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Abstract	

	

Metagenomes	can	be	analysed	using	different	approaches	and	tools.	One	of	the	most	

important	distinctions	is	the	way	to	perform	taxonomic	and	functional	assignment,	

choosing	between	the	usage	of	assemblies	or	the	direct	analysis	of	raw	sequence	reads	

instead.	Many	instances	of	each	approach	can	be	found	in	the	literature,	but	to	the	

best	of	our	knowledge	no	evaluation	of	their	different	performances	has	been	carried	

on,	and	we	question	if	their	results	are	comparable.	We	have	studied	this	point	by	

analysing	several	real	and	mock	metagenomes	using	different	methodologies	and	

tools,	and	comparing	the	resulting	taxonomic	and	functional	profiles.	Our	results	show	

that	database	completeness	is	the	main	factor	determining	the	performance	of	the	

methods	relying	on	direct	read	assignment	either	by	homology,	k-mer	composition	or	

similarity	to	marker	genes,	while	methods	relying	on	assembly	and	assignment	of	

predicted	genes	are	most	influenced	by	sequencing	depth,	that	in	turn	determines	the	

completeness	of	the	assembly.	Although	differences	exist,	taxonomic	profiles	are	

rather	similar	between	raw	read	assignment	and	assembly	assignment	methods,	while	

they	are	more	divergent	for	methods	based	on	k-mers	and	marker	genes.	Regarding	

functional	annotation,	analysis	of	raw	reads	retrieves	more	functions,	but	it	also	makes	

a	significant	number	of	over-predictions.	Assembly	methods	are	more	advantageous	as	

the	size	of	the	metagenome	grows	bigger.	
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Introduction	

	

Since	its	beginnings	in	the	early	2000s,	metagenomics	has	emerged	as	a	very	powerful	

way	to	assess	the	functional	and	taxonomic	composition	of	microbiomes.	The	

improvement	in	high-throughput	sequencing	technologies,	computational	power	and	

bioinformatics	methods	have	made	metagenomics	affordable	and	attainable,	

increasingly	becoming	a	routine	methodology	for	many	laboratories.	

	

A	metagenomics	experiment	consists	of	a	first	wet-lab	part,	where	DNA	from	samples	

is	extracted	and	sequenced,	and	a	second	in	silico	part,	where	bioinformatics	analysis	

of	the	sequences	is	carried	out.	There	is	not	a	golden	standard	for	performing	

metagenomic	experiments,	especially	regarding	the	bioinformatics	used	for	the	

analysis.	The	usual	goal	of	metagenomics	is	to	provide	functional	and	taxonomic	

profiles	of	the	microbiome,	that	is,	to	know	the	abundances	of	taxa	and	functions.	

	

Usually,	one	of	the	first	steps	in	the	analysis	involves	the	assembly	of	the	raw	

metagenomic	reads	after	quality	filtering.	The	objective	is	to	obtain	contigs,	where	

genes	can	be	predicted	and	then	annotated,	usually	by	means	of	comparisons	against	

reference	databases.	It	is	reasonable	to	think	that	the	taxonomic	and	functional	

identification	is	more	precise	having	the	full	gene	than	just	a	fragment	of	it.	Also,	

taxonomic	classification	benefits	of	having	contiguous	genes,	because	since	they	come	

from	the	same	genome,	unannotated	genes	can	be	ascribed	to	the	taxon	of	their	

neighbouring	genes.	Therefore,	the	assembly	can	facilitate	significantly	the	subsequent	

annotation	steps.	However,	de	novo	metagenomic	assembly	is	a	complex	task:	the	

performance	of	the	assembly	is	dependent	on	the	sequencing	depth	and	the	intrinsic	

complexity	of	the	microbiome	[1],	and	it	often	requires	large	computational	capacity	in	

terms	of	memory	usage,	although	recent	assemblers	have	reduced	very	much	this	

constraint.	Highly	diverse	microbiomes,	such	as	those	of	soils,	are	harder	to	assemble,	

likely	to	produce	more	misassembles,	and	will	produce	smaller	contigs.	In	addition,	a	

fraction	of	reads	will	remain	unassembled,	which	is	often	considered	as	“losing	

sequences”,	even	if	these	unassembled	reads	are	still	kept	and	can	be	recovered	and	

analysed	separately.	Also,	many	different	assemblers	are	available,	which	make	use	of	
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diverse	algorithms	and	heuristics,	and	hence	produce	different	results.	Finally,	the	

assessment	of	the	quality	of	these	assemblies	is	often	problematic,	and	sometimes	a	

high	degree	of	chimerism	can	be	present	[2].		

	

Because	of	these	problems,	some	authors	prefer	to	skip	the	assembly	step	and	

proceed	to	the	direct	functional/taxonomic	annotation	of	the	raw	reads,	especially	

when	the	aim	is	to	obtain	a	functional	or	taxonomic	profile	of	the	metagenome	[3–8].	

This	approach	provides	counts	for	the	abundance	of	taxa	and	functions	based	on	the	

similarity	of	the	raw	reads	to	corresponding	genes	in	the	database.	There	are	two	main	

drawbacks	of	working	with	raw	reads:	first,	since	it	is	based	on	homology	searches	for	

millions	of	sequences	against	huge	reference	databases,	it	usually	needs	large	CPU	

usage,	especially	taking	into	account	that	for	taxonomic	assignment	the	reference	

database	must	be	as	complete	as	possible	to	minimize	errors	[9];	and	second,	the	

sequences	are	often	too	short	to	produce	accurate	assignments	[10,	11].	

	

Other	methods	using	raw	reads	trust	the	similarity	of	oligonucleotide	composition	of	

sequences	from	the	same	genomes.	These	methods	count	k-mer	frequency	of	the	raw	

reads,	and	compare	it	to	a	model	trained	with	sequences	from	known	genomes.	For	

instance,	Kraken2	[12]	or	Centrifuge	[13]	use	this	k-mer	counting	approach.	These	

methods	can	be	used	only	for	taxonomic	assignment.	

