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ABSTRACT

Microbial community data are commonly subjected to computational tools such as correlation1

networks, null models, and dynamic models, with the goal of identifying the ecological processes2

structuring microbial communities. Researchers applying these methods assume that the signs and3

magnitudes of species interactions and vital rates can be reliably parsed from observational data on4

species’ (relative) abundances. However, we contend that this assumption is violated when sample5

units contain any underlying spatial structure. Here, we show how three phenomena — Simpson’s6

paradox, context-dependence, and nonlinear averaging — can lead to erroneous conclusions about7

population parameters and species interactions when samples contain heterogeneous mixtures of8

populations or communities. At the root of this issue is the fundamental mismatch between the9

spatial scales of species interactions (micrometres) and those of typical microbial community samples10

(millimetres to centimetres). These issues can be overcome by measuring and accounting for spatial11

heterogeneity at very small scales, which will lead to more reliable inference of the ecological12

mechanisms structuring natural microbial communities.13

1 Common “pattern-to-process” inferential methods yield erroneous results14

Advances in sequencing technology offer microbiologists unprecedented access to the composition and dynamics15

of microbial communities [1]. Marker gene and metagenomic surveys regularly chronicle hundreds to thousands of16

taxa, many previously unknown, all seemingly co-occurring within their respective habitats. In possession of these17

large observational datasets, microbial ecologists have adapted theory and methods developed from plant and animal18

ecology to investigate how species interactions — such as competition, predation, and facilitation — structure microbial19

communities [2, 3].20
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Without experimental systems in which competition (or any other interaction) may be directly manipulated and21

detected, researchers often employ randomization-based null models, correlation networks, and population dynamic22

models to identify and quantify putative interspecific interactions from observational sequence data [4, 5, 6, 7]. Here,23

negative covariation between the abundances or relative abundance of taxa are commonly assumed to result from24

negative interspecific interactions such as competition. However, the utility of these methods for reliably parsing and25

quantifying signals of competition from alternative community assembly processes such as habitat filtering and trophic26

interactions has been disputed for decades [8].27

Recently, a number of studies have challenged null model and correlation-based methods to recapitulate known28

interactions in well-studied marine intertidal habitats [9, 10, 11]. In all cases, these tests revealed troubling inaccuracies29

and discrepancies among the various methods, calling into question their ability to reliably identify true ecological30

interactions. For microbial communities, the only successful validations of these methods have occurred in simple,31

well-mixed liquid cultures [7]. Taken in concert, these studies highlight potential pitfalls in our ability to correctly32

identify species interactions when communities are sampled over underlying spatial heterogeneity. Most natural33

microbial communities are spatially structured and exhibit marked heterogeneity at multiple spatial scales. Failure to34

account for this underlying spatial heterogeneity in environmental samples can undermine our conclusions about the35

ecological processes structuring microbial assemblages [12].36

2 Causes and consequences of heterogeneity in microbial samples37

Typical sample volumes used for environmental marker gene and metagenomics studies are rarely smaller than 0.1 mL,38

but can be as large as 100 L of seawater and 100 g of soil in low-DNA habitats. Unless these samples come from a39

well-mixed, completely homogeneous medium, they will contain at least some amount of spatial structure. For example,40

a typical 0.25 g sample of soil containing particles 1 mm in diameter (i.e., a very coarse sand) will inevitably contain41

hundreds to thousands of discrete granules on which microbial communities can assemble. These discrete habitats42

can represent a heterogeneous array of environments or resources, each selecting for their own unique local microbial43

communities [13]. However, even a physicochemically homogeneous collection of particles can contain a mosaic of44

distinct microbial communities owing to the effects of limited or asymmetric dispersal, priority effects, and successional45

turnover.46

Fine-scale heterogeneity in microbial communities appears to be a general property of environmental samples,47

having been repeatedly documented in aquatic, soil, fecal, leaf surface, and wastewater habitats [13, 14, 15, 16, 17, 18].48

