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Abstract

Enzymes that catalyze chemical reactions at high temperatures are used for indus-

trial biocatalysis, applications in molecular biology, and as highly evolvable starting

points for protein engineering. The optimal growth temperature (OGT) of organisms

is commonly used to estimate the stability of enzymes encoded in their genomes, but

the number of experimentally determined OGT values are limited, particularly for ther-

mophilic organisms. Here, we report on the development of a machine learning model

that can accurately predict OGT for bacteria, archaea and microbial eukaryotes di-

rectly from their proteome-wide 2-mer amino acid composition. The trained model
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is made freely available for re-use. In a subsequent step we OGT data in combina-

tion with amino acid composition of individual enzymes to develop a second machine

learning model – for prediction of enzyme catalytic temperature optima (Topt). The

resulting model generates enzyme Topt estimates that are far superior to using OGT

alone. Finally, we predict Topt for 6.5 million enzymes, covering 4,447 enzyme classes,

and make the resulting dataset available for researchers. This work enables simple and

rapid identification of enzymes that are potentially functional at extreme temperatures.

1 Introduction

Enzymes that remain active at high temperatures, sometimes referred to as thermozymes,

are used to catalyze chemical reactions in industrial processes (1–8 ), for applications in

molecular biology (9–14 ), and for providing highly evolvable starting points for protein

engineering (15–19 ). When testing new enzymes for these applications the optimal growth

temperature (OGT) of microorganisms is commonly used to estimate protein stability –

enzymes derived from thermophilic organisms are expected to be both stable and active at

high temperatures.

Although frequently successful, using OGT as an estimate faces two challenges. First,

for many microorganisms with experimentally determined OGT this information is not read-

ily accessible. This challenge has been partially addressed through the creation of public

databases and datasets (20–23 ). However, the OGT for the vast majority of microbial

organisms is currently unknown since determining the OGT of a microorganism is a labo-

rious process that requires cultivation in temperature-controlled conditions. The number

of microorganisms that can be cultured in the laboratory is only a small fraction of the

total diversity in nature(24 ). Consequently, many suitable enzyme catalysts likely remain

untested and undiscovered. Second, using OGT to estimate enzyme catalytic optima (Topt)

constitutes a rough approximation, with many enzymes displaying Topt at temperatures sig-

nificantly higher or lower than the OGT (22 , 25 ). The Pearson correlation between the Topt
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of individual enzymes and OGT is only 0.48(22 ). In practice this means that enzymes from

thermophilic organisms may be optimally active at significantly lower temperatures than

expected.

Due to these challenges a simple way to computationally estimate (1) the OGT of mi-

crobes and (2) the Topt of enzymes is in demand. For such computational estimations to be

feasible there must be general trends for how quantifiable biological properties change with

growth temperature, there must be a signal that can be modeled. The OGT of microor-

ganisms is an important physiological parameter that has been widely used to understand

the strategies organisms use to adapt their genomes and proteomes to different environ-

mental conditions(26–28 ). Many genomic and proteomic features that are strongly corre-

lated with OGT have been revealed. Examples include the existence of thermophile-specific

enzymes(29 ), the presence or absence of certain dinucleotides(30 ), the GC content of struc-

tural RNAs(31 ), as well as amino acid composition of the proteome(26 , 32 ). Examples such

as these indicate that estimating OGT directly from genomes or proteomes may indeed be

feasible.

Statistical tools, such as regression and classification, have been used to model the corre-

lation between OGT and biological features. For example, the OGT of 22 bacteria could be

predicted using a linear combination of either dinucleotide or amino acid composition(30 ).

Additionally, Zeldovich found that the sum fraction of the seven amino acids I, V, Y, W, R,

E and L showed a correlation coefficient as high as 0.93 with OGT in a dataset consisting

of 204 proteomes of archaea and bacteria(32 ). Jensen et al developed a Bayesian classifier

to distinguish three thermophilicity classes (thermophiles, mesophiles and psychrophiles)

based on 77 bacteria with known OGT(33 ). Training datasets containing the OGTs for a

large number of organisms have been hard to obtain, something which has prevented the

development of state-of-the-art machine learning models for OGT prediction.