	

Also	for	taxonomic	profiling,	other	methods	rely	on	the	identification	of	phylogenetic	

marker	genes	in	raw	reads	to	estimate	the	abundance	of	each	taxa	in	the	

metagenome,	for	instance	Metaphlan2	[14].	These	methods	must	be	considered	

profilers,	since	they	do	not	attempt	to	classify	as	many	reads	as	possible,	but	instead	

recognizing	the	identity	of	particular	marker	genes	to	infer	community	composition	

from	these.	

	

These	different	approaches	(assemblies,	raw	reads,	k-mer	composition	and	marker	

gene	profiling)	are	likely	to	produce	different	results.	But	we	have	scarce	information	

on	how	different	these	results	are,	and	whether	they	are	so	different	as	to	

compromise	the	subsequent	biological	interpretation	of	the	data.	This	is	a	relevant	
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point,	since	both	approaches	are	being	used	indistinctly	for	metagenomic	analyses	and	

their	results	could	not	be	comparable	if	the	differences	are	large.	

	

The	objective	of	the	present	analysis	is	to	estimate	the	differences	between	all	these	

approaches.	To	this	end,	we	classify	functionally	and	taxonomically	several	real	and	

mock	metagenomes	using	either	the	raw	reads	or	the	genes	derived	from	the	

assembly.	The	assemblies	are	done	using	the	Megahit	assembler	[15].	For	assignment	

of	raw	reads,	we	use	Diamond	a	high-performance	tool	for	homology	identification	

that	allow	very	fast	searches	[17].	For	phylogenetic	analysis,	we	also	use	Kraken2	as	a	

k-mer	classifier,	and	Metaphlan2	as	a	marker	gene	classifier.		

The	mock	communities	of	known	composition	can	help	us	to	evaluate	the	goodness	of	

the	results.	Even	if	mock	communities	are	rather	less	complex	than	real	ones,	they	are	

valuable	tools	for	having	a	framework	to	compare	the	annotations	done	by	different	

methods	to	the	real	expectations	

	

We	aim	to	illustrate	how	different	approaches	can	lead	to	diverse	results,	and	

therefore	different	interpretations	of	the	underlying	biological	reality.	We	hope	that	

this	can	help	in	the	informed	choice	of	the	most	adequate	method	according	to	the	

particular	characteristics	of	the	dataset.		

	

Methods	

	

Overview	of	the	procedure	

	

We	have	used	three	different	metagenomes:	1)	a	microbial	mat	metagenome	from	a	

hot	spring	in	Huinay	(Chile),	corresponding	to	a	sample	taken	at	48˚C,	and	sequenced	

using	Illumina	HiSeq	(82.7	M	reads,	9.8	G	bases,	accession	SRP104009)	[18]	2)	A	

marine	metagenome	corresponding	to	Malaspina	sampling	expedition,	taken	at	3	

meters	depth	in	the	Pacific	Ocean	[19],	also	sequenced	with	Illumina	HiSeq	(168.9	M	

reads,	16	G	bases).	3)	A	gut	metagenome	from	the	human	microbiome	project	[20],	

sequenced	with	the	Illumina	Genome	Analyzer	II	(68.1	M	reads,	6.4	G	bases,	accession	

SRS052697).	
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A	schematic	description	of	the	procedure	can	be	seen	in	Figure	1.	The	taxonomic	

classification	of	the	raw	reads	(from	now	on,	RR)	was	obtained	by	direct	homology	

searches	against	GenBank	NR	database	(release	223,	December	2017)	using	Diamond	

(v0.9.13.114)	with	a	maximum	e-value	threshold	of	1e-03	[17].	The	annotations	were	

done	using	a	last-common	ancestor	(LCA)	algorithm.	LCA	first	select	the	hits	having	at	

least	80%	of	the	bitscore	of	the	best	hit	and	overcoming	the	minimum	identity	

threshold	set	for	a	particular	taxonomic	rank	(85,	60,	55,	50,	46,	42	and	40%	for	

species,	genus,	family,	order,	class,	phylum	and	superkingdom	ranks,	respectively)[21].	

This	means	that	in	order	to	classify	a	sequence	at	the	phylum	taxonomic	rank,	for	

instance,	hits	for	that	sequence	must	be	at	last	42%	identical.	Then	it	looks	for	the	

common	taxon	for	all	hits	at	the	desired	taxonomic	rank	(although	some	flexibility	is	

allowed,	for	instance	admitting	one	outlier	if	the	number	of	hits	is	high).	In	case	that	a	

common	taxon	is	not	found,	the	read	is	unassigned.	For	the	functional	annotation	of	

the	raw	reads	(F_RR),	KEGG	[22]	was	used	as	the	reference	functional	classification,	

and	the	reads	were	annotated	using	the	best	hit	to	this	KEGG	database.	

	

The	set	of	reads	was	also	annotated	using	the	assembled	metagenome.	We	used	the	

SqueezeMeta	pipeline	[23]	for	this	task,	that	automatizes	all	steps	of	metagenomic	

analysis.	The	assembly	was	done	using	Megahit	(v1.1.2)[15],	followed	by	gene	

prediction	using	Prodigal	(v2.6.2)[24].	The	predicted	genes	were	searched	for	

homologies	against	GenBank	NR	and	KEGG	databases	using	Diamond,	and	processed	

with	the	LCA	algorithm,	as	above.	This	produces	taxonomic	and	functional	assignments	

for	the	genes	in	the	contigs.		

