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ABSTRACT 1 
Microbial interactions are major drivers of microbial community dynamics and functions. However, 2 
microbial interactions are challenging to decipher due to limitations in parallel culturing of sub-3 
communities across many environments and accurate absolute abundance quantification of 4 
constituent members of the consortium. To this end, we developed Microbial Interaction Network 5 
Inference in microdroplets (MINI-Drop), a high-throughput method to rapidly infer microbial 6 
interactions in microbial consortia in microfluidic droplets. Fluorescence microscopy coupled to 7 
automated computational droplet and cell detection was used to rapidly determine the absolute 8 
abundance of each strain in hundreds to thousands of droplets per experiment. We show that 9 
MINI-Drop can accurately infer pairwise as well as higher-order interactions using a microbial 10 
interaction toolbox of defined microbial interactions mediated by distinct molecular mechanisms. 11 
MINI-Drop was used to investigate how the molecular composition of the environment alters the 12 
interaction network of a three-member consortium. To provide insight into the variation in 13 
community states across droplets, we developed a probabilistic model of cell growth modified by 14 
microbial interactions. In sum, we demonstrate a robust and generalizable method to probe 15 
cellular interaction networks by random encapsulation of sub-communities into microfluidic 16 
droplets.  17 

INTRODUCTION 18 
Microbial communities have a tremendous impact on diverse environments ranging from the 19 
human body to the plant rhizosphere (Berendsen et al., 2012; Clemente et al., 2012). Microbe-20 
microbe and environment-microbe interactions are major determinants of microbial communities 21 
and microbiomes (Cao et al., 2018; Venturelli et al., 2016). Deciphering interaction networks in 22 
high-dimensional microbial communities is challenging due to the need to rapidly and accurately 23 
determine the absolute abundance of each community member across many sub-communities 24 
and environments (Cao et al., 2017; Harcombe et al., 2016).  25 

The population sizes of microbial consortia can range from less than ten cells in mixed 26 
species biofilm aggregates to 1011 cells mL-1 in the human colon (Connell et al., 2014; Sender et 27 
al., 2016; Stoodley et al., 2001). Cellular growth history, the temporal order of strain colonization 28 
or the initial phase of microbial competition can impact community assembly (von Bronk et al., 29 
2017; Kong et al., 2018; Vega and Gore, 2017; Venturelli et al., 2018; Zhou et al., 2013). Our 30 
understanding of microbial consortia in small populations is limited due to technical challenges in 31 
the manipulation and analysis of small populations of cells (Connell et al., 2014). Therefore, high-32 
throughput methods that can rapidly resolve microbial interaction networks across different initial 33 
community states, population sizes and environments would enable a better understanding of the 34 
key parameters shaping the structure and function of microbial communities and how to harness 35 
these systems for diverse biotechnological applications.  36 
 Microbial interaction network inference requires accurate measurements of the absolute 37 
abundance of each member of the community (Fisher and Mehta, 2014). Recent experimental 38 
efforts have used models trained on measurements of 1-3 member communities to predict 39 
community composition or function of up to 12 members to varying degrees of accuracy 40 
(Friedman et al., 2017; Guo and Boedicker, 2016; Kong et al., 2018; Mounier et al., 2008; 41 
Venturelli et al., 2018). Absolute abundance quantification of each member of a microbial 42 
community has ranged from low-throughput selective plating to count colony forming units (tens 43 
of samples per experiment) (Mounier et al., 2008) to optical density multiplied by relative 44 
abundance based on next-generation sequencing of samples generated through robotic high-45 
throughput culturing (hundreds of samples per experiment) (Venturelli et al., 2018).  46 
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 Encapsulation of microbial communities into microdroplets has been used to study 47 
ecological and evolutionary processes of microbial communities (Bachmann et al., 2013; Park et 48 
al., 2011). Water-in-oil droplets can be generated at kilohertz (kHz) rates using microfluidics, 49 
wherein cells from a mixed culture are randomly encapsulated into droplets yielding diverse sub-50 
communities that can be studied in parallel (millions of samples per experiment). Each droplet is 51 
a miniaturized compartment that can be used to study interactions between community members 52 
in small populations. Microfluidic technologies enable the generation of well-controlled droplet 53 
environments of ~1% size variation (Guo et al., 2012). However, previous studies have not fully 54 
leveraged the capabilities of this technology to quantitatively investigate microbial communities. 55 
Further, we lack a systematic method to rapidly infer microbial interactions using droplet 56 
microfluidics in different environmental contexts. 57 
 To address this challenge, we developed Microbial Interaction Network Inference in 58 
Droplets (MINI-Drop). To determine the absolute abundance of each strain across hundreds to 59 
thousands of samples, we developed an automated computational method coupled to 60 
fluorescence microscopy to rapidly segment droplet images and accurately count fluorescently 61 
labeled cells within each droplet. We tested the capability of MINI-Drop to accurately infer 62 
microbial interactions using a microbial interaction toolbox composed of positive and negative 63 
interactions mediated by distinct molecular mechanisms. Our results demonstrate that MINI-Drop 64 
can accurately decipher pairwise as well as higher-order interactions by analyzing droplets 65 
containing 1-3 strains. We investigated how the molecular composition of the environment shapes 66 
the ecological network of a three-member consortium. A probabilistic model of cell growth 67 
modified by microbial interactions and cell death described the variability in community states 68 
across droplets containing the same initial strain composition, providing insight into the forces 69 
shaping community assembly in small populations. 70 

