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Abstract

Background: Perivascular spaces (PVSs) are annular channels that surround
blood vessels and carry cerebrospinal fluid through the brain, sweeping away
metabolic waste. In vivo observations reveal that they are not concentric, circular
annuli, however: the outer boundaries are often oblate, and the blood vessels that
form the inner boundaries are often offset from the central axis.

Methods: We model PVS cross-sections as circles surrounded by ellipses and vary
the radii of the circles, major and minor axes of the ellipses, and two-dimensional
eccentricities of the circles with respect to the ellipses. For each shape, we solve
the governing Navier-Stokes equation to determine the velocity profile for steady
laminar flow and then compute the corresponding hydraulic resistance.

Results: We find that the observed shapes of PVSs have lower hydraulic
resistance than concentric, circular annuli of the same size, and therefore allow
faster, more efficient flow of cerebrospinal fluid. We find that the minimum
hydraulic resistance (and therefore maximum flow rate) for a given PVS
cross-sectional area occurs when the ellipse is elongated and intersects the circle,
dividing the PVS into two lobes, as is common around pial arteries. We also find
that if both the inner and outer boundaries are nearly circular, the minimum
hydraulic resistance occurs when the eccentricity is large, as is common around
penetrating arteries.

Conclusions: The concentric circular annulus assumed in recent studies is not a
good model of the shape of actual PVSs observed in vivo, and it greatly
overestimates the hydraulic resistance of the PVS. Our parameterization can be
used to incorporate more realistic resistances into hydraulic network models of
flow of cerebrospinal fluid in the brain. Our results demonstrate that actual
shapes observed in vivo are nearly optimal, in the sense of offering the least
hydraulic resistance. This optimization may well represent an evolutionary
adaptation that maximizes clearance of metabolic waste from the brain.

Keywords: Perivascular flow; Cerebrospinal fluid; Bulk flow; Hydraulic
resistance; Fluid mechanics; Glymphatic system1

2

Background3

It has long been thought that flow of cerebrospinal fluid (CSF) in perivascular4

spaces plays an important role in the clearance of solutes from the brain [1, 2,5
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3]. Experiments have shown that tracers injected into the subarachnoid space are6

transported preferentially into the brain through periarterial spaces at rates much7

faster than can be explained by diffusion alone [4, 5, 6]. Recent experimental results8

[7, 8] now show unequivocally that there is pulsatile flow in the perivascular spaces9

around pial arteries in the mouse brain, with net (bulk) flow in the same direction10

as the blood flow. These in vivo measurements support the hypothesis that this flow11

is driven primarily by “perivascular pumping” due to motions of the arterial wall12

synchronized with the cardiac cycle [8]. From the continuity equation (expressing13

conservation of mass), we know that this net flow must continue in some form14

through other parts of the system (e.g., along PVSs around penetrating arteries,15

arterioles, capillaries, venules). The in vivo experimental methods of Mestre et al.16

[8] now enable measurements of the size and shape of the perivascular spaces, the17

motions of the arterial wall, and the flow velocity field in great detail.18

With these in vivo measurements, direct simulations can in principle predict the19

observed fluid flow by solving the Navier-Stokes (momentum) equation. A handful20

of numerical [9, 10, 11, 12, 13] and analytical [14, 15] studies have previously been21

developed to model CSF flow through PVSs. These studies provide important steps22

in understanding the fluid dynamics of the entire glymphatic system [3, 16], not23

only in mice but in mammals generally. However, these studies have been based24

on idealized assumptions and have typically simulated fluid transport through only25

a small portion of the brain. Development of a fully-resolved fluid-dynamic model26

that captures CSF transport through the entire brain is beyond current capabilities27

for two reasons: (i) the very large computational cost of such a simulation, and (ii)28

the lack of detailed knowledge of the configuration and mechanical properties of the29

various flow channels throughout the glymphatic pathway, especially deep within30

the brain. We note that these limitations and the modest number of publications31

modeling CSF transport through the brain are in contrast with the much more32

extensive body of research modeling CSF flow in the spinal canal, which has pursued33

modeling based on idealized [17, 18, 19], patient-specific [20, 21], and in vitro [22]34

geometries (see the recent review articles [23, 24, 25]).35

To simulate CSF transport at a brain-wide scale, a tractable first step is to model36

the flow using a hydraulic network by estimating the hydraulic resistance of the37

channels that carry the CSF, starting with the PVSs. This article is restricted to38
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modeling of CSF flow through PVSs in the brain and does not address the question39

of flow through the brain parenchyma [26, 27], a region where bulk flow phenomena40

have not been characterized in the same detail as in the PVS. A steady laminar41

(Poiseuille) flow of fluid down a channel is characterized by a volume flow rate Q42

that is proportional to the pressure drop ∆p along the channel. The inverse of that43

proportionality constant is the hydraulic resistance R. Higher hydraulic resistance44

impedes flow, such that fewer mL of CSF are pumped per second by a given pressure45

drop ∆p; lower hydraulic resistance promotes flow. Hydraulic resistance is analogous46

to electrical resistance, which impedes the electrical current driven by a given volt-47

age drop. The hydraulic resistance of a channel for laminar flow can be calculated48

from the viscosity of the fluid and the length, shape, and cross-sectional area of the49

channel. We note that prior numerical studies have computed the hydraulic resis-50

tance of CSF flow in the spinal canal [28, 29], and a few hydraulic-network models51

of perivascular flows have been presented, using a concentric circular-annulus con-52

figuration of the PVS cross-section (e.g., [12, 30, 31]). As we demonstrate below,53

the concentric circular annulus is generally not a good model of the cross-section of54

a PVS. Here we propose a simple but more realistic model that is adjustable and55

able to approximate the cross-sections of PVSs actually observed in the brain. We56

then calculate the velocity profile, volume flow rate, and hydraulic resistance for57