While there are only a few published models predicting organism OGT, we know of no

computational tools to estimate Topt. However, many methods for the estimation of protein
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stability have been developed. We wish to emphasize the difference between these two

measures as stability is an indication of the folding state of the protein, without information

regarding catalytic activity, whereas Topt implicitly assumes stability and instead indicates

the temperature of optimal catalysis. Methods for predicting protein stability fall into two

main categories; predicting the stability of whole proteins, and predicting the stability change

in a protein upon amino acid substitutions. Machine learning has been used extensively for

the prediction of stability change upon amino acid substitutions(34–38 ), while only a few

methods have been developed for the prediction of stability of whole protein empirically(39–

42 ). However, computational prediction of protein stability is challenging since it usually

needs an accurate calculation of Gibbs-free energy change of protein unfolding process(41 ,

42 ), which relies mainly on high-quality protein structures. Such structures are limited in

number, thereby reducing the applicability of these methods for identifying thermostable

enzymes for industrial applications.

Here, we address the challenge of identifying proteins active at high temperatures in in

three steps. First, we build a machine learning model to accurately predict OGT using

features extracted from all proteins encoded by an organism’s genome. This model is used

to assign OGT values for organisms without experimental data. Second, we significatly

improve the prediction of enzyme Topt values by using OGT in combination with sequence

information of individual enzymes. Those predictions are significantly more accurate than

using OGT alone for the prediction. Finally, we make use of the predictive models to

estimate Topt for 6.5 million enzymes, covering 4,447 enzyme classes in the BRENDA(43 )

database. The OGT model and enzyme Topt estimates are made freely available for reuse

(https://github.com/EngqvistLab/Tome).
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2 Methods

2.1 Software

All machine learning analysis were conducted with scikit-learn package (version 0.19.1)(44 )

using Python version 2.7.14. The module and model hyperparameters used are listed in

Supplementary Table S2. Python code for proteome analysis, machine learning and data

visualization are available from the authors upon request. The source code for the Tome

package is available under a permissive GPLv3 license at GitHub (https://github.com/

EngqvistLab/Tome).

2.2 Proteome dataset

The bulk of protein sequence data used in this work was obtained from Ensembl Genomes

release 37, obtained in September 2017 (http://ensemblgenomes.org/). For all archaea and

bacteria listed at ftp://ftp.ensemblgenomes.org/pub/bacteria/release-37/fasta/ fasta

files containing protein sequences were downloaded. Similarly, fasta files containing protein

sequences for all fungi listed at ftp://ftp.ensemblgenomes.org/pub/fungi/release-37/

fasta/ were downloaded. As a complement to the Ensembl Genome data we made use of

protein data from RefSeq release 87, obtained in March 2017 (https://www.ncbi.nlm.nih.

gov/refseq/). Fasta files containing a nonredundant set of protein sequences for each organ-

ism were downloaded from ftp://ftp.ncbi.nlm.nih.gov/refseq/release/ for archaea,

bacteria, fungi and protozoa.

In many cases the Ensembl Genomes and RefSeq datasets both contained information

for the same organism, or for several strains of the same organism. Therefore, to combine

the two datasets, the following steps were followed: First, where multiple strains from the

same organism were present in the Ensembl Genomes dataset, the strain with the largest

file size, indicating the greatest number of amino acids in the downloaded fasta file, was

selected for analysis. Other strains for that organism were discarded. Second, where the
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same organism was present in both the Ensembl Genomes and RefSeq datasets the one from

Ensembl Genomes was retained and the one from RefSeq was discarded. In this way a protein

dataset comprising protein sequence data for 7,565 microorganisms was obtained. Of these

5,325 originated from Ensembl Genomes and 2,240 originated from RefSeq.