A	taxonomic	classification	for	the	whole	contig	can	be	obtained	from	the	consensus	of	

the	annotations	of	its	genes.	The	criteria	for	declaring	a	consensus	taxon	are:	50%	of	

the	genes	in	the	contig	must	belong	to	the	taxon,	and	80%	of	the	annotated	genes	

(some	genes	may	not	have	annotation).	Otherwise,	the	contig	is	left	unassigned.	This	

approach	has	the	advantage	of	allowing	the	annotation	of	many	additional	genes	

(those	in	the	contig	that	were	not	classified	directly,	including	orphans),	but	it	has	the	

drawback	of	dropping	the	original	annotations	for	the	genes	if	a	consensus	is	not	
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reached.	Notice	that	under	these	criteria,	short	contigs	comprising	just	one	gene	

receive	the	annotation	of	their	only	gene.	

	

For	taxonomically	classifying	the	reads,	these	were	mapped	against	the	contigs	using	

Bowtie2	(v2.2.6)	[25],	and	inherited	the	annotation	of	the	corresponding	gene	or	

contig.	Also,	we	investigated	a	combined	approach	merging	these	two	strategies,	in	

which	reads	are	annotated	by	contigs	first,	and	then	by	genes	if	contigs	did	not	provide	

an	annotation.	These	approaches	will	be	referred	as	annotation	by	assembly/genes	

(Ag),	assembly/contigs	(Ac),	and	assembly/combined	(Am).	For	functional	

classification,	only	mapping	against	genes	was	used	(F_Ag),	since	there	is	not	contig	

annotation	for	functions	(each	gene	has	a	different	function).		

	

We	also	used	two	other	approaches	widely	used	in	metagenomic	analysis	for	

taxonomic	assignment.	First,	assignment	by	means	of	k-mer	composition	using	

Kraken2	(KR)	[12].	Second,	the	clade-specific	gene	marker	searching	of	Metaphlan2	

(MP)	[14].	These	methods	are	not	suitable	for	functional	assignment.	

	

For	each	metagenome,	we	compiled	tables	with	the	taxonomic	or	functional	

assignment	of	each	of	the	reads	by	all	methods.	These	tables	were	used	to	calculate	

the	functional	and	taxonomic	profiles	that	were	used	in	the	comparison.	

	

For	assessing	the	performance	of	the	approaches,	we	used	mock	metagenomes	of	

different	sizes	(2K,	5K,	1M,	2M,	5M	reads)	built	with	genomes	of	species	significantly	

associated	to	each	of	the	three	environments	considered:	marine,	thermal	and	gut.	

We	calculated	the	associations	between	species	and	environments	as	in	[26].	We	

selected	sets	of	35	environment-	associated	species	with	complete	genomes	available	

(Supplementary	table	1),	and	calculated	their	abundance	ratios	following	a	

hypergeometric	distribution.	Knowing	these	ratios	and	the	total	number	of	reads,	we	

estimated	how	many	reads	of	each	species	must	be	taken	and	created	the	mock	

metagenome	by	simulating	the	sequencing	of	the	required	number	of	paired-end	

reads	from	these	genomes.	
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For	analysing	the	mock	metagenomes,	we	followed	the	same	approaches	above,	but	

we	removed	the	corresponding	genomes	in	the	NR	database	used	for	homology	

searching.	We	also	created	custom	databases	for	Kraken2	and	Metaphlan2	in	which	

we	also	removed	these	genomes.	
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Figure	1:	Schematic	description	of	the	procedure	followed	for	the	analysis.	Boxed	in	

blue,	taxonomic	annotations.	In	red,	functional	(KEGG)	annotations.	
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Results	
	
We	analyzed	three	different	metagenomes	coming	from	different	environments:	a	

thermal	microbial	mat	metagenome	from	a	hot	spring	in	Huinay	(Chile),	a	marine	

sample	from	the	Malaspina	expedition,	and	a	gut	metagenome	from	the	human	

microbiome	project	(thermal,	marine	and	gut	from	now	on).	We	used	different	

methods	to	taxonomically	assign	the	reads	from	these	metagenomes	(see	methods	for	

full	details):	1)	We	ran	a	homology	search	of	the	reads	against	the	GenBank	NR	

database,	followed	by	assignment	using	the	last	common	ancestor	(LCA)	of	the	hits.	

We	termed	this	approach	"assignment	to	raw	reads"	(RR).	2)	We	used	the	

SqueezeMeta	software	[23]	to	proceed	with	a	standard	metagenomic	analysis	

pipeline:	assembly	of	the	genomes	using	Megahit	[15];	prediction	of	genes	using	

Prodigal	[24];	Taxonomic	assignment	of	these	genes	by	homology	search	against	the	

GenBank	nr	database,	followed	by	LCA	assignment	as	above;	Taxonomic	assignment	of	

the	contig	to	the	consensus	taxon	of	its	constituent	genes;	mapping	of	the	reads	to	the	

contigs	using	Bowtie2;	and	annotation	of	the	reads	according	to	the	taxon	of	the	gene	

(assembly	by	genes,	Ag)	or	contig	(assembly	by	contigs,	Ac)	they	were	mapped	to.	We	

also	used	a	combined	approach	in	which	the	read	was	annotated	to	the	taxon	of	the	

contig	if	it	is	annotated,	and	to	the	taxon	of	the	gene	otherwise	(assembly	combined,	

Am).		3)	We	used	Kraken2,	a	k-mer	profiler	that	assigns	reads	to	the	most	likely	taxon	

by	compositional	similarity.	4)	We	used	Metaphlan2,	which	attempts	to	find	reads	

corresponding	to	clade-specific	genes	to	assign	the	corresponding	read	to	the	target	

clade.	

	

The	results	of	the	annotation	experiment	can	be	seen	in	Figure	2,	for	assignments	at	

phylum	rank.	The	results	at	family	taxonomic	rank	are	shown	in	Supplementary	Fig	1,	

and	show	similar	trends.			
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Figure	2:	Comparison	of	read	assignments	by	different	methods:	Ac,	Assembly	and	

mapping	reads	to	contigs.	Ag,	Same	but	mapping	reads	to	genes.	Am,	same	but	

mapping	genes	first	to	contigs,	then	to	genes.	RR,	raw	reads	assignment.	KR:	Kraken.	

