiring of these connectivities [4, 21]. These distributions of connectivities, in brain networks constructed
from functional magnetic resonance imaging, diffusion tensor imaging, electroencephalogram, electrooculogram, etc.,
may be fundamentally related to energy distributions in brain. We have studied the energy distribution in the brain
networks of three species [8] using simple but efficient CPM approach [12–14]. The edge distributions at various
levels of organization are found to be different which are reflected in the energy distributions calculated via CPM,
and also the Hamiltonian calculated as a function of levels of organization is found to follow power-law or fractal
behavior which is a signature of self-organization red in the system. Moreover, the fractal nature of the Hamiltonian
function is controlled by a key resolution parameter which balance the dominance of edges over nodes or vice versa.
We also observe three different phases driven by this resolution parameter which may correspond to different brain
states describing various situations/irregularities in the brain system. However, the existence of these brain states
need to be verified experimentally.

Brain states with various phases exhibited are highly dynamic in nature which may depend on various factors. Since
energy distributions among the the nodes in various communities and sub-communities could be one of the fundamental
working principle in brain networks, studies in this perspective could give important insights of how brain system is
organized.
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Figure caption:

Figure 1: Hierarchically organized C. elegans’ neuronal network. Each layer (or level) constitutes a similar set of
nodes and edges, but with different distributions describing various organizational hierarchies.
Figure 2 Hamiltonian spectrum of C. elegans (left), cat (middle), and macaque monkey (right) brain networks.
Upper plots show the Hamiltonian function H as a function of levels of network organization s in log–log scale.
Lower plots represent phase plots as a function of resolution parameter γ.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 16, 2019. ; https://doi.org/10.1101/522797doi: bioRxiv preprint 

https://doi.org/10.1101/522797
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 16, 2019. ; https://doi.org/10.1101/522797doi: bioRxiv preprint 

https://doi.org/10.1101/522797
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 16, 2019. ; https://doi.org/10.1101/522797doi: bioRxiv preprint 

https://doi.org/10.1101/522797
http://creativecommons.org/licenses/by/4.0/