For each organism in the protein dataset we attempted to annotate it with its optimal

growth temperature. In this annotation procedure organism names were stemmed to the

species level (ignoring strain designations) and cross-referenced with a published dataset

containing growth temperatures for 21,498 microorganisms (https://doi.org/10.5281/

zenodo.1175608). Growth temperatures could be associated with the protein sequence

data from 5,762 organisms, whereas 1,803 were left unannotated.

2.3 Estimation of threshold

For each proteome, the total length of each protein was calculated. Then the amino acid

frequencies and the total number of residues of the first n proteins (n = 1, 2, ..N, were N

is the total number of proteins) were calculated sequentially. The data points in the last

one-third of all residues added were used to measure the stability of the calculated amino

acid frequencies. Three different metrics were designed: (1) the absolute slope value |ai| in

the linear regression between the number of residues and amino acid frequency; (2) frequency

variance of these selected frequencies (σ2
i ) and (3) varying range (R), the difference between

maximal frequency and minimal frequency. Ideally, 0 was expected for all these three metrics

if there is an absolutely stable amino acid frequency in a given proteome. Finally, for each

proteome, the maximal |ai|, σ2
i and R of 20 amino acids of each proteome (rabs,max, σ2

max and

Rmax) were used to measure whether frequencies were stable.

To test the effect of the protein order in a proteome in the above analysis, a shullfing

strategy was applied. Firstly, equal coverage over the log10-transformed proteome size range

3-7.5 was ensured by performing the random sampling in 20 bins. One proteome was ran-

domly selected for each bin and this resulted in 17 selected proteomes as there is no proteome
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in 3 of these bins. The order of the proteins in each proteome was randomly shuffled and

then rabs,max, σ2
max and Rmax were calculated. Each proteome was shuffled for 100 times.

2.4 Machine learning workflow for OGT model

20 amino acid frequencies and 400 dipeptide frequencies were extracted for each proteome.

Then, each of these features were normalized by xN,i = xi−ui
δi

, where xi is the values of

feature i, ui and δi, are mean and standard derivation of xi, respectively. The following six

models were selected and their performance were tested on the annotated and filtered pro-

teome dataset using single amino acid frequencies (AA), dipeptide frequencies (Dipeptide)

or the two together (AA+Dipeptide): Linear regression (Linear), bayesian ridge, elastic net,

decision tree, support vector regression (SVR) and random forest. 5-fold cross-validation

was used for the calculation of R2 scores. For SVR, elastic net, decision tree and random

forest models, an additional 3-fold internal cross-validation were used to optimize the hy-

perparameters. The model with the highest R2 score was selected and trained, without

cross-validation, on the whole dataset. For the prediction of OGT for those un-annotated

organisms, dipeptide frequencies were normalized by xN,i = xi−ui
δi

, where xi is the values of

feature i. ui and δi, are mean and standard derivation of feature i in the training dataset,

respectively.

2.5 OGT Model validation

For validating the OGT prediction model we sampled 54 species with predicted growth

temperatures (for which no growth temperatures were available in the original dataset) at

random. Equal coverage over the temperature range 0-100°C was ensured by performing

the random sampling in 10 bins, each spanning a 10°C temperature range. The primary

scientific literature was then manually searched to obtain documented experimental growth

temperatures for the sampled organisms. For 45 organisms a documented growth temper-

ature could be found, for 9 organisms it could not. The accuracy of predicted OGT was
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assessed by computing the Pearson correlation with experimental OGT.

In a second approach to validating the OGT prediction model we used Python scripts and

the Zolera SOAP package (https://pypi.python.org/pypi/ZSI/) to extract all available

experimentally determined enzyme temperature optima from the BRENDA enzyme database

https://www.brenda-enzymes.org/ release 2018.2 (July 2018). Data coming from the same

enzyme was de-duplicated by averaging temperature optima from records with the same EC

number and originating from the same organism. For each organism with catalytic optima

for more than five enzymes the arithmetic mean of those optima were calculated. Those

organisms present in both the BRENDA enzyme data as well as the dataset with predicted

OGT were identified through cross-referencing species names. The accuracy of predicted

OGT was assessed by computing the Pearson correlation between predicted OGT and mean

catalytic optima of enzymes.