Poiseuille flow with these cross-sections and demonstrate that the shapes of PVSs58

around pial arteries are nearly optimal.59

Methods60

The basic geometric model of the PVS61

In order to estimate the hydraulic resistance of PVSs, we need to know the various62

sizes and shapes of these spaces in vivo. Recent measurements of periarterial flows in63

the mouse brain by Mestre et al. [8] show that the perivascular space (PVS) around64

the pial arteries is much larger than previously estimated—comparable to the di-65

ameter of the artery itself. In vivo experiments using fluorescent dyes show similar66

results [32]. The size of the PVS is substantially larger than that shown in previous67

electron microscope measurements of fixed tissue. Mestre et al. demonstrate that68

the PVS collapses during fixation: they find that the ratio of the cross-sectional69
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area of the PVS to that of the artery itself is on average about 1.4 in vivo, whereas70

after fixation this ratio is only about 0.14.71

The in vivo observation of the large size of the PVS around pial arteries is im-72

portant for hydraulic models because the hydraulic resistance depends strongly on73

the size of the channel cross-section. For a concentric circular annulus of inner and74

outer radii r1 and r2, respectively, for fixed r1 the hydraulic resistance scales roughly75

as (r2/r1)−4, and hence is greatly reduced in a wider annulus. As we demonstrate76

below, accounting for the actual shapes and eccentricities of the PVSs will further77

reduce the resistance of hydraulic models.78

Figure 1 shows images of several different cross-sections of arteries and surround-79

ing PVSs in the brain, measured in vivo using fluorescent dyes [8, 6, 32, 33] or80

optical coherence tomography [7]. The PVS around a pial artery generally forms an81

annular region, elongated in the direction along the skull. For an artery that pen-82

etrates into the parenchyma, the PVS is less elongated, assuming a more circular83

shape, but not necessarily concentric with the artery. Note that similar geometric84

models have been used to model CSF flow in the cavity (ellipse) around the spinal85

cord (circle) [17, 18].86

We need a simple working model of the configuration of a PVS that is adjustable87

so that it can be fit to the various shapes that are actually observed, or at least88

assumed. Here we propose the model shown in Figure 2. This model consists of89

an annular channel whose cross-section is bounded by an inner circle, representing90

the outer wall of the artery, and an outer ellipse, representing the outer wall of the91

PVS. The radius r1 of the circular artery and the semi-major axis r2 (x-direction)92

and semi-minor axis r3 (y-direction) of the ellipse can be varied to produce different93

cross-sectional shapes of the PVS. With r2 = r3 > r1, we have a circular annulus.94

Generally, for a pial artery, we have r2 > r3 ≈ r1: the PVS is annular but elongated95

in the direction along the skull. For r3 = r1 < r2, the ellipse is tangent to the circle96

at the top and bottom, and for r3 ≤ r1 < r2 the PVS is split into two disconnected97

regions, one on either side of the artery, a configuration that we often observe for a98

pial artery in our experiments. We also allow for eccentricity in this model, allowing99

the circle and ellipse to be non-concentric, as shown in Figure 2B. The center of the100

ellipse is displaced from the center of the circle by distances c and d in the x and101

y directions, respectively. The model is thus able to match quite well the various102
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observed shapes of PVSs. To illustrate this, in Figure 1 we have drawn the inner103

and outer boundaries (thin and thick white curves, respectively) of the geometric104

model that gives a close fit to the actual configuration of the PVS. Specifically, the105

circles and ellipses plotted have the same centroids and the same normalized second106

central moments as the dyed regions in the images. We have drawn the full ellipse107

indicating the outer boundary of the PVS to clearly indicate the fit, but the portion108

which passes through the artery is plotted with a dotted line to indicate that this109

does not represent an anatomical structure.110

Steady laminar flow in the annular tube111

We wish to find the velocity distribution for steady, fully developed, laminar viscous112

flow in our model tube, driven by a uniform pressure gradient in the axial (z)113

direction. The velocity u(x, y) is purely in the z-direction and the nonlinear term in114

the Navier-Stokes equation is identically zero. The basic partial differential equation115

to be solved is the z-component of the Navier-Stokes equation, which reduces to116