Owing to this, marker gene samples commonly represent a sum of sequence reads made over underlying environmental49

heterogeneity, leaving us with a bulk inventory of OTUs and their (often relative) abundances without their spatial50

context. Because microbial interactions such as resource competition, phage predation, DNA transfer, and syntrophy are51

hypothesized to take place at spatial scales much smaller than that of the typical bulk sample, it can be argued that many52

marker gene samples actually measure the metacommunity — a collection of semi-autonomous communities linked53

through dispersal [19]. In the following sections, we illustrate how collecting samples at the metacommunity scale can54

introduce errors into computational estimates of interspecific interactions by virtue of three phenomena: Simpson’s55

paradox, context-dependence, and nonlinear averaging. Note that although we present total abundance data throughout56
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our scenarios, these phenomena also apply to compositional (i.e., relative abundance) data, which are more commonly57

collected in environmental marker gene surveys.58

2.1 Simpson’s paradox59

Simpson’s paradox refers to the reversal or negation of a statistical association between two variables, X and Y , when60

conditioned on a third variable, Z [20]. In ecology, this Z variable might include information on spatial variation among61

local patches, which, if accounted for, changes the direction of a trend at larger spatial scales [21]. Computational62

approaches to inferring microbial interactions can be sensitive to the effects of Simpson’s paradox. For instance, the63

inferred signs of interspecific correlation coefficients might change when comparing analytic results obtained from bulk64

community samples with results that have statistically accounted for underlying variation in microhabitats or resource65

availability within bulk samples.66

To illustrate this point, consider a study that uses data obtained from bulk soil samples to infer the sign of67

interspecific interaction between two fungal taxa. If the true nature of this interaction is competitive, then our results68

are anticipated to reveal a negative correlation between the abundances of the two fungi. To add some realism to this69

scenario, let us assume that each of our samples represent collections of discrete microhabitats on which our focal70

taxa grow. Finally, we might also make the realistic assumption that both of our fungal taxa respond similarly to these71

discrete microhabitats such that sub-optimal habitats support fewer individuals of both species. If we populate bulk72

soil samples with random draws of simulated communities on each of three discrete microhabitat types (Fig. 1a), we73

find that even slight variation in the frequency distribution of these microhabitats within bulk samples leads to positive74

correlations between our two taxa, contradictory to their true, competitive local interactions. Furthermore, by repeating75

this experiment many times, each time re-assembling our bulk samples by populating them with equal numbers of76

randomly-selected discrete microhabitat particles, we encounter an overwhelming majority of cases where the inferred77

sign of interaction between our two taxa (positive) is the opposite of its true sign (negative) (Fig. 1b), leading us to78

erroneously conclude that these species are not strong competitors when, in truth, they are. Because of Simpson’s79

paradox, we contend that unless the assumption of homogeneity within and among microbial community samples is80

justified, interspecific interaction coefficients derived from correlation or model-based approaches should be interpreted81

with extreme caution, and should always include a statement concerning the spatial context of the sample including82

potential sources of underlying spatial heterogeneity.83

2.2 Context dependence84

A common assumption of computational approaches for identifying species interactions is that the sign and strength of85

interactions are immutable across time and space. This assumption reduces the sample sizes required for estimating86

correlation coefficients or population parameters, and permits the use of graph theoretic descriptors of network structure87

(connectance, nestedness, etc.). However, numerous laboratory experiments have documented context-dependent88

interactions arising from variation in population densities, community composition, or environmental context, such that89

interactions measured at one place and time cannot reliably be extrapolated across habitats [22, 23, 24, 25]. For instance,90

a recent study documented predictable shifts in the sign of species interactions with changing resource concentrations91
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Figure 1: (A) Example of how Simpson’s paradox can influence the identification of interspecific interactions. Colored
points show the abundances of OTUs i and j in samples across three discrete microhabitats. Though the OTUs compete
with one another in all three habitat types, their population responses to each habitat are correlated. When bulk samples
containing any variation in microhabitat composition are sequenced (denoted by white points), the inferred sign of
species interactions can be erroneous. (B) A simulation analysis of 2500 individual OTU correlations taken from
samples consisting of 250 randomly-assembled individual particles reveals that the average inferred sign of interspecific
interactions is positive, whereas the true sign of these interactions (simulated at the scale of individual particles) is
negative.