2.6 Machine learning workflow for Topt model

UniProt identifiers for proteins with an experimentally determined catalytic optimum were

obtained from the ”TEMPERATURE OPTIMUM” table in the web pages of the BRENDA

database, release 2018.2 (July 2018). These identifiers were filtered to retain only those

associated with an organism with experimentally determined OGT. After further filtering

to remove sequences containing ”X” (unknown amino acid), a dataset with 2,609 enzymes

was generated. The protein sequences for each of these identifiers were downloaded from the

UniProt database in fasta format.

The following features were extracted for each enzyme: (1) 20 amino acid frequencies

(AA); (2) 400 dipeptide frequencies (Dipeptide); (3) OGT of its source organism; (4) Basic

features including protein length, isoelectric point, molecular weight, aromaticity(45 ), insta-

bility index(46 ), gravy(47 ) and fraction of three secondary structure units: helix, turn and

sheet. These features were extracted with the module Bio.SeqUtils.ProtParam.ProteinAnalysis

in Biopython(48 ) (version 1.70). Additionally, siix binary features were extracted: EC=1,
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2, 3, 4, 5, 6. These numbers represent the first digit in a EC number. All features except

binary features were normalized as described in section ”Machine learning workflow for OGT

model”. The following five models were tested on the resulting dataset: bayesian ridge, elas-

tic net, decision tree, support vector regression (SVR) and random forest. The linear model

was not used due to its poor performance on any datasets containing dipeptide frequences

(negative R2 scores by cross-validation). The performance of the five regression models was

tested using the same cross-validation strategy as for OGT. In addition, to test the accuracy

of using OGT of the organism as an estimation of enzyme Topt, the R2 score between each

enzymes Topt and associated OGT was calculated. The model with the highest R2 score was

chosen and trained on the full training dataset.

2.7 BRENDA annotation

Protein sequence data for each EC class was obtained by downloading comma-separated

flatfiles from the BRENDA database version 2018.2 (July 2018). Each sequence in these files

contain information regarding source organism as well as unique UniProt identifiers. Where

possible, each protein sequence was associated with an OGT value by mapping the source or-

ganism name to the OGT dataset from https://doi.org/10.5281/zenodo.1175608. Those

sequences were firstly mapped to the existing Topt values in BRENDA by matching EC-

UniProt id pair. For those enzymes without any experimental Topt values, the amino acid fre-

quencies were calculated (ignore all ”X” in the sequence). All 20 amino acid frequencies as well

as the OGT variable were normalized by xN,i = xi−ui
δi

, where xi is the values of feature i. ui

and δi, are mean and standard derivation of feature i in the original training dataset, respec-

tively. Finally, the normalized values were used for the prediction of Topt by the previously

generated random forest regressor trained on the AA+OGT datasets. The predicted enzyme

Topt and annotated OGT values of these enzymes are freely available for download and re-use

(https://zenodo.org/record/2539114, https://doi.org/10.5281/zenodo.2539114).
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3 Results and discussion

3.1 Collection of optimal growth temperature and proteomes of

microorganisms

Protein amino acid composition is strongly correlated with OGT(30 , 32 ). For this reason

we decided to train machine learning models using the amino acid composition as features.

To build such a model we first established a training dataset. To this end, we downloaded

an OGT dataset (https://doi.org/10.5281/zenodo.1175608), which contains data for

21,498 microorganisms, including bacteria, archaea and eukarya(22 ). Using this dataset,

all proteins from 5,761 organisms from RefSeq (https://www.ncbi.nlm.nih.gov/refseq/)

and Ensembl genomes (http://ensemblgenomes.org/) could be associated with an OGT

value (we refer this as the annotated dataset), while proteins from an additional 1,803 organ-

isms could not be associated with an OGT value (we refer this as the unannotated dataset)

(Figure 1).