RESULTS 71 
 72 

Inferring microbial interactions in microfluidic droplets 73 
Microbial interactions represent the net impact (positive, negative or negligible) of an organism 74 
on the growth of another over a specified time interval (Cao et al., 2018). Microbial interactions 75 
can be quantified by evaluating the difference in phenotype (e.g. growth response or metabolic 76 
activity) of an organism in the absence and presence of another strain (partner strain). 77 
Encapsulation of cells in a microbial community into droplets using techniques from droplet-78 
microfluidics enables parallel culturing of many sub-communities (Fig. 1a). To infer microbial 79 
interactions, we needed a scalable method to determine the absolute abundance of each strain 80 
within each droplet. The average fluorescence in each droplet was not proportional to the number 81 
of cells due to variability in cellular growth rates, which dictates the rate of dilution of the 82 
fluorescent reporter (Fig. S1a). Therefore, we developed an automated procedure using 83 
techniques from computer vision to rapidly identify droplets (Fig. S1b) and count the number of 84 
fluorescently labeled cells in each droplet (Fig. S1c). The droplets were binned according to strain 85 
composition (Fig. S1d) and the cell counts were used to infer interaction type (positive, negative 86 
or negligible), strength and directionality (see Materials and Methods). 87 

To evaluate the accuracy and dynamic range of the method, CFP-labeled E. coli, RFP-88 
labeled E. coli and YFP-labeled S. typhimurium were mixed in equal volumetric ratios and serially 89 
diluted to generate a broad range of cell densities (Fig. 1b). Each dilution of the mixed culture 90 
was encapsulated into 34 picoliter (pL) droplets (40 µm diameter), imaged using fluorescence 91 
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microscopy, and analyzed using a computational workflow (see Materials and Methods). The 92 
number of cells of each fluorescently labeled strain decreased linearly with each dilution, with the 93 
exception of the highest density droplets (Fig. 1c, Fig. S2a). These data demonstrate at least a 94 
64-fold linear range of the cell counting method of each fluorescent reporter. In a separate 95 
experiment involving growth of fluorescently labeled strains in droplets described below (Table 1, 96 
E6), droplet size did not correlate with the number of cells labeled with CFP, YFP or RFP, 97 
indicating that variation in droplet size did not contribute to variability in cell growth (Fig. S2b,c,d). 98 

 99 

 100 

Fig. 1. Overview and characterization of microbial interaction network inference in microdroplets 101 
(MINI-Drop). (a) Overview schematic of the MINI-Drop method. A mixed microbial culture and oil are loaded 102 
into a droplet-forming microfluidic device. Cells are randomly encapsulated into droplets based on a Poisson 103 
distribution. The droplets are incubated for a period of time to allow cell growth and division and then imaged 104 
using fluorescent microscopy. A computer vision workflow rapidly identifies droplets and determines the 105 
number of each fluorescently labeled strain within each droplet (Fig. S1). A microbial interaction network is 106 
inferred based on the difference in the mean number of cells in the absence and presence of a partner 107 
strain. (b) Representative fluorescent microscopy images of droplets containing three bacterial strains 108 
labeled with YFP (ST Lac*), RFP (EC WT) or CFP (EC Met-) (see Table 2). (c) Scatter plot of the dilution 109 
factor of the mixed culture vs. the log2 transform of the mean number of cells per drop (Fig. S2a). Each 110 
data point represents the mean of 400-600 droplets and lines denote linear regression fits to the data. Red, 111 
yellow and blue data points correspond to EC WT, ST Lac* and EC Met-, respectively.  112 

 113 
Investigating microbial interaction networks two-member consortia  114 
To determine whether MINI-Drop could illuminate microbial interactions in microbial consortia, we 115 
investigated two-member consortia engineered to display defined interactions. A microbial 116 
interaction was defined as a statistically significant difference in the average number of cells of a 117 
given strain in the presence of a second strain (partner) compared to the absence of the partner 118 
at a specific time point. To investigate positive interaction networks with MINI-Drop, we 119 
constructed a consortium composed of an RFP-labeled E. coli methionine auxotroph (EC Met-) 120 
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and a GFP-labeled B. subtilis tryptophan auxotroph (BS Trp-, Table 1, E1). In the absence of 121 
supplemented amino acids, the growth of B. subtilis requires secretion of tryptophan from E. coli 122 
and the growth of E. coli requires secretion of methionine from B. subtilis, which together 123 
generates a bidirectional positive interaction network (Fig. 2a). The two species were mixed in 124 
equal proportions based on OD600 measurements, encapsulated into droplets such that each 125 
droplet had 1-2 cells on average according to a Poisson distribution and the droplets were 126 
incubated at 37°C for 18 hours. The fluorescence microscopy images demonstrated that single 127 
species droplets exhibited a low number of total cells, whereas droplets containing both species 128 
exhibited significantly higher number of cells of each strain (Fig. 2b). Specifically, the average 129 
number of EC Met- cells was 3.3-fold (p = 3.8e-26) higher in the presence of BS Trp- compared 130 
to the average number of EC Met- in single-species droplets (Fig. 2c). Similarly, the average 131 
number of BS Trp- cells was 4.2-fold (p = 1.5e-6) higher in the presence of EC Met- compared to 132 
the average number of BS Trp- cells in single-species droplets (Fig. 2c). The inferred interaction 133 
network exhibited bidirectional positive interactions, mirroring the topology of the expected 134 
interaction network (Fig. 2a,d), demonstrating that MINI-Drop could deduce positive interactions. 135 
Corroborating this result, the cell counts for BS Trp- and EC Met- were positively correlated (Fig. 136 
S3a).  137 