in experimental yeast communities as cross-feeding gave way to competition [26] (Fig. 2a). The presence of predators92

can also mediate the sign of interspecific interactions through a variety of mechanisms [27] (e.g., Fig. 2b). Likewise,93

a meta-analysis of hundreds of experiments uncovered a strong effect of spatial heterogeneity on context-dependent94

species interactions [28]. Consequently, it is not unreasonable to expect the signs of microbial interactions to change95

across gradients of resource density, predation pressure, or other indicators of habitat quality (Fig. 2c). While temporal96

correlation network approaches might be used to circumvent the static interactions assumption at larger spatial scales97

or in well-mixed samples, they cannot account for variable interactions arising from underlying spatial heterogeneity98

within individual samples.99

From a theoretical perspective, context-dependence is hypothesized to be be a critical factor for maintaining100

diversity in spatially-structured communities [29]. For instance, the abilities of two competing microbial strains101

to coexist will be enhanced if the negative impacts of competition experienced by each strain are stronger in more102

favourable habitat patches [29]. Given that microbial species richness appears to peak in particulate, heterogeneous103

habitats (soil, sediments) [1], context-dependent interactions within these habitats may be quite common and important104

in promoting high levels of diversity. Currently, the extent of context-dependent interactions in spatially-structured105

microbial communities remains largely unknown. We note, though, that correlation network approaches have been106

successfully used to identify context-dependent interactions robust to experimental ground-truthing [30]. However,107

until the prevalence and magnitude of context-dependent microbial interactions are better understood, we encourage108
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Figure 2: Examples of context-dependent species interactions. (A) Resource availability can modulate the sign of
interspecific interactions. For instance, local resource limitation can weaken the strength of competition when (i) it
selects for cross-feeding or another mutualistic, resource-concentrating behaviour, or (ii) when it limits the strength of
interspecific negative density dependence. (B) Likewise, in situations where a shared predator is present, species that do
not compete for shared resources can experience apparent competition by supplementing the predator densities. (C)
These context-dependent interactions can lead to highly variable estimates of the signs of OTU interactions, depending
on the spatial distribution of resources or predators within the sample.

researchers to exercise caution when making general statements concerning any local estimates of interspecific109

interactions, ideally contextualizing results to the specific environment and scale at which measurements were taken.110

2.3 Nonlinear averaging111

The previous two sections concerned issues that arise when quantifying local microbial interactions from heterogeneous112

samples. However, we also face difficulties when using microbial community data collected at very small scales113

to quantify the aggregate behavior of aggregate microbial communities. Imagine that we are now able to obtain114

measurements of microbial populations at the scale of the individual microhabitat patches. Such data could be obtained,115

for instance, using a fluorescence in situ hybridization (FISH) approach to directly count cell densities on soil particles.116

Importantly, these data are collected at the spatial scale over which intraspecific interactions play out, which, in a117

heterogeneous sample experiencing dispersal among particles, is at the scale of individual microhabitat patches or118

particles. Called the characteristic scale, it is the scale which maximizes the ratio of deterministic signal to the119

influences of stochasticity and spatial heterogeneity [31], making it the optimal scale for measuring and characterizing120

the effects of deterministic species interactions.121

Let us now envision a scenario where we wish to quantify whether a microbial OTU’s competitive ability is is a122

function of the local soil type. Since accurately estimating the strength of competition in our samples is of paramount123

importance, suppose we have conducted our sequencing surveys at appropriately small characteristic scales and have124

generated time series data from this assortment of individual particles. We then fit a population dynamic model to these125

data in order to estimate our OTU’s growth rate and competitive interactions among different soil types, adequately126

replicated within each type. The generalized Lotka-Volterra (gLV) population dynamic model is increasingly being127

utilized for this purpose. Fitting such a differential equation model requires estimating parameters describing a focal128
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species’ growth rates and interspecific interactions. The gLV model commonly takes the form129

dNi

dt
= Ni

µi +
M∑
j=1

αijNj

 , i = 1, . . . ,M, (1)

where Ni is the abundance of OTU i, µi is its maximum per capita growth rate, and αij is a parameter describing the130

proportional change in its growth rate with conspecific or heterospecific densities. Values of αij greater than zero imply131

that OTU j has a positive effect on OTU i, which might stem from interactions such as syntrophy, whereas values less132

than zero can signify interactions such as competition or chemical inhibition.133

For illustrative purposes, let us simplify our problem of estimating competition among soil types by assuming that134

only our single focal OTU occupies our habitats, and so is only capable of experiencing intraspecific competition. This135

permits us to simplify our model to the case where (i = j), and define αij = −µiK
−1
i , where Ki represents the local136

carrying capacity of our OTU i. This results in the familiar logistic population growth model describing decelerating137

microbial population growth with increasing population density. Expanding this model across a spatially-structured138

array of individual particles, we obtain the equation139

dNx

dt
= µNx

(
1− Nx

K

)
, x = 1, . . . , n, (2)

where Nx are the local sub-populations of our focal OTU on habitat particle x.140