For each organism in both the annotated and unannotated dataset we calculated the

global amino acid monomer and dipeptide frequencies. However, some organisms in the

dataset contain only a small number of protein sequences, as a consequence the amino

acid composition obtained from those sequences may not represent the true amino acid

composition of the complete proteome. To address this problem we applied a filtering step.

As it was unclear how many protein sequences are required to obtain a stable amino acid

composition we designed three different metrics (see Methods for details) to test how much

protein sequence data was needed to obtain a stable amino acid composition. (Figure 1b).

For each organism in the annotated dataset the three metrics were calculated for every

protein sequence added in order to observe at which point the values stop fluctuating. Using

this analysis on amino acid monomer frequencies we found that at least 105 amino acids are

needed to get a stable amino acid composition (Figure 1c, d, e). Repeating this analysis for

amino acid dipeptides resulted in the same threshold (Figure S1).
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Figure 1: Variability in amino acid frequencies decrease log-linearly with proteome size. (a) Schematic overview of process
to build a machine learning model to predict OGT. Protein records from Ensembl genomes (bacteria and fungi) and RefSeq
(bacteria, archaea and fungi) were downloaded. Sequences were annotated with the growth temperature of the organism from
which they originate. Sequences from organisms that could not be annotated, i.e. for which there is no available information
about the OGT for the organism, were retained in a separate un-annotated dataset. Amino acid frequencies of the annotated
sequences were used to train a statistical model. This model was in turn used to predict growth temperatures for the un-
annotated dataset. OGT: optimal growth temperature. (b) The frequency of each amino acid was plotted against the number
of amino acids used to calculate the frequency. The final third part was fitted to a linear model to get the absolute slope
value (|ai|), as well as its frequency variance (σ2

i ) and varying range (R). The maximal |ai|, σ2
i and R of 20 amino acids of

each proteome (rabs,max, σ2
max and Rmax) give measures of whether frequencies were stable. The calculated (c) σ2

max, (d)
rabs,max and (e) Rmax of all species in the dataset were plotted against the number of amino acids in the proteome. The
dashed line indicates the cutoff for the selection of proteomes based on size. Effect of protein order on (f) σ2

max, (g) rabs,max

and (h) Rmax. 17 proteomes with different size were randomly selected. Proteins in each proteome were shuffled 100 times and
the three metrics for each shuffled proteome were calculated. (i) Distribution of proteome sizes in the annotated dataset after
filtering. (j) Distribution of growth temperatures in the annotated dataset after filtering. (k) Proportion of species belonging
to the three different taxonomic superkingdoms in the filtered dataset.
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A further concern was that the order in which proteins appear in the input files may

affect our cutoff analysis. For this reason, proteins from 17 organisms with different sizes of

available proteomes were randomly selected. For each of these organisms the order in which

protein sequences appear was shuffled and the three metrics were calculated. The shuffling,

with subsequent analysis, was repeated 100 times. As expected, the analysis shows a high

initial variability, where few sequences have been analyzed, but with increasing numbers of

averaged proteins the values stabilized and converged (Figure 1f, g, h). From this analysis

it is clear that the arrangement of proteins in a proteome has a negligible effect when the

proteome size is larger than 105, and we therefore only chose organisms with at least 105

amino acids in the dataset for further analysis. This approach resulted in a training dataset

with 5,532 organisms annotated with OGT, as well as a dataset with 1,438 un-annotated

organisms. The annotated training dataset comprises 4,974 bacteria, 222 archaea and 337

eukarya (Figure 1) and is much larger than those used in other approaches, such as 22

bacteria(30 ), 77 bacteria(33 ) or 204 prokaryotes(32 ). In the annotated dataset the number

of proteins in each organism follows a normal distribution centered around 3,000 (Figure 1i).