We next investigated whether MINI-Drop could decipher negative interactions. A synthetic 138 
community was constructed wherein a GFP-labeled E. coli strain (sender strain) was engineered 139 
to express LuxI, a synthetase for the quorum-sensing signal C6 acyl homoserine lactone (AHL). 140 
AHL diffuses into the RFP-labeled E. coli strain (receiver strain), binds and activates the receptor 141 
LuxR, which regulates the expression of the MazF toxin (Fig. 2e, Table 1, E2). High expression 142 
levels of the endoribonuclease MazF inhibits cell growth by inducing mRNA decay (Venturelli et 143 
al., 2017), generating a strong negative interaction from the sender to the receiver. To 144 
characterize this community using MINI-Drop, the sender and receiver strains were mixed in equal 145 
proportions based on OD600, encapsulated into droplets and incubated at 37°C for 18 hr. 146 
Computational analysis of the fluorescent microscopy images showed that the number of receiver 147 
cells was significantly lower in droplets containing both the sender and receiver strains compared 148 
to the average number of receiver cells in single-strain droplets (Fig. 2f). The average number of 149 
receiver cells in the presence of the sender was 2.6-fold lower (p = 3.7e-14) compared to the 150 
average number of receiver cells in droplets containing the receiver strain alone (Fig. 2g). In 151 
addition, the average number of sender cells was 1.25-fold lower (p = 2.2e-4) in the presence of 152 
the receiver compared to in its absence (Fig. 2g). The average number of sender cells in droplets 153 
containing the sender strain alone was 16.7-fold higher than the average number of receiver cells 154 
in droplets containing only the receiver strain, presumably due to leakiness of mazF from the pLux 155 
promoter in the absence of AHL. Based on these data, the inferred interaction network exhibited 156 
a strong negative interaction from the sender to the receiver and a weak negative interaction from 157 
the receiver to the sender (Fig. 2h). The cell counts of the sender and receiver were negatively 158 
correlated across droplets, corroborating the presence of negative interactions (Fig. S3b). In sum, 159 
these data demonstrate that MINI-Drop can decipher negative interactions in microbial consortia.  160 

 161 
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 162 

Fig. 2. Investigating positive and negative microbial interaction networks using MINI-Drop. (a) 163 
Schematic of the expected network for a synthetic consortium composed of an RFP-labeled E. coli 164 
methionine auxotroph (EC Met-) and a GFP-labeled B. subtilis tryptophan auxotroph (BS Trp-) (Table 1, 165 
E1). (b) Fluorescence microscopy image of representative single-species (EC Met- or BS Trp-) or two-166 
member droplets. (c) Categorical scatter plot showing the number of BS Trp- or EC Met- cells in each 167 
droplet. The black horizontal line represents the mean and the error bars denote bootstrapped 95% 168 
confidence intervals for the mean. Gray lines denote statistically significant difference in means based on 169 
the Mann-Whitney U test (n=87, p=1.5e-6, left and n=372, p=3.8e-26, right). (d) The inferred interaction 170 
network for the EC Met-, BS Trp- consortium. The edge width is proportional to the log2 ratio of the average 171 
cell count in the presence of a partner to the average cell count in single strain droplets. Node size is 172 
proportional to the average cell count of each strain in single strain droplets. (e) Schematic of the expected 173 
network of an E. coli community that exhibits a strong unidirectional negative interaction. A GFP-labeled 174 
strain (sender) expresses LuxI, a synthetase for the quorum-sensing signal C6 acyl homoserine lactone 175 
(AHL). AHL binds to the receptor LuxR in an RFP-labeled strain (receiver) and activates the expression of 176 
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a toxin MazF, generating a strong negative interaction (Table 1, E2). (f) Fluorescence microscopy image 177 
of representative droplets containing the sender strain, receiver strain or community. (g) Categorical scatter 178 
plot of the number of sender or receiver cells in each droplet in the presence or absence of a partner. The 179 
black line represents the mean and the error bars denote bootstrapped 95% confidence intervals for the 180 
mean. Gray lines denote statistically significant differences in the means (n=1512, p=2.2e-4, left, n=421, 181 
p=3.8e-14, right). (h) The inferred interaction network for the mazF inhibition consortium.  182 

 183 

The molecular composition of the environment shapes a microbial interaction network 184 
The molecular composition of the environment influences the energetic costs and benefits of 185 
microbial interactions in microbial communities (Cao et al., 2018; Harcombe et al., 2016; Liu et 186 
al., 2017). A key challenge is predicting how the microbial interaction network is modulated by 187 
environmental parameters. To investigate this question, we constructed a three-member 188 
community consisting of two strains interacting via bidirectional positive interactions and a third 189 
strain that promoted growth of constituent members of the community but did not receive a benefit 190 
from the community. Specifically, the strains included RFP-labeled E. coli (EC WT), CFP-labeled 191 
E. coli methionine auxotroph (EC Met-), and YFP-labeled S. typhimurium (ST Lac-). This 192 
consortium was characterized in four conditions that varied the carbon source (lactose or glucose) 193 
and the presence or absence of supplemented methionine. In lactose minimal media, E. coli can 194 
consume lactose and secrete carbon byproducts that can be utilized as substrates by ST Lac* 195 
(Table 1, E3-6) (Harcombe, 2010). In the absence of supplemented methionine, the growth of EC 196 
Met- is dependent on methionine provided by constituent community members.  197 

We used MINI-Drop to infer the pairwise microbial interaction network based on the 198 
patterns in the number of cells of each community member in single strain and two-member 199 
droplets. In lactose minimal media lacking supplemented methionine, the inferred network 200 
recapitulated the expected network, exhibiting bidirectional positive interactions between ST Lac* 201 
and EC Met- and unidirectional positive interactions from EC WT to ST Lac* to EC Met- (Fig. 202 
3a,e,i, Table 1, E3, Table S1). In lactose minimal media supplemented with methionine, the 203 
positive outgoing interactions from EC WT or ST Lac* to EC Met- were absent in the network and 204 
bidirectional negative interactions linked EC Met- and EC WT (Fig. 3b,f,j, Table 1, E4). In glucose 205 
minimal media lacking supplemented methionine, the positive interactions from EC WT or EC 206 
Met- to ST Lac* were absent and instead EC WT and ST Lac* were coupled by bidirectional 207 
negative interactions (Fig. 3c,g,k, Table 1, E5). By contrast to the expected network, bidirectional 208 
negative interactions were inferred between all pairs of strains in glucose minimal media 209 
supplemented with methionine (Fig. 3d,h,l, Table 1, E6). Across all conditions, the sign of the 210 
Pearson correlation coefficient clustered according to the pairwise network topology, wherein 211 
positive or negative correlation coefficients were associated with positive or negative interactions, 212 
respectively (Fig. S3, Fig. S4). These data show that correlations in the absolute abundance of 213 
strains across droplets can be used to classify specific topologies of two-member microbial 214 
interaction networks. Media containing lactose as a primary carbon source promoted strain co-215 
existence in three-member droplets, suggesting that positive interactions from EC Met- or EC WT 216 
to ST Lac* are critical interactions that promote community stability across different environments 217 
(Fig. S5a). In sum, our results demonstrate that the microbial interaction network is highly context-218 
dependent and the network topology changes as a function of the molecular composition of the 219 
environment.  220 
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 221 