∂2u

∂x2
+
∂2u

∂y2
=

1

µ

dp

dz
≡ −C = constant, (1)117

where µ is the dynamic viscosity of the CSF. (Note that the pressure gradient dp/dz118

is constant and negative, so the constant C we have defined here is positive.) If we119

introduce the nondimensional variables120

ξ =
x

r1
, η =

y

r1
, U =

u

Cr21
, (2)121

then equation (1) becomes the nondimensional Poisson’s equation122

∂2U

∂ξ2
+
∂2U

∂η2
= −1. (3)123

We want to solve this equation subject to the Dirichlet (no-slip) condition U = 0124

on the inner (circle) and outer (ellipse) boundaries. Analytic solutions are known125

for simple geometries, and we can calculate numerical solutions for a wide variety126

of geometries, as described below.127

Let Apvs and Aart denote the cross-sectional areas of the PVS and the artery,128

respectively. Now, define the nondimensional parameters129

α =
r2
r1
, β =

r3
r1
, K =

Apvs
Aart

. (4)130
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(Note that K is also equal to the volume ratio Vpvs/Vart of a fixed length of our131

tube model.) When r1, r2, r3, c, and d have values such that the ellipse surrounds132

the circle without intersecting it, the cross-sectional areas of the PVS and the artery133

are given simply by134

Apvs = π(r2r3 − r21) = πr21(αβ − 1), Aart = πr21, (5)135

and the area ratio is136

K =
Apvs
Aart

= αβ − 1. (6)137

In cases where the ellipse intersects the circle, the determination of Apvs is more138

complicated: in this case, equations (5) and (6) are no longer valid, and instead we139

compute Apvs numerically, as described in more detail below.140

For our computations of velocity profiles in cases with no eccentricity (c = d = 0),141

we can choose a value of the area ratio K, which fixes the volume of fluid in the142

PVS, and then vary α to change the shape of the ellipse. Thus we generate a two-143

parameter family of solutions: the value of β is fixed by the values of K and α. In144

cases where the circle does not protrude past the boundary of the ellipse, the third145

parameter β varies according to β = (K+ 1)/α. For α = 1 the ellipse and circle are146

tangent at x = ±r2, y = 0 and for α = K + 1 they are tangent at x = 0, y = ±r3.147

Hence, for fixed K, the circle does not protrude beyond the ellipse for α in the range148

1 ≤ α ≤ K + 1. For values of α outside this range, we have a two-lobed PVS, and149

the relationship among K, α, and β is more complicated.150

The dimensional volume flow rate Q is found by integrating the velocity-profile151

Q =

∫
Apvs

u(x, y) dx dy = Cr41

∫
Apvs

U(ξ, η) dξ dη ≡ Cr41Q, (7)152

where Q = Q/Cr41 is the dimensionless volume flow rate. The hydraulic resistance153

R is given by the relation Q = ∆p/R, where ∆p = (−dp/dz)L is the pressure drop154

over a length L of the tube. For our purposes, it is better to define a hydraulic155

resistance per unit length, R = R/L, such that156

Q =
(−dp/dz)
R

, R =
(−dp/dz)

Q
=
µC

Q
. (8)157
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We can use computed values of Q to obtain values of the hydraulic resistance R.158

From equations (7) and (8), we have159

R =
µC

Q
=

µC

Cr41Q
=

µ

r41

1

Q
. (9)160

We can then plot the scaled, dimensionless resistance r41R/µ = 1/Q as a function161

of (α− β)/K (shape of the ellipse) for different values of K (area ratio).162

For viscous flows in ducts of various cross-sections, the hydraulic resistance is163

often scaled using the hydraulic radius rh = 2A/P , where A is the cross-sectional164

area of the duct and P is the wetted perimeter. In the case of our annular model,165

however, the hydraulic radius rh = 2Apvs/P is not a useful quantity: when the166

inner circle lies entirely within the outer ellipse, both Apvs and P , and hence rh,167

are independent of the eccentricity, but (as shown below) the hydraulic resistance168

varies with eccentricity.169

Numerical methods170

In order to solve Poisson’s equation (3) subject to the Dirichlet condition U = 0171

on the inner and outer boundaries of the PVS, we employ the Partial Differen-172

tial Equation (PDE) Toolbox in MATLAB. This PDE solver utilizes finite-element173

methods and can solve Poisson’s equation in only a few steps. First, the geome-174

try is constructed by specifying a circle and an ellipse (the ellipse is approximated175

using a polygon with a high number of vertices, typically 100). Eccentricity may176

be included by shifting the centers of the circle and ellipse relative to each other.177

We specify that the equation is to be solved in the PVS domain corresponding178

to the part of the ellipse that does not overlap with the circle. We next specify179

the Dirichlet boundary condition U = 0 along the boundary of the PVS domain180

and the coefficients that define the nondimensional Poisson’s equation (3). Finally,181

we generate a fine mesh throughout the PVS domain, with a maximum element182

size of 0.02 (nondimensionalized by r1), and MATLAB computes the solution to183

equation (3) at each mesh point. The volume flow rate is obtained by numerically184

integrating the velocity profile over the domain. Choosing the maximum element185

size of 0.02 ensures that the numerical results are converged. Specifically, we com-186

pare the numerically obtained value of the flow rate Q for a circular annulus to the187
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analytical values given by equation (11) or equation (12) below to ensure that the188

numerical results are accurate to within 1%.189

For the case where the circle protrudes beyond the boundary of the ellipse, equa-190

tions (5) and (6) do not apply. We check for this case numerically by testing whether191

any points defining the boundary of the circle extrude beyond the boundary of the192

ellipse. If so, we compute the area ratio K numerically by integrating the area of the193

finite elements in the PVS domain (Aart is known but Apvs is not). In cases where194

we want to fix K and vary the shape of the ellipse (e.g. Fig. 5A), it is necessary to195

change the shape of the ellipse iteratively until K converges to the desired value.196

We do so by choosing α and varying β until K converges to its desired value within197