The OGT distribution is, however, highly skewed with the majority of organisms having an

OGT in the range 25-30°C and at 37°C (Figure 1j). The number of organisms in the data

set with an OGT higher than 40°C is 425 (340 for higher than 50°C.

3.2 OGT can be accurately predicted from amino acid composition

of the proteome

For each organism in the annotated dataset we calculated the global amino acid monomer

frequencies (20 features) as well as amino acid dipeptide frequencies (400 features). To

get the best feature set and statistical model for the prediction of OGT, we tested six

different regression models and compared their performance on the monomer dataset and the

dipeptide dataset. As shown in Figure 2a, a 5-fold cross-validation was applied to evaluate the

performance of different regression models. Using the 20 amino acid frequencies, non-linear
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models (SVR and Random forest) perform much better than linear models (Linear, Elastic

net, Bayesian ridge regression). The superior performance of non-linear models suggests that

there are important non-linear relationships between amino acid frequencies and OGT. In

contrast, all models except decision tree show an almost identical performance when using

dipeptide frequencies. Since models trained on each of the two datasets individually show

good performance we reasoned that models trained on the combined datasets may be even

better performing. However, contrary to this expectation the six models trained using both

monomer dataset and dipeptide dataset together do not show improvement (Figure 2a).

A final SVR model was trained on the whole dipeptide dataset, without cross-validation,

and stored for further use. This model can explain an astounding 95% (88% by cross-

validation) of the variance in OGT (Figure 2b). This model has significantly higher predic-

tive accuracy than other published models (Figure S2 and Figure S3. We propose that the

high predictive accuracy results from two features of our approach; the size and quality of

the training data used, and the use of non-linear regression models. As a direct consequence

of the increased size of the dataset, we could train models that are more general applicable.

We find that in general non-linear models outperform linear models when using amino acid

frequencies (Figure 2a). This suggests that the linear models used previously such as that

from Nakashima et al.(30 ) might be further improved by non-linear regression to correlate

the amino acid frequencies to OGT.

3.3 Validation of the SVR model for growth temperature prediction

Leveraging the final SVR model, the OGT of 1,438 organisms in the unannotated dataset

were predicted (Figure 1a). These OGT predictions were validated using two separate

approaches. First, we performed a manual literature search to find experimentally obtained

OGTs for a subset of the organisms (for which no experimental OGT was present in our

original dataset). We randomly sampled 54 of the organisms with predicted OGTs, in a

manner that ensured even spread across temperatures. For 45 of the 54 organisms, OGT
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values could indeed be found in published peer-reviewed articles (Table S1). The agreement

between the predicted OGT and the ones collected from literature is very high, with a Pearson

correlation coefficient of 0.96 (Figure 2c). Second, we seized on the fact that the average

temperature optimum of catalysis (Topt) of at least five enzymes from an organism shows

a Pearson correlation above 0.75 with growth temperature(22 ). Of the 1,438 organisms

with predicted OGT only 23 were found to have at least five enzymes with Topt available

in BRENDA. Plotting the arethmatic mean of these enzyme optima against the predicted

OGT for each organism reveals a strong correlation, with a Pearson’s correlation coefficient

of 0.77 (Figure 2d). Indeed, this correlation is the same as that obtained with experimentally

determined organism OGTs(22 ), again showing that the predicted OGTs are very accurate.

Figure 2: Model development for OGT prediction. (a) R2 score obtained by a 5-fold cross-validation for six different regression
models. Error bars represent the standard derivation of R2 scores. (b) Performance of the final SVR (support vector regression)
model trained on dipeptide data. The correlation between predicted organism growth temperatures and those present in the
original annotated dataset was evaluated. RMSE: root mean square error. Colors indicate the density of the points. (c)
Correlation between literature values for growth temperatures and predicted growth temperatures. Species for unannotated
dataset were sampled at random, but with ensuring equal coverage over the temperature range. Growth temperatures for these
organisms were obtained by manually searching the primary scientific literature. (d) Correlation between the mean enzyme
temperature optima and predicted growth temperatures for each species present in both datasets. Only organisms with optima
for at least five enzymes are shown. Error bars show the standard deviation. In (c and d) r denotes Pearson’s correlation
coefficient.