MP:	Metaphlan2.	Left:	All	reads	considered.	Right:	Discounting	unclassified	reads.	

These	panels	also	show	the	number	of	obtained	phyla.	
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Assembly	methods	achieve	the	highest	number	of	classified	reads	in	the	three	

metagenomes.	We	anticipated	that	the	number	of	classified	reads	by	these	methods	

would	be	related	to	the	completeness	of	the	assembly,	that	is,	the	percentage	of	total	

reads	that	were	assembled.	This	will	be	ultimately	related	to	the	total	size	of	the	

metagenome	and	the	diversity	of	the	community.	The	ratio	of	mapped	reads	is	72%,	

93%,	and	94%	for	the	marine,	thermal	and	gut	samples,	respectively.	These	numbers	

set	the	maximum	percentage	of	reads	that	can	be	assigned	by	the	assembly	

approaches.	Accordingly,	the	most	complete	classification	is	achieved	for	the	gut	

sample,	allowing	the	assignment	of	73%	of	the	reads.	A	significant	reduction	is	

observed	for	the	thermal	sample	(65%	of	reads	assigned),	even	if	the	percentage	of	

mapped	reads	is	almost	the	same.	This	must	be	attributed	to	representation	biases	in	

the	database:	this	sample	belongs	to	a	much	less	studied	habitat,	and	therefore	close	

taxa	are	less	represented	in	the	database,	complicating	the	assignment.	Finally,	the	

marine	sample	is	the	most	difficult	to	annotate	by	assembly	(51%	of	the	reads),	

because	of	the	lower	percentage	of	mapped	reads.	

Logically,	the	percentage	of	assignment	is	higher	when	using	the	combination	of	

mapping	reads	to	genes	and	contigs	(Ac).	Using	the	contig	annotation	can	overcome	

unannotated	genes,	while	using	gene	annotations	are	not	affected	by	the	lack	of	

consensus	needed	for	contig	assignment.			

	

Annotation	of	the	raw	reads	(RR)	resulted	in	10-20%	less	classified	reads,	with	the	gut	

metagenome	being	the	best	annotated	(65%),	and	marine	and	thermal	having	similar	

percentages	(42-45%	annotated	reads).	Kraken2	classification	provides	less	

annotations,	as	much	as	25-30%	less	than	the	assembly.	Again,	the	gut	metagenome	is	

the	one	having	more	assignments,	benefiting	of	the	increased	completeness	of	the	

databases	in	gut-associated	taxa.	Finally,	Metaphlan2	is	able	to	classify	very	few	reads,	

which	is	expected	because	it	only	annotates	marker	(clade-specific)	genes.	

	

The	relative	taxonomic	composition	at	the	phylum	level	obtained	by	each	approach	

can	be	also	seen	in	Figure	2,	discounting	the	effect	of	the	unclassified	reads.	Ideally,	

we	should	expect	the	same	composition	for	all	methods	for	the	same	metagenome,	
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but	instead	we	see	that	they	diverge	substantially.	One	of	the	most	affected	phylum	is	

Cyanobacteria,	present	in	thermal	and	marine	samples.	Assembly	approaches	report	

lower	quantities	for	this	taxon	than	RR	and	especially	Kraken2,	which	greatly	increases	

its	proportion	in	the	two	datasets	to	unrealistic	values,	particularly	in	the	case	of	the	

marine	sample.	The	gene	marker	approach	of	MetaPhlan2	predicts	less	Cyanobacteria	

than	the	rest	in	the	marine	sample,	but	much	more	than	the	others	in	the	thermal	

sample.	The	rest	of	the	taxa	are	affected	in	different	ways.	Rare	taxa	such	as	

Armatimonadetes	in	the	thermal	sample	are	obtained	in	greater	abundance	by	the	

assembly	approaches,	and	ignored	by	Kraken2	and	Methaphlan2,	probably	because	of	

the	absence	of	complete	genomes	belonging	to	this	phylum.	This	is	an	example	of	how	

the	gaps	in	the	representation	of	taxa	in	the	set	of	available	complete	genomes	can	

hamper	the	annotations	of	methods	based	on	them	[9,	27].	

While	the	inferred	composition	of	the	gut	metagenome	is	roughly	the	same	for	all	

approaches,	the	marine	and	thermal	metagenomes	vary	slightly	between	raw	reads	

and	assembly,	and	greatly	for	Kraken2	and	Metaphlan2.	The	thermal	metagenome	

shows	big	variations	that	affect	for	instance	the	determination	of	the	most	abundant	

taxon	in	the	sample	(Chloroflexi	by	assembly,	Proteobacteria	by	raw	reads,	and	

Cyanobacteria	by	Kraken2	and	Metaphlan2).	Therefore,	the	choice	of	the	method	can	

influence	greatly	the	ecological	inferences	obtained	from	the	analysis.	

	

Next,	we	compared	the	discrepancies	between	the	assignments	done	by	different	

methods,	by	counting	the	cases	in	which	the	annotations	were	different	at	the	phylum	

level	(not	annotated	reads	were	not	considered).	The	results	can	be	seen	in	figure	3.	