0.01%.198

Analytical solutions199

There are two special cases for which there are explicit analytical solutions, and we200

can use these solutions as checks on the numerical method.201

The concentric circular annulus. For a concentric circular annulus we have202

c = d = 0, r2 = r3 > r1, α = β > 1, and K = α2 − 1. Let r be the radial203

coordinate, and ρ = r/r1 be the corresponding dimensionless radial coordinate. The204

dimensionless velocity profile is axisymmetric, and is given by White [34], p. 114:205

U(ρ) =
1

4

[
(α2 − ρ2)− (α2 − 1)

ln(α/ρ)

ln(α)

]
, 1 < ρ < α, (10)206

and the corresponding dimensionless volume flux rate is given by:207

Q =
π

8

[
(α4 − 1)− (α2 − 1)2

ln(α)

]
=
π

8

[
(K + 1)2 − 1− 2K2

ln(K + 1)

]
. (11)208

The eccentric circular annulus. There is also an analytical solution for the209

case of an eccentric circular annulus, in which the centers of the two circles do not210

coincide [34, 35]. Let c denote the radial distance between the two centers. Then,211

in cases where the two circles do not intersect, the dimensionless volume flow rate212

is given by White [34], p. 114:213

Q =
π

8

[
(α4 − 1)− 4ε2M2

(B −A)
− 8ε2M2

∞∑
n=1

n exp(−n[B +A])

sinh(n[B −A])

]
, (12)214
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where ε = c/r1 is the dimensionless eccentricity and215

M = (F2 − α2)1/2, F =
α2 − 1 + ε2

2ε
,216

A =
1

2
ln

(
F +M
F −M

)
, B =

1

2
ln

(
F − ε+M
F − ε−M

)
. (13)217

From this solution, it can be shown that increasing the eccentricity substantially218

increases the flow rate (see Figs. 3–10 in [34]). This solution can be used as a check219

on the computations of the effect of eccentricity in our model PVS in the particular220

case where the outer boundary is a circle.221

Results222

The eccentric circular annulus223

The eccentric circular annulus is a good model for the PVSs around some pene-224

trating arteries (see Fig. 1E,F), so it is useful to show how the volume flow rate225

and hydraulic resistance vary for this model. This is done in Figure 3A, where the226

hydraulic resistance (inverse of the volume flow rate) is plotted as a function of the227

dimensionless eccentricity c/(r2−r1) = ε/(α−1) for various values of the area ratio228

K = α2 − 1. The first thing to notice in this plot is how strongly the hydraulic229

resistance depends on the cross-sectional area of the PVS (i.e., on K). For example,230

in the case of a concentric circular annulus (ε = 0), the resistance decreases by231

about a factor of 1700 as the area increases by a factor of 15 (K goes from 0.2 to232

3.0).233

For fixed K, the hydraulic resistance decreases monotonically with increasing234

eccentricity (see Fig. 3A). This occurs because the fluid flow concentrates more and235

more into the wide part of the gap, where it is farther from the walls and thus236

achieves a higher velocity for a given shear stress (which is fixed by the pressure237

gradient). (This phenomenon is well known in hydraulics, where needle valves tend238

to leak badly if the needle is flexible enough to be able to bend to one side of the239

circular orifice.) The increase of flow rate (decrease of resistance) is well illustrated240

in Figures 3C–E, which show numerically computed velocity profiles (as color maps)241

at three different eccentricities. We refer to the case where the inner circle touches242

the outer circle (ε/(α− 1) = 1) as the “tangent eccentric circular annulus.”243

We have plotted the hydraulic resistance as a function of the area ratio K for the244

concentric circular annulus and the tangent eccentric circular annulus in Figure 3B.245
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This plot reveals that across a wide range of area ratios, the tangent eccentric cir-246

cular annulus (shown in Fig. 3E) has a hydraulic resistance that is approximately247

2.5 times lower than the concentric circular annulus (shown in Fig. 3C), for a fixed248

value of K. Intermediate values of eccentricity (0 ≤ ε/(α − 1) ≤ 1), where the249

inner circle does not touch the outer circle (e.g., Fig. 3D) correspond to a reduc-250

tion in hydraulic resistance that is less than a factor of 2.5. The variation with251

K of hydraulic resistance of the tangent eccentric annulus fits reasonably well to a252

power law r41R/µ = 8.91K−2.78 throughout most of the range of observed K values,253

indicated by the gray shaded region in Figure 3B.254

The concentric elliptical annulus255

Now we turn to the results for the elliptical annulus in the case where the ellipse256

and the inner circle are concentric. Figure 4 shows numerically computed velocity257

profiles for three different configurations with the same area ratio (K = 1.4): a258

moderately elongated annulus, the case where the ellipse is tangent to the circle at259

the top and bottom, and a case with two distinct lobes. A comparison of these three260

cases with the concentric circular annulus (Fig. 3B) shows quite clearly how the flow261

is enhanced when the outer ellipse is flattened, leading to spaces on either side of the262

artery with wide gaps in which much of the fluid is far from the boundaries and the263

shear is reduced. However, Figure 4C shows a reduction in the volume flow rate (i.e.264

less pink in the velocity profile) compared to Figures 4A,B, showing that elongating265

the outer ellipse too much makes the gaps narrow again, reducing the volume flow266

rate (increasing the hydraulic resistance). This results suggests that, for a given267

value of K (given cross-sectional area), there is an optimal value of the elongation268