14

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 29, 2019. ; https://doi.org/10.1101/522342doi: bioRxiv preprint 

https://doi.org/10.1101/522342
http://creativecommons.org/licenses/by/4.0/


3.4 Improved estimation of enzyme temperature optima using ma-

chine learning

In biotechnology and protein engineering OGT is typically used directly to guide the discov-

ery of thermostable enzymes(3 , 21 ). We hypothesized that the accuracy of this estimation

could be improved by also considering enzyme sequence information in a machine learning

framework. A training dataset was generated by collecting 2,609 enzymes that: (1) have Topt

and protein sequence data in the BRENDA database, and (2) come from organisms with

an experimentally determined OGT (Figure 3a, b). We first tested the accuracy of directly

using OGT as an estimation of Topt and found that only 25% of the enzyme Topt variance

could be explained (Figure 3c, black bar). Then, to improve the accuracy of this estimation

using machine learning, we extracted three feature sets from the enzyme sequences, namely

amino acid frequencies, dipeptide frequencies and other basic protein properties like length,

isoelectric point etc. (See Methods). Six regression models were trained and tested on these

feature sets individually, as well as the two and three sets combined, with a 5-fold cross-

validation approach. As shown in Figure 3c, the best model (SVR) trained on amino acid

frequencies achieved a slightly improved accuracy compared to OGT, as quantified by an

R2 score of around 30%. Using dipeptide frequencies alone in combination with amino acid

frequencies did not further improve the accuracy.

Since OGT and sequence-derived features each produce estimates of similar accuracy

(25% and 30%, respectively) we tested whether their combined use could boost predictive

power. In line with our original hypothesis the best model (random forest) trained on

the combination of amino acid frequencies and OGT almost doubled the model predictive

accuracy to over 50%. Further inclusion of other basic enzyme properties (see Methods) did

not further improve the accuracy (Figure 3c).

To generate a final model for the prediction of enzyme temperature optima the random

forest model was re-trained – without cross-validation – using the full set of amino acid

frequencies and OGT data (Figure 3d). In this final model, OGT of the source organism
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is the most informative individual feature, whereas the 20 amino acid frequencies combined

contribute over half of the predictive power of the model (Figure 3e). This is a remarkable

result that demonstrates a clear importance of combining physiological parameters, such as

OGT, with sequence information in the estimation of protein properties. We speculate that

using larger training datasets and extracting more descriptive features (both from sequence

and physiological parameters) in conjunction with advanced machine learning models, like

deep learning(49 ), may further improve the prediction of enzyme Topt. The R2 score of 51%

obtained for Topt predictions in this study could be used as a benchmark accuracy for future

model development.

3.5 Annotating enzymes in BRENDA using OGT and predicted

Topt

Currently, a main resource for enzyme data is the BRENDA database(43 ). However, there

are approximately 12 million native protein sequences in BRENDA while there are only

about 33,000 Topt records, many of which are not connected to a protein sequence. We made

use of the Topt prediction model to provide Topt estimates for a majority of

First, experimentally determined OGTs(22 ) and the 1,438 OGTs predicted with the final

OGT SVR model (Figure 2b) were combined to generate a dataset containing the OGT of

22,936 microorganisms. Using this combined dataset 6,507,076 out of 12,115,011 enzymes

(54%) in BRENDA could be annotated with the OGT value of their source organism, of which

909,954 enzymes (14%) were contributed by the predicted OGT values. In a second step

our Topt random forest model (Figure 3c) was applied to the 6.5 million OGT annotations

combined with the amino acid frequencies of individual enzymes to estimate the Topt. The

resulting predictions dramatically added to the Topt values in BRENDA, increasing them