With a collection of population equations for our individual particles, we can now aggregate our local dynamics141

to obtain general growth parameters for our soil types. This scaling-up process requires a spatial averaging of local142

population dynamics. Crucially, because the average of a nonlinear function is not equal to the function of its averaged143

covariates (i.e., f(N) 6= f(N)), to scale up microbial population dynamics — which are almost unanimously nonlinear144

— by averaging across spatially-variable local populations will result in biases proportional to the spatial population145

variation and model’s nonlinearity. This principle, called Jensen’s inequality, has important consequences for our ability146

to accurately estimate scaled-up model parameters and make predictions from any gLV model fit to datasets containing147

underlying spatial heterogeneity.148

The consequences of this spatial averaging process are illustrated in Fig. 3. For notational simplicity, we replace149

the growth function in equation 2, µNx(1 −Nx/K), with G(Nx). The spatially-averaged dynamical equation that150

we wish to obtain is dN
dt = G(N). Calculating our population dynamic model using the spatial averages of the151

populations we have measured, G(N), overestimates the correctly scaled-up population growth function, G(N). In Fig.152

3c, we generated four collections of particles in which spatially-explicit populations have been randomly drawn from153

lognormal distributions having equal means but different variances (σ2). We then used these simulated data to fit four154

spatially-averaged population growth functions, G(N). These results demonstrate how increasing the spatial variation155

among local populations has the effect of changing our scaled-up estimates of carrying capacity. The challenge for156

microbiologists is to accurately estimate G(N) using our measured population densities, Nx. Fortunately, if we have157

already collected these values, and if they can be reasonably fit to a population dynamic model, we can use the tools of158

scale transition theory [32, 33] to correctly obtain scaled-up population parameters. We briefly introduce these methods159

in the following section.160
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Figure 3: (A) Illustration of the concept of scaling-up local microbial community dynamics to quantify the behavior of
an aggregate sample. Colors denote an OTU’s population sizes across a heterogeneous collection of particles governed
by the shared, nonlinear dynamics, G(Nx), shown in equation 2. Note the conceptual differences between aggregating
these data by averaging over the local nonlinear dynamics, G(N), and by fitting our small-scale dynamical model to
the average population density, G(N). (B) The differences in these aggregation procedures result in differing estimates
for scaled-up population dynamics. The black curve shows the logistic governing dynamics, G(N), of populations
on individual particles (colored circles). Note the difference in growth rates between the correctly spatially-averaged
growth function (white diamond) and growth function fit to the spatial average population density (black diamond). (C)
Increasing the spatial variation of local populations results in vastly different spatially-averaged population dynamics.
Here again, the black line denotes the local dynamics, G(N), which equals the the spatial average when there is no
variation among subpopulations. For this concave-down function, increasing the spatial variation causes the scaled-up
carrying capacity, K∗ to be smaller than the local carrying capacity, Kx.

3 Recommendations moving forward161

Despite the various ways in which spatial heterogeneity can subvert our interpretation or complicate our assessment of162

microbial community interactions and dynamics, we are optimistic that these issues can be surmounted with prudent163

data collection, analysis, and interpretation. The lurking effects of habitat heterogeneity are most effectively mitigated164

by quantifying microbial populations or communities at the spatial scales over which cell-cell interactions occur,165

which is on the scale of micrometers to millimeters. Sampling at this scale has successfully been accomplished using166

individual grains of sand [13], aquatic organic particles [34], and sludge granules [35] — all of which encountered167

marked heterogeneity among particles. Sampling at this scale is facilitated by technologies such as fluorescence-168

activated cell sorting and laser-assisted microdissection, which offer the opportunity to precisely and efficiently capture169

individual microscopic particles for sequencing. However, as we have seen, even measurements made at the appropriate170

characteristic scales can be challenging to generalize.171

The restrictive assumptions of most correlation network and null models hinder our reliable assessment of microbial172

interactions in all but the most homogeneous samples. However, the influence of Simpson’s paradox and context-173

dependence may be surmounted by measuring and statistically accounting for the confounding effects of environmental174

and/or community variation among samples. Empirically, this might include increased efforts to quantify a sample’s175

micro-scale composition using spatially-resolved mass spectrometry and FISH techniques. Though challenging to176

collect, such data could then be used to more test the alternative hypotheses of habitat filtering and competition — both177

