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Abstract 15 

Cystic fibrosis (CF) is a fatal genetic disease characterized by chronic lung infections due to aberrant 16 

mucus production and the inability to clear invading pathogens. The traditional view that CF infections 17 

are caused by a single pathogen has been replaced by the realization that the CF lung usually is colonized 18 

by a complex community of bacteria, fungi and viruses. To help unravel the complex interplay between 19 

the CF lung environment and the infecting microbial community, we developed a community metabolic 20 

model comprised of the 17 most abundant bacterial taxa, which account for >95% of reads across 21 

samples, from three published studies in which 75 sputum samples from 46 adult CF patients were 22 

analyzed by 16S rRNA gene sequencing. The community model was able to correctly predict high 23 

abundances of the “rare” pathogens Enterobacteriaceae, Burkholderia and Achromobacter in three 24 

patients whose polymicrobial infections were dominated by these pathogens. With these three pathogens 25 

were removed, the model correctly predicted that the remaining 43 patients would be dominated by 26 

Pseudomonas and/or Streptococcus. This dominance was predicted to be driven by relatively high 27 

monoculture growth rates of Pseudomonas and Streptococcus as well as their ability to efficiently 28 

consume amino acids, organic acids and alcohols secreted by other community members. Sample-by-29 

sample heterogeneity of community composition could be qualitatively captured through random 30 

variation of the simulated metabolic environment, suggesting that experimental studies directly linking 31 

CF lung metabolomics and 16S sequencing could provide important insights into disease progression and 32 

treatment efficacy. 33 

Importance 34 

Cystic fibrosis (CF) is a genetic disease in which chronic airway infections and lung inflammation result 35 

in respiratory failure. CF airway infections are usually caused by bacterial communities that are difficult 36 

to eradicate with available antibiotics. Using species abundance data for clinically stable adult CF patients 37 

assimilated from three published studies, we developed a metabolic model of CF airway communities to 38 

better understand the interactions between bacterial species and between the bacterial community and the 39 
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lung environment. Our model predicted that clinically-observed CF pathogens could establish dominance 40 

over other community members across a range of lung nutrient conditions. Heterogeneity of species 41 

abundances across 75 patient samples could be predicted by assuming that sample-to-sample 42 

heterogeneity was attributable to random variations in the CF nutrient environment. Our model 43 

predictions provide new insights into the metabolic determinants of pathogen dominance in the CF lung 44 

and could facilitate the development of improved treatment strategies. 45 

  46 
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Introduction 47 

Cystic fibrosis is a genetic disease which results in excessive mucus production that reduces lung function 48 

and impedes the release of pancreatic enzymes (1, 2). While digestive problems are highly prevalent 49 

among CF patients (3), approximately 80-95% of CF deaths are attributable to respiratory failure due to 50 

chronic airway infections and associated inflammation (1). The Cystic Fibrosis Foundation (CFF) 51 

estimates that approximately 70,000 CF patients are living worldwide and about 1,000 new CF cases are 52 

diagnosed in the United States each year (www.cff.org). Following Koch’s postulate (4), the traditional 53 

view of CF lung infections has been that specific airway pathogens are responsible for monomicrobial 54 

infections (5). CF bacterial pathogens that have been identified from patient sputum samples and 55 

commonly studied in vitro using pure culture include Pseudomonas aeruginosa, Haemophilus influenzae, 56 

Staphylococcus aureus and Burkholderia cepacia complex, including antibiotic-resistant strains such as 57 

methicillin-resistant S. aureus (MRSA) and multidrug-resistant P. aeruginosa (MDRPA) (1), as well as 58 

less common species such as Achromobacter xylosoxidans, Stenotrophomonas maltophilia and 59 

pathogenic Escherichia coli strains (6).  60 

With advent of culture-independent techniques such as 16S rRNA gene amplicon library sequencing, 61 

sputum and bronchoscopy samples from CF patients can be analyzed systematically with respect to the 62 

diversity and abundance of bacterial taxa present (7, 8). Numerous studies have shown that CF airway 63 

infections are rarely monomicrobial, but rather the CF lung harbors a complex community of bacteria that 64 

originate from the mouth, skin, intestine and the environment (7-10). 16S sequencing can reliably 65 

delineate community members down to the genus level, showing that the most common genera in adult 66 