Fig. 3. The molecular composition of the environment shapes the interaction network of a three-222 
member consortium. (a) Schematic of the expected microbial interaction network of a three-member 223 
consortium consisting of RFP-labeled E. coli (EC WT), CFP-labeled E. coli methionine auxotroph (EC Met-224 
), and YFP-labeled S. Typhimurium deficient in lactose metabolism (ST Lac*) in lactose minimal media 225 
lacking supplemented methionine (Table 1, E3). Secreted carbon byproducts (acetate) and methionine are 226 
represented by a triangle and rectangle, respectively. Node colors and green arrows denote the type of 227 
fluorescent reporter and positive interactions, respectively. (b) Schematic of the expected microbial 228 
interaction network in lactose minimal media supplemented with methionine (Table 1, E4). (c) Schematic 229 
of the expected microbial interaction network in glucose minimal media lacking supplemented methionine 230 
(Table 1, E5). (d) Schematic of the expected microbial interaction network in glucose minimal media 231 
supplemented with methionine (Table 1, E6). (e) Cell count distributions in lactose minimal media for EC 232 
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WT (top), ST Lac* (middle) or EC Met- (bottom). The black line represents the mean and the error bars 233 
denote the bootstrapped 95% confidence intervals for the mean. The gray horizontal bars indicate a 234 
statistically significant difference (p < 0.05, Table S1) based on the Mann-Whitney U test. (f) Cell count 235 
distributions in lactose minimal media supplemented with methionine for EC WT (top), ST Lac* (middle) or 236 
EC Met- (bottom). (g) Cell count distributions in glucose minimal media for EC WT (top), ST Lac* (middle) 237 
or EC Met- (bottom). (h) Cell count distributions of EC WT (top), ST Lac* (middle) or EC Met- (bottom) in 238 
glucose minimal media supplemented with methionine. (i) Inferred interaction network in lactose minimal 239 
media lacking supplemented methionine. The edge width is proportional to the log2 ratio of the average cell 240 
count in the presence of a partner to the average cell count in the absence of the partner. Node size is 241 
proportional to the average cell count of each strain grown in isolation. (j) Inferred network in lactose minimal 242 
media supplemented with methionine. (k) Inferred interaction network in glucose minimal media lacking 243 
supplemented methionine. (l) Inferred interaction network in glucose minimal media supplemented with 244 
methionine.  245 

 246 
Investigating higher-order interactions using MINI-Drop  247 
Higher-order interactions occur when a pairwise interaction is modified in the presence of a third 248 
community member (Bairey et al., 2016; Society, 2015) and these interactions are challenging to 249 
identify in microbial communities. In MINI-Drop, a higher-order interaction was defined as a 250 
difference in the presence and sign (positive or negative) of an interaction in a three-member 251 
community compared to the presence and sign of the interaction in each two-member sub-252 
community (Fig. 4a). We tested whether MINI-Drop could identify higher-order interactions by 253 
analyzing the cell count distributions of each strain in three-member droplets in addition to single-254 
strain and two-member droplets. To do so, a community consisting of an RFP-labeled E. coli 255 
methionine auxotroph that is also deficient in lactose metabolism (EC Met- Lac*, Table 1, E7), 256 
EC Met- (CFP) and ST Lac* was constructed. In lactose minimal media lacking supplemented 257 
methionine, EC Met- and ST Lac* can secrete carbon byproducts and methionine, respectively 258 
and thus together enable the growth of EC Met- Lac*. Our results showed that the number of EC 259 
Met- Lac* cells was higher in the presence of both EC Met- and ST Lac* but not in the presence 260 
of either single strain, demonstrating that MINI-Drop could identify higher-order interactions (Fig. 261 
4b, p=0.0012). The strains EC Met- (CFP) and ST Lac* interacted via bidirectional positive 262 
interactions, recapitulating the expected network topology (Fig. 3a, Fig. S5b,c). In addition, the 263 
cell counts of EC Met- and ST Lac* displayed a strong positive correlation (Fig. S3d). 264 

To investigate other higher-order interactions that were present in our data, we analyzed 265 
droplets containing three-member consortium (EC WT, EC Met- and ST Lac), two-member sub-266 
communities and single strains across four different environments (Fig. 3, Table 1, E3-E7). Our 267 
results illuminated a higher-order interaction in lactose minimal media (Table 1, E3), where EC 268 
WT was significantly inhibited in the presence of both EC Met- and ST Lac*, while no negative 269 
interaction was observed in the pairwise interaction networks of EC WT co-cultured with EC Met- 270 
or ST Lac* (Fig. 3a, 4d,e). Unexpected higher-order interactions occurred in one of twelve 271 
possible cases (3 community members times 4 environments) in the EC Met-, EC WT, ST Lac* 272 
consortium (Table 1, E3-6),  In sum, our results show that MINI-Drop can rapidly elucidate higher-273 
order interactions based on the absolute abundance patterns in droplets containing 1-3 strains. 274 
demonstrating that higher-order interactions were infrequent in this community across different 275 
environmental conditions.  276 

To evaluate the sensitivity of the method, we next investigated the number of droplets 277 
containing the same initial strain composition (replicates) required to infer microbial interactions 278 
of different strengths across all datasets. Specifically, we analyzed the relationship between 279 
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interaction strength magnitude, number of replicates, and interaction significance (p<0.05) in all 280 
datasets (Fig. S6). Our results showed that the significance of each interaction increased 281 
exponentially as a function of the number of droplets (Fig. S6a). The strength of the interaction 282 
was inversely related to the number of droplets required for statistical significance of the 283 
interaction. For example, strong interactions required as few as 15 replicates whereas weak 284 
interactions required more than 50 replicates (Fig. S6b). 285 