of which can feasibly manifest as identical community patterns in the presence of microhabitat variation.178
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While creative new statistical approaches for identifying nonlinear and context-dependent species interactions179

are becoming available [36], we suggest these methods be ground-truthed with more complex and realistic data than180

are currently in use. For example, rather than using time series simulated from equilibrial Lotka-Volterra equations181

to ground truth a new method, a more powerful validation routine could use data simulated from spatially-explicit182

agent-based models, which can test methods’ robustness to spatial heterogeneity, scale-dependence, and demographic183

stochasticity. We also encourage the inclusion of dynamic parameters in generalised Lotka-Volterra models. While184

it is challenging to estimate these parameters from observational data, experiments consistently show that microbial185

growth rate, carrying capacity, and interaction parameters are functions of their underlying environments. A benefit186

of including environmentally-dependent growth parameters in gLV models is that these models can then be used to187

quantify the effects of various coexistence-promoting mechanisms [29]. Context-dependent parameters also allow us to188

investigate the effects of environmental change on microbial populations and communities.189

The increasing use of gLV models in microbial ecology also prompts us to account for the effects of nonlinear190

spatial averaging on scaled up population dynamics (section 2.3). Chesson’s scale transition theory [32, 33] provides191

a mathematical framework for tackling the issues of spatial heterogeneity and nonlinearities in gLV models. We192

introduce the scale transition using two simple models, but refer interested readers to the original papers for general193

scale transition approaches [32, 33]. Continuing from section 2.3, we can calculate the scaled-up population dynamics,194

G(N), by accounting for the nonlinearity in G(Nx) using its second derivative, G′′(Nx), as well as the spatial variation195

in Nx, measured by the spatial variance, Var(N). The full, spatially-averaged population model can be approximated196

as197

dN

dt
= G(N) ≈ G(N) +

1

2
G′′(N)Var(N)

≈ g(N)N +
1

2
g′′(N)Var(N)N + g′(N)Var(N),

(3)

where 1
2G
′′(N) = g′(N) = −µ/K. This approximation is exact when the growth function is quadratic (as is the case198

for logistic growth).199

A similar, albeit more complicated scale transition can be calculated for a multispecies gLV model (eq. 1) [32].200

This model is commonly used to identify interactions, denoted by the αij parameters. By defining Wi =
∑M

j=1 αijNj201

and g(Wi) = µi+Wi, the scaled up version of equation 1 can be written as a function of mean field terms, a nonlinearity202

term, and spatial variances and covariances:203

dN

dt
≈ g(Wi)Ni +

[
1

2
g′′(Wi)Var(Wi) + g′(Wi)Cov(Wi, vi)

]
Ni

≈

µi +
M∑
j=1

αijNj

Ni −
M∑
j=1

αijCov(Ni, Nj),

(4)

where vi = Ni,x/Ni. Once again, we see that the spatially-averaged population dynamics are not simply a function of204

average populations across space. However, the only extra information needed to calculate the scale transition are the205

spatial variances and covariances of the populations, which we can approximate by measuring local population densities206

across a sufficient number of particles within a sample. Thus, the calculation of scale transition terms is straightforward207

once they are defined for a particular dynamic model.208
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Given the potential for biases and errors stemming from the joint effects of underlying spatiotemporal heterogeneity209

and other methodological choices (e.g., relative abundance transformations, normalization techniques) [37], it may210

seem like the inference of species interactions from observational microbial data represents an underdetermination211

problem. That is, there may be multiple, or even infinite potential mechanisms capable of generating an observed212

community pattern. However, this problem, like many in ecology and evolution, can more precisely be described as213

an example of contrast failure [38]. Instead of a solution-free, underdetermined system, we instead have one where214

our failure to parse competing hypotheses is a transient consequence of data insufficiency. Access to better, more215

contrastive data, derived either experimentally or observationally at the appropriate spatiotemporal scales, will refine216

our ability to discriminate among alternative hypotheses. In the meantime, we do not advocate for the abandonment217

of ’pattern-to-process’ approaches for deciphering microbial interactions. On the contrary, we are optimistic about218

continued methodological development in this area. In the meantime, we implore researchers to consider and confront219

the lurking effects of spatial structure on their inferred microbial interaction networks and growth parameters. At220

minimum, this could simply comprise a comment on the spatiotemporal scale over which the results are anticipated to221

hold and a description of the spatial structure contained within a sample unit.222
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