Consistently	with	the	previous	results,	the	thermal	dataset	is	the	one	having	more	

differences.	The	differences	between	the	assembly	methods	are	rather	low,	less	than	

1%	of	the	annotated	reads	for	the	thermal	metagenome,	and	almost	non-existent	for	

the	other	samples.	Between	RR	and	assembly	methods,	the	differences	are	also	rather	

low	(less	than	3%	of	the	reads	in	the	thermal	dataset,	less	than	1%	in	the	others).	On	

the	contrary,	the	differences	were	much	bigger	between	Kraken2	and	the	rest:	more	

than	8%	for	the	thermal	dataset,	more	than	4%	for	the	marine,	and	almost	4%	for	the	

gut.	This	indicates	again	that	the	Kraken2	assignment	is	more	dissimilar	than	the	rest.		
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Figure	3:	Percentage	of	discordant	assignments	between	the	different	methods.	Only	

reads	that	were	classified	by	both	compared	methods	are	considered	(i.e.	unclassified	

reads	by	either	method	are	excluded).	A:	Assignment	by	Megahit	assembly	mapping	

to:	(g:	genes;	c:	contigs;	m:	combination	of	contigs	and	genes).	RR:	Assignment	by	raw	

reads;	KR:	Kraken2;	MP:	Metaphlan2	

	

Then	we	studied	the	distribution	of	functions	by	the	assignment	of	reads	to	KEGG	

functions	with	the	Ag	(F_Ag)	and	RR	(F_RR)	approaches.	Kraken2	and	Metaphlan2	

were	skipped	since	they	do	not	provide	functional	annotation,	and	Ac	and	Am	because	

there	is	not	contig	annotation	for	functions	(each	gene	has	a	different	function).		

F_Ag	is	again	able	to	classify	more	reads	than	the	F_RR	in	all	metagenomes,	even	if	the	

difference	is	small	(Figure	4	top).	In	contrast,	F_RR	assignment	is	able	to	detect	a	much	

higher	number	of	KEGGs	in	all	cases	(Figure	4	bottom).	These	correspond	to	low-

abundance	functions.	The	percentage	of	functions	represented	by	less	than	10	reads	in	

F_RR	is	20%,	15%	and	23%	for	marine,	thermal	and	gut	metagenomes,	respectively.	

These	could	correspond	to	low-coverage	parts	of	the	metagenome	that	were	not	

assembled.	
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Figure	4:	Top,	percentage	of	reads	classified	in	KEGG	functions,	by	raw	reads	and	

assembly	approaches,	in	the	three	metagenomes.	Bottom,	number	of	KEGG	functions.	

	

	

Figure	5	(left)	shows	the	distribution	of	abundances	of	each	KEGG	function	as	rank-

abundance	curves.	Distributions	for	F_Ag	and	F_RR	are	almost	indistinguishable,	

except	for	the	higher	number	of	KEGG	IDs	detected	by	raw	reads,	and	the	slightly	

higher	abundance	for	all	functions	using	the	assembly,	because	of	the	higher	number	

of	reads	assigned	by	this	method.	A	comparison	of	the	abundance	of	KEGG	functions	

can	be	seen	in	figure	5	(right),	where	the	good	fitting	indicates	that	there	are	not	big	

differences	between	the	functional	assignments	by	both	methods.		
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Fig	5:	Comparison	of	functional	assignments	for	all	metagenomes.	Left:	

Rank/abundance	curves	for	the	distribution	of	KEGG	functions	the	three	

metagenomes,	classifying	either	by	raw	reads	(F_RR)	or	by	assembly	and	mapping	to	

genes	(F_Ag).	Right:	Scatter	plots	showing	the	abundance	percentages	for	each	KEGG	

function	for	both	approaches.	
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Mock	communities	

	

To	better	estimate	the	performances	of	each	method	of	assignments,	we	created	

mock	communities	simulating	microbiomes	of	marine,	thermal,	and	gut	environments.	

We	selected	35	complete	genomes	from	species	known	to	be	associated	to	these	

environments,	according	to	[26],	and	created	mock	metagenomes	by	selecting	1	

million	(1M)	reads	from	them,	in	variable	proportions.	The	composition	of	these	mock	

metagenomes	can	be	found	in	Supplementary	File	1.	We	analysed	these	metagenomes	

using	the	same	methods	than	for	real	metagenomes.	The	results	for	the	phylum	rank	

can	be	seen	in	figure	6,	and	for	the	family	rank	in	supplementary		figure	2.	
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Figure	6:	Taxonomic	assignments	for	the	mock	communities.	Left	panels	show	the	

results	for	all	the	reads,	right	panels	show	the	results	removing	unclassified	reads	and	

scaling	to	100%.	Real:	Real	composition	of	the	mock	community.	Ac,	Assembly	and	

mapping	reads	to	contigs.	Ag,	Same	but	mapping	reads	to	genes.	Am,	same	but	

mapping	genes	first	to	contigs,	then	to	genes.	RR,	raw	reads	assignment.	KR:	Kraken2.	

MP:	Metaphlan2.	Numbers	above	the	bars	in	the	right	panels	correspond	to	the	Bray-
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Curtis	distance	to	the	composition	of	the	original	microbiome,	and	the	number	of	taxa	

(phyla)	recovered	by	each	method,	with	the	real	number	of	taxa	present	in	the	mock	

metagenome	indicated	in	the	"Real"	column.	

	

The	methods	classifying	more	reads	is	RR	for	marine,	Am	for	thermal,	and	Kraken2	for	

gut.	As	expected,	the	assembly	approaches	work	better	when	the	assemblies	are	more	

complete	(The	percentage	of	mapped	reads	in	the	assemblies	is	75%,	84%	and	81%	for	

marine,	thermal	and	gut,	respectively),	while	Kraken2	seems	to	be	especially	suited	to	

classify	gut	metagenomes,	but	misses	many	reads	for	metagenomes	from	other	

environments.	RR	also	classifies	more	reads	for	gut	metagenomes,	indicating	that	

database	completion,	which	is	higher	for	gut	genomes,	is	an	important	factor.	When	

removing	the	unclassified	reads,	the	resulting	composition	is	variable	between	

approaches.	We	measured	the	Bray-Curtis	distance	to	the	real	composition	of	the	

mock	metagenome	to	evaluate	the	closeness	of	the	observed	results	to	the	expected	

ones.	The	results	are	rather	close	to	the	original	composition	for	the	assembly	

approaches	and	RR,	with	best	results	for	the	gut	metagenome.	Kraken2	performs	well	

for	the	marine	and	gut	metagenomes,	even	if	it	misses	entire	phyla	in	some	instances	

(for	example,	Nitrospinae	in	the	thermal	metagenome).	Metaphlan2	provides	the	

more	distant	profile	in	all	cases,	also	missing	some	phyla	entirely.	