 286 
 287 

 288 
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Fig. 4. Investigating higher-order interactions using MINI-Drop. (a) Schematic showing an example of 289 
a higher-order interaction. Droplets containing two strains X and Z or Y and Z do not exhibit interactions. In 290 
three-member droplets, a negative or positive interaction from X and Y to Z is present and is defined as a 291 
higher-order interaction. (b) Categorical scatter plots of the number of EC Met- Lac* cells in droplets 292 
containing the single strain EC Met- Lac* (self), pairs of strains including EC Met- Lac* and EC Met- or ST 293 
Lac* or all three strains (EC Met- Lac*, EC Met- and ST Lac*). Black horizontal bars denote the mean 294 
number of cells per droplet and error bars represent the bootstrapped 95% confidence interval for the mean. 295 
The horizontal bar (gray) represents a statistically significant difference in means based on the Mann-296 
Whitney U test (p = 1.2e-3, n = 703). (c) Schematic showing the higher-order inferred network for the data 297 
shown in panel (b). The line width represents the inferred strength of the higher-order interaction. Node size 298 
is proportional to the average cell count of each strain grown in isolation. (d) Categorical scatter plots of the 299 
number of EC WT cells in droplets containing the single strain EC WT, two strains including EC WT and ST 300 
Lac* or EC Met- or all three strains (EC WT, ST Lac* and EC Met-) in lactose minimal media. The horizontal 301 
bar (gray) represents a statistically significant difference in means based on the Mann-Whitney U test (p = 302 
2.9e-10, n = 296). (e) Schematic showing a higher-order interaction inferred using the data shown in (d). 303 
The line width represents the strength of the inferred higher-order interaction. Node size is proportional to 304 
the average cell count of each strain grown in isolation. 305 

 306 
Discrete-time Markov model of community assembly 307 
In small microbial populations, stochastic variation in intracellular molecular concentrations, 308 
growth and death can impact community assembly and functions (Boedicker et al., 2009; Connell 309 
et al., 2014; Hansen et al., 2016). To model community assembly in small populations, microbial 310 
growth can be represented as a probabilistic event, such that two communities seeded with the 311 
same initial strain composition exhibit different steady-state community compositions (Fig. 5a) 312 
(Horowitz et al., 2010). We constructed a discrete-time Markov model of cell growth modified by 313 
microbial interactions to investigate the variability in community composition across droplets 314 
containing the same initial strain composition.   315 

In the model, communities are initially seeded with a single cell of each type. At each time 316 
step, strain i can undergo cell division, death or remain static according to the probabilities 𝑃"#$,#, 317 
𝑃"&'(),#, and 𝑃*('(#+,#, respectively (Fig. 5b). The probabilities 𝑃"#$,# and 𝑃*('(#+,# are a function of 318 
the number of cells of each strain with parameters specific to each strain and the probability 319 
𝑃"&'(),# is a fixed parameter. Negative interactions with self or non-self are represented by inverted 320 
sigmoidal logistic functions, such that the probability of cell division is inversely related to the cell 321 
number. Positive interactions are represented as sigmoidal logistic functions, such that the 322 
probability of cell division increases as a function of the number of partner cells (see Materials 323 
and Methods).  324 

We tested whether this modeling framework could recapitulate the experimental cell count 325 
distributions, based on the assumption that the measurement time point maps to the steady-state 326 
of the model. Models were constructed using the positive or negative interaction functions and 327 
model parameters were identified to recapitulate the cell count distributions of each strain. We 328 
constructed a model for the EC WT, ST Lac* community grown in glucose minimal media that 329 
exhibited a bidirectional negative interaction network (Fig. 5c, left). Our results showed three 330 
clusters representing distinct community states exhibiting high abundance of one strain (Fig. 5c, 331 
center, clusters 1 and 2), co-existence of both strains (Fig. 5c, center, cluster 4), or low cell counts 332 
of both strains (Fig. 5c, center, cluster 3). Representative images of droplets from each cluster 333 
showed significant differences in community composition (Fig. 5c, right). A model of a 334 
bidirectional negative interaction network displaying strong and weak negative interactions was 335 
able to recapitulate the cell count distribution (Fig. 5c, middle, Table S3).  336 
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We next evaluated whether the model could recapitulate the cell count distributions of 337 
networks that displayed positive interactions. Models constructed for the EC Met-, ST Lac* 338 
consortium in two different environments exhibiting unidirectional or bidirectional positive 339 
interactions (Table 1, E3-4) could recapitulate the cell count distributions (Fig. 5d,e). Next, a 340 
model was developed for the mazF inhibition consortium (Table 1, E2) that displayed a 341 
bidirectional negative interaction network. A model of strong and weak bidirectional negative 342 
interactions represented the negative correlation in cell counts of the sender and receiver strains 343 
(Fig. 5f). Our results demonstrate that bidirectional negative interaction networks can realize 344 
distinct community state distributions (Fig. 5c,f). In the model, the number of partner cells required 345 
to impact the probability of cell division dictates the strength of an interaction (Fig. 5f, Fig. S7).  346 
The toxin mediated negative interaction in the mazF inhibition consortium (Table 1, E2) exhibited 347 
a higher sensitivity to partner cell number than the negative interaction from ST Lac* to EC WT in 348 
glucose minimal media (Table 1, E5, Fig. S7). Therefore, the recipients of the strong negative 349 
interactions displayed different sensitivities to variations in donor cell number, providing insight 350 
into the qualitative dissimilarities in the cell count distributions. In sum, the model was able to 351 
describe the cell count distributions for positive and negative interactions mediated by distinct 352 
molecular mechanisms, illustrating that a probabilistic growth model can explain the variability in 353 
community states in small populations.  354 