α that maximizes the volume flow rate (minimizes the hydraulic resistance).269

To test this hypothesis, we computed the volume flow rate and hydraulic resistance270

as a function of the shape parameter (α− β)/K for several values of the area ratio271

K. The results are plotted in Figure 5A. Note that the plot is only shown for272

(α−β)/K ≥ 0, since the curves are symmetric about (α−β)/K = 0. The left end of273

each curve ((α−β)/K = 0) corresponds to a circular annulus, and the black circles274

indicate the value of R given by the analytical solution in equation (11). These275

values agree with the corresponding numerical solution to within 1%. The resistance276

varies smoothly as the outer elliptical boundary becomes more elongated, and our277
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hypothesis is confirmed: for each curve, the hydraulic resistance reaches a minimum278

value at a value of (α−β)/K that varies with K, such that the corresponding shape279

is optimal for fast, efficient CSF flow. Typically, the resistance drops by at least a280

factor of two as the outer boundary goes from circular to the tangent ellipse. If we281

elongate the ellipse even further (beyond the tangent case), thus dividing the PVS282

into two separate lobes, the resistance continues to decrease but reaches a minimum283

and then increases. The reason for this increase is that, as the ellipse becomes highly284

elongated, it forms a narrow gap itself, and the relevant length scale for the shear285

in velocity is the width of the ellipse, not the distance to the inner circle. For small286

values of K, we find that the optimal shape parameter (α − β)/K tends to be287

large and the ellipse is highly elongated, while for large values of K the optimal288

shape parameter is small. The velocity profiles for three optimal configurations (for289

K = 0.4, 1.4, and 2.4) are plotted in Figures 5C–E.290

The hydraulic resistance of shapes with optimal elongation also varies with the291

area ratio K, as shown in Figure 5B. As discussed above, the resistance decreases292

rapidly as K increases and is lower than the resistance of concentric, circular annuli,293

which are also shown. We find that the optimal elliptical annulus, compared to the294

concentric circular annulus, provides the greatest reduction in hydraulic resistance295

for the smallest area ratios K. Although the two curves converge as K grows, they296

differ substantially throughout most of the range of normalized PVS areas observed297

in vivo. We find that the variation with K of hydraulic resistance of optimal shapes298

fits closely to a power law r41R/µ = 6.67K−1.96.299

The eccentric elliptical annulus300

We have also calculated the hydraulic resistance for cases where the outer boundary301

is elliptical and the inner and outer boundaries are not concentric (see Fig. 2B). For302

this purpose, we introduce the nondimensional eccentricities303

εx =
c

r1
, εy =

d

r1
. (14)304

The hydraulic resistance is plotted in Figures 6A,B as a function of εx and εy,305

respectively, and clearly demonstrates that adding any eccentricity decreases the306

hydraulic resistance, similar to the eccentric circular annulus shown in Figure 3.307

In the case where the outer boundary is a circle (α = β > 1, ε = (ε2x + ε2y)1/2)308
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we employ the analytical solution (12) as a check on the numerical solution: they309

agree to within 0.4%. Two example velocity profiles are plotted in Figures 6C,D.310

Comparing these profiles to the concentric profile plotted in Figure 4A clearly shows311

that eccentricity increases the volume flow rate (decreases the hydraulic resistance).312

In vivo PVSs near pial arteries are nearly optimal in shape313

We can compute the velocity profiles for the geometries corresponding to the actual314

pial PVSs shown in Figures 1B–D (dotted and solid white lines). The parameters315

corresponding to these fits are provided in Table 1 and are based on the model shown316

in Figure 2B, which allows for eccentricity. Figure 7A shows how hydraulic resistance317

varies with elongation for non-concentric PVSs having the same area ratio K and318

eccentricities εx and εy as the ones in Figures 1B–D. The computed values of the319

hydraulic resistance of the actual observed shapes are plotted as purple triangles. For320

comparison, velocity profiles for the optimal elongation and the exact fits provided321

in Table 1 are shown in Figure 7B-D. Clearly the hydraulic resistances of the shapes322

observed in vivo are very close to the optimal values, but systematically shifted to323

slightly more elongated shapes. Even when (α−β)/K differs substantially between324

the observed shapes and the optimal ones, the hydraulic resistanceR, which sets the325

pumping efficiency and is therefore the biologically important parameter, matches326

the optimal value quite closely.327

Discussion328

In order to understand the glymphatic system, and various effects on its operation,329

it will be very helpful to develop a predictive hydraulic model of CSF flow in the330

PVSs. Such a model must take into account two important recent findings: (i) the331

PVSs, as measured in vivo, are generally much larger than the size determined from332

post-fixation data [7, 8, 32] and hence offer much lower hydraulic resistance; and333

(ii) (as we demonstrate in this paper) the concentric circular annulus model is not334

a good geometric representation of an actual PVS, as it overestimates the hydraulic335

resistance. With these two factors accounted for, we can expect a hydraulic-network336

model to produce results in accordance with the actual bulk flow now observed337

directly in particle tracking experiments [7, 8]. The relatively simple, adjustable338

model of a PVS that we present here can be used as a basis for calculating the339
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hydraulic resistance of a wide range of observed PVS shapes, throughout the brain340

and spinal cord. Our calculations demonstrate that accounting for PVS shape can341

reduce the hydraulic resistance by a factor as large as 6.45 (see Table 1).342

We raise the intriguing possibility that the non-circular and eccentric configura-343

tions of PVSs surrounding pial arteries are an evolutionary adaptation that lowers344

the hydraulic resistance and permits faster bulk flow of CSF. The in vivo images345