We	also	inspected	the	number	of	reported	phyla	by	each	method.	Excess	of	phyla	will	

be	produced	by	incorrect	assignments.	Metaphlan2	is	the	only	method	that	reports	

the	exact	number	of	phyla	in	all	the	mock	microbiomes.	The	assembly	approaches	

provide	a	few	phyla	more.	RR	and	Kraken2	report	a	higher	number	of	superfluous	taxa.	

Especially	RR	produces	a	very	inflated	number	(more	than	ten	times	higher	for	the	

thermal	mock	microbiome).	The	used	version	of	Kraken2	provided	a	maximum	of	42	

phyla	for	training,	therefore	this	is	the	maximum	number	of	phyla	that	can	be	

obtained.	In	all	cases	the	number	is	close	to	this	top.		

	

We	next	measured	the	error	by	inspecting	the	accuracy	of	the	annotation	of	the	

individual	reads	(figure	7).	All	methods	perform	well	for	the	gut	metagenome,	with	less	

that	1%	error	at	the	phylum	rank,	and	also	at	the	family	rank	(except	for	Kraken2).	

Nevertheless,	substantial	differences	appear	for	the	other	two	environments,	where	
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errors	increase	significantly.	At	phylum	rank,	the	most	mistakes	are	done	for	the	

thermal	metagenome,	while	at	family	rank,	the	marine	metagenome	is	the	most	

challenging.	This	is	unrelated	to	the	number	of	taxa	in	both	metagenomes,	as	the	

thermal	one	has	more	phyla	and	families.	According	to	that	criterion,	the	most	precise	

method	is	Metaphlan2,	that	makes	no	errors,	although	we	must	consider	the	low	

number	of	reads	that	can	be	used	for	classification	with	this	method.	Since	it	also	

provides	a	skewed	composition,	we	can	conclude	that	this	method	performs	

differently	for	the	diverse	taxa.	The	assembly	methods	have	less	that	1%	error	in	all	

cases,	and	annotation	by	contigs	is	more	accurate	than	by	genes,	evidencing	the	

advantage	of	having	contextual	information	of	the	rest	of	the	genes.	RR	annotation	

increases	significantly	the	error	rate	of	the	assemblies,	reaching	4%	for	the	thermal	

metagenome	at	the	family	level.	Kraken2	is	the	method	making	more	errors,	more	

than	4%	for	thermal	and	marine	metagenomes	at	the	phylum	level,	and	reaching	more	

than	10%	for	the	marine	metagenome	at	the	family	level.	This	is	also	reflected	in	the	

high	amount	of	"Other	taxa"	classifications	for	Kraken2	in	the	figure	6.	

	

	

	
	

Figure	7:	Percentage	of	incorrectly	assigned	reads,	where	the	assignment	is	discordant	

with	the	known	origin	of	the	read.	Left	panel,	phylum	taxonomic	rank.	Right	panel,	

family	taxonomic	rank.	Ac,	Megahit	assembly	and	mapping	reads	to	contigs.	Ag,	Same	

but	mapping	reads	to	genes.	Am,	same	but	mapping	genes	first	to	contigs,	then	to	

genes.	RR,	raw	reads	assignment.	KR:	Kraken.	MP:	Metaphlan2	
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We	were	aware	that	our	results	could	be	dependent	on	metagenomic	size,	especially	

those	related	to	the	assemblies	for	which	the	number	of	sequences	is	a	critical	factor.	

Therefore,	we	did	additional	tests	to	evaluate	the	performance	of	each	method	

regarding	the	size	of	the	metagenome.	Our	hypothesis	was	that	methods	that	classify	

reads	independently	(RR,	Kraken2	and	Metaphlan2)	would	not	be	influenced,	while	the	

annotation	by	assembly	could	be	seriously	impacted.	We	created	several	mock	

metagenomes	of	different	sizes	for	marine,	thermal	and	gut	environments,	extracting	

reads	from	genomes	strongly	associated	with	these	environments	[26].	We	created	

mock	metagenomes	for	2K,	5K,	1M,	2M	and	5M	paired	sequences,	all	with	the	same	

composition	of	species	(Supplementary	table	1).	We	annotated	these	datasets	using	

the	different	methods,	and	calculated	the	Bray-Curtis	distance	between	the	resulting	

distribution	of	taxa	and	the	real	one.	The	results	can	be	seen	in	figure	8	for	the	phylum	

rank,	and	in	Supplementary	figure	3	for	the	family	rank.	

As	we	expected,	RR,	Kraken2	and	Metaphlan2	are	not	affected	by	the	size	of	the	

metagenomic	sample.	Metaphlan2	is	the	method	diverging	more	from	the	actual	

composition,	except	for	the	thermal	mock	community	at	family	rank,	where	Kraken2	is	

the	farthest.	Of	these	three	methods	directly	assigning	reads,	RR	is	clearly	the	most	

accurate.	Again,	these	methods	perform	much	better	for	the	gut	mock	metagenome	

than	for	the	rest.		