 355 
 356 

 357 
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 358 

 359 

Fig. 5. Discrete-time Markov model of cell growth modified by microbial interactions can recapitulate 360 
cell count distributions in microfluidic droplets. (a) Schematic of variability in community assembly in 361 
small populations. Stochasticity in intracellular molecular concentrations can alter the strength of microbial 362 
interactions, generating different community states (high blue cells, low yellow cells or the reciprocal). (b) 363 
Schematic of the discrete-time Markov model of cell growth modified by microbial interactions. At each time 364 
step, each cell can undergo cell division, cell death or remain static according to the probabilities Pdiv, Pdeath 365 
or Pstatic, respectively. (c) Inferred network topology using MINI-Drop (left) for the EC WT, ST Lac* 366 
consortium in glucose minimal media (Table 1, E5). Node size and edge weight represent the average cell 367 
count of each strain grown in isolation and the interaction strength, respectively. Scatter plot of 368 
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experimentally measured cell counts (blue circles, n=257) of EC WT and ST Lac* or model steady-states 369 
(red circles, n=200). This bidirectional negative interaction network generated qualitatively different 370 
community compositions corresponding to (1) low and high EC WT and ST Lac*, respectively, (2) high EC 371 
WT and ST Lac*, (3) low EC WT and ST Lac*, (4) high EC WT and low ST Lac*. Fluorescence microscopy 372 
images (right) of a representative droplet in each community state 1-4 are shown (right). (d) Inferred network 373 
for the EC Met-, ST Lac* consortium (top) in lactose minimal media supplemented with methionine (Table 374 
1, E4). Scatter plot of experimentally measured cell counts (blue circles, n=118) of EC Met- and ST Lac* or 375 
model steady-states (red circles, n=200). (e) Inferred interaction network for the EC Met-, ST Lac* 376 
consortium in lactose minimal media (top, Table 1, E3). Scatter plot of experimentally measured cell counts 377 
(blue circles, n=141) of EC Met- and ST Lac* or model steady-states (red circles, n=200). (f) Inferred 378 
interaction network for the sender, receiver consortium (top, Table 1, E2). Scatter plot of experimentally 379 
measured cell counts (blue circles, n=93) of the sender and receiver strains or model steady-states (red 380 
circles, n=200).  381 

 382 

Discussion 383 
We showed that MINI-Drop can rapidly infer pairwise as well as higher-order microbial interactions 384 
in 2- to 3-member consortia in different environmental conditions. This method can be scaled to 385 
quantify interactions in higher-dimensional (>3 members) communities using compatible 386 
fluorescent labels or combinatorial fluorescent imaging of multiple reporters within the same cell. 387 
Combinatorial labeling via fluorescence in situ hybridization (Liu et al., 2011; Valm et al., 2012) or 388 
fluorescent labeling of the bacterial outer membranes via biorthogonal click chemistry could be 389 
used to measure the absolute abundance of organisms that are not genetically tractable (Geva-390 
Zatorsky et al., 2015).  391 

In MINI-Drop, a single experiment generates hundreds to thousands of replicates of 392 
unique sub-communities. The initial mean number of cells per drop can be manipulated to 393 
investigate the contribution of initial cell density to microbial interactions or increase the proportion 394 
of multi-strain droplets for interrogation of higher-order interactions. MINI-Drop does not require 395 
coexistence of community members to determine interactions because fluorescently tagged 396 
single cells encapsulated in a droplet can be accurately quantified.  397 

Previous methods of microbial interaction inference using modeling frameworks such as 398 
the generalized Lotka-Volterra (gLV) model are constrained by mathematical relationships 399 
(Momeni et al., 2017). For example, a gLV model of strong bidirectional positive interactions tends 400 
to be unstable, leading to potential underrepresentation of bidirectional positive interactions. 401 
Further, it is challenging to pinpoint if the failure of a pairwise gLV model to accurately fit 402 
experimental data is attributed to the presence of higher-order interactions or to unmodeled 403 
dynamics such as metabolites mediating the interactions. By contrast, MINI-Drop is not 404 
constrained to a defined mathematical framework and thus can rapidly identify higher-order 405 
interactions in the networks. We showed that MINI-Drop accurately inferred diverse interaction 406 
topologies including unidirectional positive, bidirectional positive or bidirectional negative 407 
networks. In addition to deciphering engineered interactions, MINI-Drop illuminated unexpected 408 
negative pairwise interactions and higher-order interactions in the networks. The unexpected 409 
higher-order interaction that inhibited EC WT in the presence of both EC Met- and ST Lac* could 410 
be explained by robust growth of the mutualistic pair EC Met- and ST Lac*, which in turn 411 
negatively impacted EC WT. Across all experiments, S. typhimurium exhibited the strongest 412 
outgoing negative interactions as well as the highest carrying capacity, suggesting that the 413 
negative interactions could arise from competition for limited resources or space or the production 414 
of toxic compounds.   415 
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The throughput of the MINI-Drop method was enabled by coupling two automated and 416 
scalable technologies, droplet microfluidics and computational image analysis. The large number 417 
of sub-community replicates provided by MINI-Drop allows investigation of the contribution of 418 
initial conditions to community assembly in small populations. A probabilistic analysis of the 419 
distribution of community states provides insight into the stochastic nature of microbial 420 
interactions and impact of these parameters on community assembly. For example, we observed 421 
that bidirectional positive networks displayed frequent co-occurrence (Fig. 5e, Fig. S3, Fig. S4) 422 
whereas a bidirectional negative network can realize a set of distinct community states (Fig. 5c,e). 423 

Our stochastic growth model can recapitulate the community states observed 424 
experimentally a set of synthetic communities. This demonstrates that a simple probabilistic 425 
representation of cell growth, death and microbial interactions can give rise to multiple community 426 
steady-states from the same initial conditions. Our modeling framework could be used to predict 427 
the probability of strain growth as a function of the initial strain proportions and cell density. These 428 
parameters could be manipulated to maximize the likelihood of community member coexistence 429 
in multi-species consortia. In sum, we developed a systematic procedure to elucidate microbial 430 
interaction networks in microdroplets. Future work will apply MINI-Drop to study diverse cellular 431 
interactions such as interkingdom or mammalian cell interactions.  432 