(e.g., those in Fig. 1B–D) reveal that the cross-section of the PVS around a pial346

artery is not a concentric circular annulus, but instead is significantly flattened and347

often consists of two separate lobes positioned symmetrically on each side of the348

artery. Tracers are mostly moving within these separate tunnels and only to a lim-349

ited extent passing between them. Our imaging of tens of thousands of microspheres350

has revealed that crossing is rare, indicating almost total separation between the351

two tunnels. The arrangement of the two PVS lobes surrounding a pial artery not352

only reduces the hydraulic resistance but may also enhance the stability of the PVS353

and prevent collapse of the space during excessive movement of the brain within354

the skull. Additionally, PVSs with wide spaces may facilitate immune response by355

allowing macrophages to travel through the brain, as suggested by Schain et al. [32].356

We note that if CSF flowed through a cylindrical vessel separate from the vascu-357

lature (not an annulus), hydraulic resistance would be even lower. However, there358

are reasons that likely require PVSs to be annular and adjacent to the vascula-359

ture, including: (i) arterial pulsations drive CSF flow [8], and (ii) astrocyte endfeet,360

which form the outer boundary of the PVS, regulate molecular transport from both361

arteries and CSF [36, 37].362

The configuration of PVSs surrounding penetrating arteries in the cortex and363

striatum is largely unknown [38]. To our knowledge, all existing models are based on364

information obtained using measurements from fixed tissue. Our own impression,365

based on years of in vivo imaging of CSF tracer transport, is that the tracers366

distribute asymmetrically along the wall of penetrating arteries, suggesting that367

the PVSs here are eccentric. Clearly, we need new in vivo techniques that produce368

detailed maps of tracer distribution along penetrating arteries. Regional differences369

may exist, as suggested by the finding that, in the human brain, the striate branches370

of the middle cerebral artery are surrounded by three layers of fibrous membrane,371

instead of the two layers that surround cortical penetrating arteries [38]. Accurately372
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characterizing the shapes and sizes of the most distal PVSs along the arterial tree is373

very important, as prior work [31] suggests the hydraulic resistance is largest there.374

We speculate that the configuration of the PVSs at these locations may be optimal375

as well.376

An intriguing possibility for future study is that minor changes in the configura-377

tion of PVS spaces may contribute to the sleep-wake regulation of the glymphatic378

system [39]. Also, age-dependent changes of the configuration of PVSs may increase379

the resistance to fluid flow, possibly contributing to the increased risk of amyloid-380

beta accumulation associated with aging [40]. Similarly, reactive remodeling of the381

PVSs in the aftermath of a traumatic brain injury may increase the hydraulic re-382

sistance of PVSs and thereby increase amyloid-beta accumulation.383

There are limitations to the modeling presented here, which can be overcome by384

straightforward extensions of the calculations we have presented. We have intention-385

ally chosen a relatively simple geometry in order to show clearly the dependence386

of the hydraulic resistance on the size, shape, and eccentricity of the PVS. How-387

ever, the fits presented in Figure 1B–F are imperfect and could be better captured388

using high-order polygons, which is an easy extension of the numerical method we389

have employed. Our calculations have been performed assuming that PVSs are open390

channels, which is arguably justified – at least for PVSs around pial arteries – by391

the smooth trajectories observed for 1 µm beads flowing through PVSs and the392

observation that these spaces collapse during the fixation process [8]. However, the393

implementation of a Darcy-Brinkman model to capture the effect of porosity would394

simply increase the resistance R, given a fixed flow rate Q and Darcy number Da,395

by some multiplicative constant.396

The hydraulic resistances we have calculated are for steady laminar flow driven by397

a constant overall pressure gradient. However, recent quantitative measurements in398

mice have offered substantial evidence demonstrating that CSF flow in PVSs sur-399

rounding the middle cerebral artery is pulsatile, driven by peristaltic pumping due400

to arterial wall motions generated by the heartbeat, with mean (bulk) flow in the401

same direction as the blood flow [8]. We hypothesize that this “perivascular pump-402

ing” occurs mainly in the periarterial spaces around the proximal sections of the403

main cerebral arteries: at more distal locations the wall motions become increasingly404

passive, and the flow is driven mainly by the oscillating pressure gradient generated405
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by the perivascular pumping upstream. Viscous, incompressible duct flows due to406

oscillating pressure gradients are well understood: it is a linear problem, and ana-407

lytical solutions are known for a few simple duct shapes. The nature of the solution408

depends on the dynamic Reynolds number Rd = ω`2/ν, where ω is the angular fre-409

quency of the oscillating pressure gradient, ν is the kinematic viscosity, and ` is the410

length scale of the duct (e.g, the inner radius of a circular pipe, or the gap width for411

an annular pipe). (Alternatively, the Womersley number W =
√
Rd is often used412

in biofluid mechanics.) When Rd << 1, as it is in the case of flows in PVSs,[1]413

the velocity profile at any instant of time is very nearly that of a steady laminar414

flow, and the profile varies in time in phase with the oscillating pressure gradient415