197-fold (Figure 4a) and covering 4,447 different EC numbers (Figure 4b). Moreover, the

temperature coverage, i.e. the minimal and maximal Topt for an enzyme class, of the vast

majority these EC numbers (3,721 of 4,447) were expanded (Figure 4b). The predicted
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Figure 3: Model development for prediction of enzyme temperature optima. (a) Schematic overview of process to build a Topt
prediction model. (b) The distribution of enzyme temperature optima in training dataset. (c) 5-fold cross-validation results for
five regression models on different feature sets. The Topt = OGT bar shows the explained variance when using OGT as the
estimation of enzyme Topt. Error bars shows the standard deviation of R2 scores obtained in 5-fold cross validation. AA, amino
acid frequencies; Dipeptide, dimer frequencies; OGT, optimal growth temperature of source organism; Basic, basic information
of proteins, like length, isoelectric point etc., see details in Methods section. (d) Performance of the final random forest model
trained on AA+OGT data. The correlation between predicted and experimental Topt was evaluated. RMSE: root mean square
error. Colors indicate the density of the points. (e) The feature importance in the final random forest model. Error bars
indicates the standard deviation of feature importances of 1,000 estimators.
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enzyme Topt and annotated OGT values of these enzymes are freely available for download

and re-use (https://zenodo.org/record/2539114, https://doi.org/10.5281/zenodo.

2539114).

As can be seen in Figure 4c, many of the predicted enzyme Topt values differ significantly

from the OGT of the source organism. For enzymes from organisms with OGT below 40°C

many have Topt higher than the OGT. In contrast, enzymes from thermophiles generally

have a lower Topt than the OGT. These results are in good agreement with previous find-

ings comparing experimental OGT of organisms with average enzyme Topt(22 ). For three

representative organisms we show that the distribution of predicted Topt values are indeed

consistent with experimental values (Figure S4). The predicted Topt values provided here

represent a rich resource for identifying enzymes suitable for bioprocess carried out at high

temperatures.

Figure 4: Prediction of enzyme temperature optima. (a) Visual representation of the number of the enzymes with experimental
Topt in BRENDA and the number of enzymes for which Topt was predicted leveraging experimental and predicted OGTs. Each
box represents 33,050 enzymes. There are 12,115,011 enzymes in total. Pred. is an abbreviation of predicted. (b) A visual
representation of the Topt temperature coverage for each EC number after annotation. The span between the highest and
lowest Topt for each enzyme is indicated. Experimental (BRENDA) and predicted Topt values are shown in different colors.
(c) Comparison between OGT of source organism and predicted and experimental Topt values of enzymes. Colors indicate the
density of the points.
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3.6 Tome: a command line tool for OGT prediction and identifica-

tion of enzyme homologues with different Topt

To ensure easy access to the OGT predictive model for the scientific community, as well

as the enzyme data annotated with OGT of their source organism and estimated Topt,

we developed the command line tool Tome (Temperature optima for microorganisms and

enzymes). This tool is simple to use and has two fundamental applications: (1) prediction

of OGT from a file containing protein sequences encoded by an organism’s genome; (2)

identification of functional homologues within a specified temperature range for an enzyme

of interest. For the prediction of OGT, a list of proteomes in fasta format(50 ) is provided

as input and the temperature predictions are returned as an output. While this tool will

perform predictions on any input given, we stress that the tool has been trained on bacteria,

archaea and a only small set of eukarya - mostly fungi and protists. Predictions on organisms

which do not fall into these categories may result in inaccurate results. For the identification

of enzyme functional homologs with different estimated Topt, one can either simply specify

an EC number and temperature range of interest to get all enzyme sequences from BRENDA

matching the criteria. Alternatively, the sequence of an enzyme of interest can be provided

in fasta format. The algorithm will then perform a protein BLAST(35 ) and an additional

output file will be generated containing only homologous enzymes (default e-value cutoff is

10-10) within the specified temperature range. Full instructions regarding installation and

usage of the Tome tool is available online (https://github.com/EngqvistLab/Tome).
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