MATERIALS AND METHODS 433 
 434 

Dynamic range of cell counting 435 
The bacterial strains EC Met- (CFP), EC WT (RFP), and ST Lac* (YFP) were grown in LB medium 436 
to early stationary phase, centrifuged at 18,000xg for 1 min, decanted, and resuspended in M9 437 
minimal medium without glucose. Next, the cells were centrifuged at 18,000xg for 1 min, decanted 438 
and resuspended in a smaller volume of M9 minimal medium without glucose to concentrate the 439 
cells. The OD600 values of the concentrated EC Met-, EC WT and ST Lac* cultures were 14.4, 440 
19.6, and 6.4, respectively. Equal volumes of each culture were combined to generate the mixed 441 
culture. The mixed culture was serially diluted by a factor of 2 until a dilution of 2-7 was reached. 442 
The diluted cultures were encapsulated separately using the droplet maker device and the 443 
resulting droplets were imaged and quantified using the computational image analysis pipeline.  444 

Bacterial cell culturing  445 
Strains were grown for approximately 12 hours at 37ºC in LB, diluted 1:50 into fresh LB, and then 446 
grown to an OD600 of 0.3-1. Next, the culture (3 mL) was centrifuged for 2 min at 3,500 x g and 447 
supernatant was removed. The cells were washed 4X by resuspending the pellet in 0.5 mL of 448 
minimal media and centrifuged as described above. The cell cultures containing different strains 449 
were normalized to an OD600 of 0.15 and mixed in a 1:1 ratio. In the mutualism experiment (E2), 450 
B. subtilis and E. coli were mixed in a 2:1 volumetric ratio to account for differences in the cell 451 
number to OD ratios. In experiment E1, cells were cultured in M9 supplemented with glucose (1X 452 
M9 salts, 2 mM MgSO4, 100 µM CaCl2, 0.4% glucose) and 25 μg/mL chloramphenicol (Sigma). 453 
In experiment E2, cells were cultured in LB media containing 50 ng/mL anhydrotetracycline (aTc, 454 
Cayman Chemicals), 0.1% arabinose (Sigma) and 25 μg/mL chloramphenicol. In experiments E3-455 
E7, cells were cultured in M9 media (1X M9 salts, 2 mM MgSO4, 100 µM CaCl2) supplemented 456 
with 0.4% glucose, 0.2% lactose and/or 200 µM methionine as indicated. 457 

 458 
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Number Strains Media Figure 

E1 BS Trp- 

EC Met- (RFP) 

M9 Glucose 2a-d 

E2 EC Sender 

EC Receiver 

LB 2e-h 

E3 EC Met- (CFP) 

ST Lac* 

EC WT 

M9 Lactose 3a,e,i 

4d,e 

E4 EC Met- (CFP) 

ST Lac* 

EC WT 

M9 Lactose + Met 3b,f,j 

E5 EC Met- (CFP) 

ST Lac* 

EC WT 

M9 Glucose 3c,g,k 

E6 EC Met- (CFP) 

ST Lac* 

EC WT 

M9 Glucose + Met 3d,h,l 

E7 EC Met- (CFP) 

ST Lac* 

EC Met- Lac* (RFP) 

M9 Lactose 4b,c 

Table 1. Strains used in growth experiments. 459 
 460 

Strain Genotype Plasmid Fluorescent 
reporter 

Abbreviation Reference 

B. subtilis B. subtilis 168, 
trpC2, cat, 
amyE::Pveg-gfp-
spec 

None GFP BS Trp- (Burkholder and 
Giles, 1947) 

E. coli E. coli BW25113 
pheA::Kan 

pOSV005 RFP EC Met- Lac* 
and EC Met- 
(RFP) 

(Baba et al., 
2006) 

E. coli E. coli BW27783 pOSV022 GFP Sender (Khlebnikov et 
al., 2001) 

E. coli E. coli 
MG1655z1 

pOSV151 RFP Receiver (Cox et al., 
2007) 

E. coli E. coli K12 
BW25113, 
∆metB att::pLC2
80 [kan P_L'-cfp 
oriR6K] 

None CFP EC Met- (CFP) (Adamowicz et 
al., 2018) 

S. typhimurium LT2, 
metA(P35L) met

None YFP ST Lac* (Adamowicz et 
al., 2018; 
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J(16:IS10) att::p
LC246 [kan 
P_L'-yfp oriR6K] 

Douglas et al., 
2016) 

E. coli E. coli BW25113 
metA::Kan 

pOSV006 RFP EC WT (Baba et al., 
2006) 

Table 2. Strains and media conditions for each experiment.  461 
 462 

Fabrication of microfluidic devices 463 
Photoresist masters of 25 µm layer height were fabricated by spinning a layer of photoresist SU-464 
8 3025 (Microchem) onto a silicon wafer (University Wafer), then baked at 95°C for 10 minutes. 465 
Following baking, photoresist master was patterned by UV photolithography over a photomask 466 
(File S1, CADArt). The master was subjected to post-exposure bake at 95°C for 4 min and 467 
developed in fresh SU-8 developer (Microchem) for 6 min, prior to rinsing with isopropyl alcohol 468 
(Fischer Scientific) and baking at 150°C to remove the solvent. The microfluidic devices were 469 
fabricated by pouring poly(dimethylsiloxane) at a 11:1 polymer-to-crosslinker ratio (Dow Corning 470 
Sylgard 184) onto the master and curing at 65ºC for 1 hr. The PDMS devices were excised with 471 
a scalpel and cored with a 0.75 mm biopsy core (World Precision Instruments) to create inlets 472 
and outlets. The device was then bonded to a microscope glass slide using O2 plasma cleaner 473 
(Harrick Plasma), and channels were treated with Aquapel (PPG Industries) to render them 474 
hydrophobic. Finally, the devices were baked at 65°C for 20 min to evaporate excess Aquapel 475 
prior to use. 476 