(see White [34], sec. 3-4.2). In this case, the average (bulk) volume flow rate will416

be inversely proportional to exactly the same hydraulic resistance that applies to417

steady laminar flow. Hence, the hydraulic resistances we have computed here will418

apply to PVSs throughout the brain, except for proximal sections of main arteries419

where the perivascular pumping is actually taking place.420

In periarterial spaces where the perivascular pumping is significant, the picture is421

somewhat different. Here, the flow is actively driven by traveling wave motions of422

the arterial wall, or in the context of our model PVS, waves along the inner circular423

boundary. In the case of an elliptical outer boundary, we expect the flow to be424

three-dimensional, with secondary motions in the azimuthal direction (around the425

annulus, not down the channel), even though the wave along the inner boundary is426

axisymmetric. Although we have not yet modeled this flow, we can offer a qualitative427

description based on an analytical solution for perivascular pumping in the case of428

concentric circular cylinders [14]. The effectiveness of the pumping scales as (b/`)2,429

where b is the amplitude of the wall wave and ` is the width of the gap between the430

inner and outer boundaries. For the case of a concentric circular annulus, the gap431

width ` and hence the pumping effectiveness are axisymmetric, and therefore the432

resulting flow is also axisymmetric. For an elliptical outer boundary, however, the433

gap width ` varies in the azimuthal direction and so will the pumping effectiveness.434

Hence, there will be pressure variations in the azimuthal direction that will drive a435

secondary, oscillatory flow in the azimuthal direction, and as a result the flow will436

[1]For example, for ω = 25.13 s−1 (corresponding to a pulse rate of 240 bpm), ` = 20

µm, and ν = 7.0× 10−7m2 s−1, we have Rd = 1.4× 10−2.
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be non-axisymmetric and the streamlines will wiggle in the azimuthal direction.437

Increasing the aspect ratio r2/r3 of the ellipse for a fixed area ratio will decrease438

the flow resistance but will also decrease the overall pumping efficiency, not only439

because more of the fluid is placed farther from the artery wall, but also, in cases440

where the PVS is split into two lobes, not all of the artery wall is involved in441

the pumping. Therefore, we expect that there will be an optimal aspect ratio of442

the outer ellipse that will produce the maximum mean flow rate due to perivascular443

pumping, and that this optimal ratio will be somewhat different from that which just444

produces the lowest hydraulic resistance. We speculate that evolutionary adaptation445

has produced shapes of actual periarterial spaces around proximal sections of main446

arteries that are nearly optimal in this sense.447

Conclusions448

Perivascular spaces, which are part of the glymphatic system [6], provide a route449

for rapid influx of cerebrospinal fluid into the brain and a pathway for the removal450

of metabolic wastes from the brain. In this study, we have introduced an elliptical451

annulus model that captures the shape of PVSs more accurately than the circular452

annulus model that has been used in all prior modeling studies. We have demon-453

strated that for both the circular and elliptical annulus models, non-zero eccentricity454

(i.e., shifting the inner circular boundary off center) decreases the hydraulic resis-455

tance (increases the volume flow rate) for PVSs. By adjusting the shape of the456

elliptical annulus with fixed PVS area and computing the hydraulic resistance, we457

found that there is an optimal PVS elongation for which the hydraulic resistance is458

minimized (the volume flow rate is maximized). We find that these optimal shapes459

closely resemble actual pial PVSs observed in vivo, suggesting such shapes may be460

a result of evolutionary optimization.461

The elliptical annulus model introduced here offers an improvement for future462

hydraulic network models of the glymphatic system, which may help reconcile the463

discrepancy between the small PVS flow speeds predicted by many models and the464

relatively large flow speeds recently measured in vivo [7, 8]. Our proposed modeling465

improvements can be used to obtain simple scaling laws, such as the power laws466

obtained for the tangent eccentric circular annulus in Figure 3B or the optimal467

elliptical annulus in Figure 5B.468
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Figures581

Tables582

Table 1: Geometry and resistance of perivascular spaces visualized in vivo. Labels

correspond to panel labels in Figure 1. The last column gives the ratio of the

hydraulic resistance R◦ of a circular annulus with the same area ratio K to the

value R computed for the specified geometry.

Label r1 r2 r3 Aart Apvs c d

B 19.92 µm 42.1 µm 8.09 µm 1169 µm2 1059 µm2 -0.0428 µm 5.23 µm

C 152.9 µm 449 µm 113.7 µm 6.63× 104 µm2 1.577× 105 µm2 -67.6 µm 14.84 µm

D 16.53 µm 58.6 µm 16.67 µm 742 µm2 2670 µm2 -4.18 µm 6.55 µm

E 4.63 µm 6.83 µm 5.42 µm 59.2 µm2 113.5 µm2 -0.513 µm -4.61 µm

F 7.21 µm 23.3 µm 15.40 µm 155.0 µm2 1120 µm2 0.1192 µm -5.74 µm

Label α β K εx εy r41R/µ R◦/R
B 2.11 0.406 0.388 -0.00215 0.263 48.0 6.45

C 2.94 0.744 1.36 -0.442 0.0971 3.56 2.75

D 3.54 1.008 2.71 -0.253 0.396 1.01 1.62

E 1.476 1.172 1.18 -0.1109 -0.997 3.30 4.29

F 3.24 2.14 5.93 0.0165 -0.797 0.173 1.38
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Fig. 1: Cross-sections of PVSs from in vivo dye experiments. A We consider