The	assembly	methods	are	highly	dependent	of	the	amount	of	reads	that	can	be	

assembled.	For	very	small	samples,	where	less	than	50%	of	the	reads	in	the	assembly,	

it	provides	much	more	divergent	classifications	than	other	methods.	When	the	

percentage	of	assembled	reads	is	in	the	range	of	80-90%,	they	obtain	similar	results	

than	RR.	When	the	percentage	of	assembled	reads	is	higher	than	that,	annotation	by	

assembly	outperforms	the	other	methods.	This	indicates	that	the	coverage	of	the	

metagenome,	which	is	directly	related	to	the	percentage	of	assembled	reads,	can	be	

seen	as	the	factor	determining	if	it	is	more	advantageous	using	RR	or	assembly	

methods	for	analysing	metagenomes.	
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Figure	8:	Bray-Curtis	distance	to	the	real	composition	of	the	marine	mock	community,	

for	several	sample	sizes,	at	phylum	rank.	Ac,	Megahit	assembly	and	mapping	reads	to	

contigs.	Ag,	Same	but	mapping	reads	to	genes.	Am,	same	but	mapping	genes	first	to	

contigs,	then	to	genes.	RR,	raw	reads	assignment.	KR:	Kraken2.	MP:	Metaphlan2.	
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We	also	analysed	the	functional	assignment	of	these	mock	metagenomes.	We	used	

the	assignment	by	homology	of	full	genes	to	KEGG	functions	as	a	reference,	and	

classified	the	reads	using	the	Assembly	(F_Ag)	and	Raw	Read	(F_RR)	annotation,	as	

above.	The	results	can	be	seen	in	the	figure	9	
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Figure	9:	Percentage	of	reads	classified	to	KEGG	functions	(bars)	and	number	of	KEGG	

functions	(lines)	provided	by	the	different	functional	assignment	methods,	for	the	

different	sizes	of	the	mock	metagenomes.	The	data	labelled	as	"mock"	correspond	to	

the	annotations	of	the	reads	based	on	the	original	annotations	of	the	genomes.	The	
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data	corresponding	to	"pangenome"	correspond	to	the	total	number	of	functions	in	all	

the	genomes	used	to	build	the	mock	communities.		

	

The	percentage	of	reads	that	can	be	classified	is	around	60%	for	all	metagenomes.	The	

rest	correspond	to	reads	from	genes	with	no	known	function	or	with	no	KEGG	

associated.	RR	classification	is	around	50%	in	all	cases.	It	does	not	vary	with	

metagenomic	size	because	for	each	size	the	reads	are	extracted	from	the	same	

background	distribution	of	functions	and	they	are	annotated	independently.	F_Ag	

functional	assignment,	in	turn,	varies	with	size	since	it	depends	on	the	completion	of	

the	assembly,	as	stated	above.	We	can	see	that	for	the	biggest	sizes,	the	percentage	of	

assignments	is	larger	for	F_Ag	than	for	F_RR.	Therefore,	F_RR	is	advantageous	for	

small	metagenomes,	while	assembly	excels	at	bigger	sizes.	In	this	case	there	is	no	

evident	differences	regarding	the	diverse	environments.		

Concerning	the	number	of	functions	detected,	we	can	see	how	the	number	is	variable,	

reflecting	the	fact	that	rare	functions	are	easily	detected	when	metagenomes	are	

bigger,	but	this	number	tends	to	stabilize,	ultimately	reflecting	the	total	number	of	

functions	in	the	pangenome.	It	can	be	seen	how	the	F_RR	approach	is	over-predicting	

the	number	of	functions,	exceeding	these	actually	present	in	both	the	metagenome	

and	the	pangenome,	thus	producing	false	positives.	Even	worse,	the	number	of	

predicted	functions	increases	linearly	and	shows	no	saturation,	in	contrast	to	the	real	

number	of	functions.	On	the	other	hand,	F_Ag	produces	a	very	low	number	of	

functions	when	the	metagenomes	are	small,	but	it	quickly	increases	to	numbers	close	

to	the	real	ones	for	bigger	sizes.		

We	also	quantified	the	number	of	wrong	annotations	by	comparing	the	annotation	of	

reads	by	each	method	with	regard	to	the	real	one.	The	results	can	be	seen	in	figure	10.		
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Figure	10.	Percentage	of	incorrect	assignments	for	F_Ag	and	F_RR	in	each	of	the	mock	

metagenomes.	A	read	is	incorrectly	annotated	when	the	provided	function	is	different	

than	the	one	from	the	original	gene	in	the	genome.	

	

F_RR	assignments	are	always	more	error-prone.	As	for	the	taxonomic	analysis,	the	

thermal	metagenome	is	the	most	difficult	to	annotate,	and	the	gut	one	the	easiest.	

The	percentage	of	errors	does	not	vary	with	sizes,	and	it	is	above	4%	in	the	thermal	

metagenome.	Apparently,	metagenomes	from	this	environment	are	more	difficult	to	

classify,	in	accordance	with	the	previous	results	for	true	metagenomes.	The	F_Ag	

annotations	are	more	precise,	not	exceeding	the	threshold	of	3%	errors.	The	influence	

of	sizes	can	be	noticed	also	here,	with	usually	fewer	errors	in	the	bigger	metagenomic	

sizes,	but	it	is	not	so	evident.	For	instance,	the	gut	example	shows	a	very	stable	error	

rate	around	1.8%,	irrespectively	of	the	metagenomic	size.	

	

	

Discussion	

	

Different	approaches	can	be	used	for	the	taxonomic	and	functional	annotation	of	

metagenomes.	Working	with	raw	reads,	its	annotation	can	be	done	using	homology,	k-

mer	composition	or	gene	marker	searches.	But	we	also	can	assemble	the	reads	and	
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use	the	assembly	as	a	framework	for	the	annotation,	since	this	will	provide	longer	

fragments	of	genes	(or	complete	ones)	and	contextual	information.	There	is	not	a	

standard	way	of	proceed,	and	examples	of	each	approach	can	be	found	in	the	

literature.	However,	it	is	unclear	how	the	diverse	approaches	can	influence	the	

accuracy	and	reproducibility	of	the	results.	We	wanted	to	explore	the	characteristics	of	

each	method	to,	if	possible,	provide	hints	helping	the	choice	of	the	most	appropriate	

method.	