Encapsulation of cells into droplets and fluorescence microscopy 477 
To encapsulate cells into droplets, 1 mL syringes (BD Luer Lok) were fitted with 27 gauge needles 478 
and PE/2 tubing. 500 µL of the culture was loaded into a 1 mL syringe. Hydrofluoroether oil was 479 
prepared with 2% Krytox as surfactant and loaded into a 1 mL syringe. The free end of the tubing 480 
was primed and inserted into the droplet-making device. Droplets were generated using 600 µL 481 
hr-1 oil and 300 µL hr-1 cell mixture flow rates at a 30 µm x 25 µm junction, which generated ~40 482 
µm diameter droplets at 4.8 kHz. Droplets were collected into a 1.5 mL microfuge tube for 15 min 483 
and incubated for 18 hr at 37ºC. Droplets were imaged using chamber microscopy slides 484 
(Invitrogen C10228) and imaged with a 20X objective (Nikon, MRH10201) on a Ti-E Eclipse 485 
inverted microscope (Nikon). Fluorescence was imaged using the following filters (Chroma): (1) 486 
CFP: 436nm/20nm (ex), 480nm/40nm (em); (2) GFP: 470nm/40nm (ex), 525/50nm (em); (3) RFP: 487 
560nm/40nm (ex), 630/70nm (em); and (4) YFP: 500nm/40nm (ex), 535nm/30nm (em).  488 

Fluorescence microscopy image analysis 489 
Custom code in Python was used for automated cell counting in droplets and microbial interaction 490 
network inference. Droplets were identified from the phase contrast image using the Hough 491 
transformation algorithm (OpenCV 3). Droplets with a diameter 10% larger or smaller than 40 µm 492 
were removed from the dataset. Fluorescent cells were segmented by identifying connected 493 
regions using the SimpleBlobDetector object (OpenCV 3). Droplets were binned by the presence 494 
or absence of each fluorescently labeled strain. Interaction strength from strain j to strain i, where 495 
droplet d contains dk cells of strain k, was defined according to Equation 1. Network schematics 496 
were drawn with Cytoscape 3.5 (Shannon et al., 2003). 497 

𝑙𝑜𝑔/ 0
1&'23"4∀"|"478,"978:
1&'23"4∀"|"478,"9;8:

<    (1)  498 

       499 
 500 
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Discrete-time Markov model of cell growth  501 
A discrete-time Markov model was developed to recapitulate the experimentally measured cell 502 
count distributions. At each time step, the propagation of each strain is determined by computing 503 
the probability of cell division (𝑃"#$,#), cell death (𝑃"&'(),#), and remaining unchanged (𝑃*('(#+,#) 504 
(Equations 2-4). 505 

𝑃"#$,# = 𝑟"#$,#@ 	× 	𝐼##(𝑛#, 𝑠## , 𝑘## , 𝑎##)	×	 𝐼#I3𝑛I, 𝑠#I, 𝑘#I, 𝑎#I: (2)          506 

𝑃"&'(),# = 𝑟"&'(),#@      (3)   507 

𝑃*('(#+,# = 1 − (𝑃"#$,# + 𝑃"&'(),#)    (4)  508 
    509 

The parameter 𝑟"#$,#@ is the basal probability of cell division for strain i. The parameter 𝑟"&'(),#@ 510 
represents the probability of cell death of strain i (constant).	𝑛# denotes the number of cells of 511 
strain I and 𝑠#I defines whether the outgoing interaction of strain j (donor) to strain i is positive 512 
(𝑠#I = 1) or negative (𝑠#I = −1). The parameters 𝑘#I and 𝑎#I define the sigmoidal interaction 513 
function 𝐼#I, representing the incoming interaction for strain i produced by strain j (Equation 5). 514 

𝐼#I =

⎩
⎨

⎧(PQ'49)&
R49S9

PQ'49&
R49S9

, 	𝑖𝑓	𝑠#I = +1

(PQ'49)

PQ'49&
R49S9

, 	𝑖𝑓	𝑠#I = −1
   (5) 515 

The negative interaction function approaches zero as a function of 𝑛I whereas the positive 516 
interaction approaches (1 + 𝑎#I)/𝑎#I as a function of 𝑛I. The values of 𝑎#I and 𝑟"#$,# are constrained 517 
such that 𝑃"#$,# ≤ 1 (Equation 6). The self-interaction function 𝐼##(𝑛#, 𝑠## , 𝑘## , 𝑎##) is less than one 518 
(𝑠## = −1) and approaches zero as a function of 𝑛#, leading to saturation of the number of cells of 519 
strain i. The interaction function 𝐼#I, is equal to 1 when 𝑛I = 0, representing the absence of an 520 
interaction between strain i and j. In the absence of an interaction between strain i and j, 𝑃"#$,# is 521 
not dependent on strain j 3𝑠#I = −1, 𝑘#I = 0, 𝑎#I = 0:. The outgoing interaction from the partner 522 
strain j 𝐼#I3𝑛I, 𝑠#I, 𝑘#I, 𝑎#I: can be positive or negative depending on the value of the parameter 𝑠#I. 523 
The parameters 𝑎#I and 𝑘#I determine the interaction sensitivity defined as the number of partner 524 
cells at the half-maximum of the interaction function 𝑛YI. The parameters  525 

𝑛YI =
P
Z49
ln	( P

'49
+ 2)     (6) 526 

"^49
"29
_
2Y9
=

⎩
⎪
⎨

⎪
⎧ Z49(

a
b49
Q/)

c('49QP)
, 	𝑖𝑓	𝑠#I = 1

dZ49(
a
b49
Q/)'49

c('49QP)
, 	𝑖𝑓	𝑠#I = −1

    (7) 527 

At each time step, the state transition of a cell is independent of all other cells and the cell’s prior 528 
history. The state transitions were simulated by sampling from a trinomial distribution determined 529 
by the probabilities 𝑃"#$,#, 𝑃"&'(),#, and 𝑃*('(#+,#. Communities were simulated for 100 time-steps 530 
wherein each time-step corresponded to 10.8 minutes of experimental time. Variables were 531 
constrained such that the cell populations reached a steady state within the simulation time. The 532 
initial condition for all simulations was 𝑛#, 𝑛I = 1. Model parameters are listed in Table S3. 533 
 534 
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