PVSs in two regions: those adjacent to pial arteries and those adjacent

to penetrating arteries. B PVS surrounding a murine pial artery, adapted

from [8]. C PVS surrounding a human pial artery, adapted from [7]. D PVS

surrounding a murine pial artery, adapted from [32]. E PVS surrounding a

murine descending artery, adapted from [6]. F PVS surrounding a murine

descending artery, adapted from [33]. For each image B-F, the best-fit inner

circular and outer elliptical boundaries are plotted (thin and thick curves,

respectively). The model PVS cross-section is the space within the ellipse

but outside the circle. The dotted line does not represent an anatomical

structure but is included to clearly indicate the fit. The parameter values

for these fits are given in Table 1. PVSs surrounding pial arteries are oblate,

not circular; PVSs surrounding descending arteries are more nearly circular,

but are not concentric with the artery.
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Fig. 2: Adjustable geometric models of the cross-section of a PVS, where

the circle represents the outer boundary of the artery and the ellipse repre-

sents the outer boundary of the PVS. The circle and ellipse may be either

A concentric or B non-concentric. In A, the geometry is parameterized by

the circle radius r1 and the two axes of the ellipse r2 and r3. In B, there

are two additional parameters: eccentricities c along the x-direction and d

along the y-direction.
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Fig. 3: Hydraulic resistance and velocity profiles in eccentric circular an-

nuli modeling PVSs surrounding penetrating arteries. A Plots of hydraulic

resistance R for an eccentric circular annulus, as a function of the relative

eccentricity ε/(α− 1), for various fixed values of the area ratio K = α2 − 1

ranging in steps of 0.2, computed using equation (12). B Plots of the hy-

draulic resistance (red dots) for the tangent eccentric circular annulus (de-

fined as ε/(α− 1) = 1) as a function of the area ratio K. Also plotted, for

comparison, is the hydraulic resistance of the concentric circular annulus

for each value of K. The shaded region indicates the range of K observed

in vivo for PVSs. Power laws are indicated that fit the points well through

most of the shaded region. C-E Velocity profiles for three different eccentric

circular annuli with increasing eccentricity (with K = 1.4 held constant):

(C) ε = 0 (concentric circular annulus), (D) ε = 0.27 (eccentric circular

annulus), and (E) ε = 0.55 (tangent eccentric circular annulus). The black

circle, purple asterisk, and red dot in A indicate the hydraulic resistance of

the shapes shown in C–E, respectively. The volume flow rates for the nu-

merically calculated profiles shown in C–E agree with the analytical values

to within 0.3%. As eccentricity increases hydraulic resistance decreases and

volume flow rate increases.
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Fig. 4: Example velocity profiles in concentric elliptical annuli modeling

PVSs surrounding pial arteries. The color maps show velocity profiles for

three different shapes of the PVS, all with K = 1.4: A open PVS (α = 2,

β = 1.2), B ellipse just touching circle (α = 2.4, β = 1), and C two-lobe

annulus (α = 5, β = 0.37). Hydraulic resistance is lowest and flow is fastest

for intermediate elongation, suggesting the existence of optimal shape that

maximizes flow.
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Fig. 5: Hydraulic resistance of concentric elliptical annuli modeling PVSs

surrounding pial arteries. A Hydraulic resistance R as a function of (α −

β)/K for various fixed values of the area ratio K ranging in steps of 0.2. The

black circles indicate the analytic value for the circular annulus, provided

by equation (11). Red dots indicate optimal shapes, which have minimumR

for each fixed value of K. B Plots of the hydraulic resistance (red dots) for

the optimal concentric elliptical annulus as a function of the area ratio K.

Also plotted, for comparison, is the hydraulic resistance of the concentric

circular annulus for each value of K. The shaded region indicates the range

of K observed in vivo for PVSs. The two curves in the shaded region are well

represented by the power laws shown. For larger values of K (larger than

actual PVSs) the influence of the inner boundary becomes less significant

and the curves converge to a single power law. C-E Velocity profiles for

the optimal shapes resulting in the lowest hydraulic resistance, with fixed

K = 0.4, 1.4, and 2.4, respectively. The optimal shapes look very similar

to the PVSs surrounding pial arteries (Fig. 1B-D).
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Fig. 6: The effects of eccentricity on hydraulic resistance of elliptical an-

nuli modeling PVSs surrounding pial arteries. Hydraulic resistance R as a

function of A εx or B εy for several values of α. Color maps of the velocity

profiles for C α = 2, εx = 0.4, εy = 0 and D α = 2, εx = 0, εy = −0.4.

K = 1.4 for all plots shown here. Circular annuli have α =
√

2.4, and annuli

with α >
√

2.4 have r2 > r3. For a fixed value of α, any nonzero eccentricity

increases the flow rate and reduces the hydraulic resistance.
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Fig. 7: Actual PVS cross-sections measured in vivo are nearly optimal.

A Hydraulic resistance R as a function of (α − β)/K in which α varies

and the values of the area ratio K and eccentricities εx and εy are fixed

corresponding to the fitted values obtained in Table 1. Values corresponding

to plots B-D are indicated. B-D Velocity profiles for the optimal value of α

(left column), which correspond to the minimum value ofR on each curve in

A, and velocity profiles for the exact fit provided in Table 1 (right column)

and plotted in Fig. 1B-D, respectively. The shape of the PVS measured in

vivo is nearly optimal.
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