	

Assembly	and	especially	the	assignment	of	raw	reads	are	demanding	methods	in	time	

and	computational	resources.	In	contrast,	Kraken2	and	Metaphlan2	are	very	fast	

methods	that	can	be	very	useful	to	obtain	a	quick	view	of	the	diversity	of	the	

metagenomes.	Nevertheless,	the	analysis	of	mock	metagenomes	shows	that	these	

methods	are	less	accurate,	especially	for	non-human-associated	environments.	They	

are	rather	sensitive	to	the	composition	of	the	databases,	and	their	performance	

decreases	when	rare	or	less	species	are	present	in	the	metagenome.	This	latter	

drawback	also	holds	true	for	the	assignment	of	raw	reads	by	homology.		

	

While	for	the	methods	above	database	completeness	is	the	main	factor	determining	

their	performance,	for	the	assembly	approaches	the	critical	issue	is	sequencing	depth,	

that	in	turn	influences	the	completeness	of	the	assembly.	When	the	assemblies	are	

complete	enough	to	recruit	85%	or	more	of	the	original	reads,	assembly	approaches	

are	more	advantageous	in	terms	to	percentage	of	reads	classified,	smaller	number	of	

errors	and	importantly,	similarity	to	the	real	scenario.	When	sequencing	depth	is	

reduced	because	of	both	a	high	microbial	diversity	and	a	small	number	of	reads,	the	

assignment	of	raw	reads	could	be	preferred.	Assembly	approaches	seem	to	be	less	

influenced	than	others	by	database	completeness	because	having	longer	sequences	

(full	genes	instead	of	short	reads)	is	advantageous	when	only	distant	homologies	can	

be	found,	and,	for	taxonomic	annotation,	having	the	contextual	information	of	the	

contigs	helps	to	infer	annotations	for	all	genes	on	it.	Nevertheless,	they	are	also	

affected	to	some	extent	by	database	composition.		
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Therefore,	when	dealing	with	small	metagenomes	from	well-studied	ecosystems,	such	

as	these	human-associated,	the	usage	of	raw	read	assignment	can	be	advantageous	

for	taxonomic	assignments.	Otherwise	assembly	approaches	should	be	preferred.	This	

is	especially	true	if	we	want	to	obtain	bins,	where	co-assembly	of	metagenomes	is	

mandatory.	We	did	not	consider	the	effect	of	co-assemblying	in	the	annotation,	but	

since	it	helps	to	obtain	more	and	longer	contigs	and	therefore	to	map	more	reads	to	

the	assembly,	it	is	expected	to	improve	the	annotations	even	more.	It	would	be	also	

possible	to	follow	a	combined	approach	in	which	assembly	is	done	and	used	as	a	

reference,	and	then	the	remaining	unmapped	reads	are	classified	independently.		

	

As	for	functions,	the	KEGG	assignments	for	the	real	metagenomes	show	a	high	degree	

of	correlation	between	assembly	and	raw	read	annotation.	It	is	generally	harder	to	

annotate	the	functions	than	the	taxonomic	origin,	because	short	reads	are	often	not	

discriminative	enough	to	distinguish	between	functions.	Read	mapping	to	promiscuous	

domains	that	can	participate	in	different	proteins	or	to	conserved	regions	between	

genes	difficults	its	accurate	assignment.	Consequently,	assembly	annotation	provides	a	

higher	percentage	of	functional	classification.	On	the	other	hand,	functions	

represented	by	a	few	reads	will	be	probably	missed	by	the	assembly	approaches.	

Because	of	this,	raw	read	assignment	provide	a	higher	number	of	functions	than	the	

assembly.	Given	these	advantages	and	disadvantages	of	each	method,	if	one	is	

interested	in	looking	for	particular,	specific	functions,	a	combination	of	both	

approaches	is	advisable.	

	

Availability	of	data	and	materials	
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Suppl	Fig	1:	Comparison	of	read	assignments	by	different	methods,	at	the	family	rank:	
Ac,	Megahit	assembly	and	mapping	reads	to	contigs.	Ag,	Same	but	mapping	reads	to	
genes.	Am,	same	but	mapping	genes	first	to	contigs,	then	to	genes.	RR,	raw	reads	
assignment.	KR:	Kraken.	MP:	Metaphlan2.	Left:	All	reads	considered.	Right:	
Discounting	unclassified	reads	
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Suppl	Fig	2:	Taxonomic	assignments	for	the	mock	communities.	Left	panels	show	the	
results	for	all	the	reads,	right	panel,	the	results	removing	unclassified	reads	and	scaling	
to	100%.	Real:	Real	composition	of	the	mock	community.	Ac,	Megahit	assembly	and	
mapping	reads	to	contigs.	Ag,	Same	but	mapping	reads	to	genes.	Am,	same	but	
mapping	genes	first	to	contigs,	then	to	genes.	RR,	raw	reads	assignment.	KR:	Kraken.	
MP:	Metaphlan2.	Numbers	above	the	bars	in	the	right	panels	correspond	to	the	Bray-
Curtis	distance	to	the	composition	of	the	original	microbiome.	
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Suppl	figure	3:	Bray-Curtis	distance	to	the	real	composition	of	the	marine	mock	
community,	for	several	sample	sizes,	at	family	rank.	Ac,	Megahit	assembly	and	
mapping	reads	to	contigs.	Ag,	Same	but	mapping	reads	to	genes.	Am,	same	but	
mapping	genes	first	to	contigs,	then	to	genes.	RR,	raw	reads	assignment.	KR:	Kraken2.	
MP:	Metaphlan2.	
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