CF patient samples are Streptococcus, Pseudomonas, Prevotella, Veillonella, Neisseria, Porphorymonas 67 

and Catonella (7). While the identities and relative abundances of the genera present can be determined 68 

by 16S rRNA gene sequencing, different analysis techniques are required to understand the interactions 69 

between the multiple bacterial taxa and the CF lung environment, the role of the individual microbes in 70 
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shaping community composition and behavior, and the impact of community composition on the efficacy 71 

of antibiotic treatment regimens. 72 

In silico metabolic modeling has emerged as a powerful approach for analyzing complex microbial 73 

communities by integrating genome-scale reconstructions of single-species metabolism within 74 

mathematical descriptions of metabolically interacting communities (11, 12). Modeled species 75 

interactions typically include competition for host-derived nutrients and cross-feeding of secreted 76 

byproducts such as organic acids, alcohols and amino acids between species (13, 14). Due to challenges 77 

in developing manually curated reconstructions of poorly studied species, including those present in the 78 

CF lung, most in silico community models have been restricted to ~5 microbial species (15-17) and fail to 79 

adequately cover the diversity of in vivo communities. This limitation can be overcome in bacterial 80 

communities by using semi-curated reconstructions developed through computational pipelines such as 81 

the ModelSeed (18), AGORA (19) and other methods (20). Given the availability of suitable single-strain 82 

metabolic reconstructions, a number of alternative methods have been developed for mathematical 83 

formulation and numerical solution of microbial community models (21-24). The recently developed 84 

SteadyCom method is particularly notable due to its formulation that ensures proper balancing of 85 

metabolites across the species and scalability to large communities (25). A properly formulated 86 

community model can yield information that is difficult to ascertain experimentally, including the effects 87 

of the host environment on community growth, species abundances, and cross-fed metabolite secretion 88 

and uptake rates. 89 

In this paper, we utilized 16S rRNA gene amplicon library sequencing data from three published studies 90 

(26-28) to develop a 17-species bacterial community model for predicting species abundances in CF 91 

airway communities. The 16S rRNA gene sequence data covers 75 distinct sputum samples from 46 adult 92 

CF patients, and captures the heterogeneity of CF polymicrobial infections with respect to taxonomic 93 

diversity and the prevalence of pathogens including Pseudomonas, Streptococcus, Burkholderia, 94 

Achromobacter and Enterobacteriaceae. The in silico community model was used to predict when each 95 
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pathogen may dominate the polymicrobial infection by using the 16S rRNA gene sequence data to restrict 96 

which pathogens were present in the simulated community. By randomly varying the availability of host-97 

derived nutrients, the model was used to simulate sample-by-sample heterogeneity of community 98 

compositions across patients and to understand how metabolite cross-feeding enhanced pathogen 99 

abundances. To our knowledge, this study represents the first attempt to metabolically model the CF 100 

airway bacterial community rather than model the individual metabolism of common CF pathogens (29-101 

34). Furthermore, our approach of directly predicting species abundances rather than using measured 102 

abundances as model input data to constrain predictions distinguished our study from other community 103 

modeling efforts driven by 16S rRNA gene sequence data (14, 35-37).  104 

Results 105 

Few Taxonomic Groups Dominate the CF Airway Community Samples 106 

Principal component analysis (PCA) was performed on the normalized read data of the 75 samples to 107 

evaluate sample heterogeneity. The first three principal components (PCs) captured 77.8% of the data 108 

variance, with the first PC capturing 57.3% of variance and most heavily weighting the most abundant 109 

genera Pseudomonas, Streptococcus and Prevotella as expected (Table S5). A considerable degree of 110 

heterogeneity was evident from a plot of the 75 samples in the coordinates defined by the first three PCs 111 

(Figure 2A). Most striking were the outlier samples from three patients infected with Enterobacteriaceae 112 

(samples 25-27), Burkholderia (samples 19-21) or Achromobacter (samples 31, 32) compared to the 113 

patients lacking these three organisms (i.e., the remaining 67 samples). 114 

Because each pathogen infected only a single patient among the 46 included patients, we generated a 115 

smaller dataset of 67 samples by removing these 8 samples. When PCA was performed on this reduced 116 

dataset, the first three PCs explained 92.6% of the data variance (Table S6), suggesting substantially 117 

reduced heterogeneity compared to the full dataset. These three PCs heavily weighted only the four 118 

taxonomic groups Pseudomonas, Streptococcus, Prevotella and Haemophilus, with the first PC 119 

representing high Pseudomonas and low Streptococcus, the second PC component representing high 120 
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Streptococcus and moderate Pseudomonas, and the third PC representing high Haemophilus, low 121 

Pseudomonas and low Streptococcus. Considerable heterogeneity was evident when the 67 samples were 122 

plotted using the first two PCs accounting for 84.2% of the variance (Figure 2B). Here the first PC 123 

represented high Pseudomonas, low Streptococcus, moderate Prevotella and moderate Haemophilus, and 124 

the second PC represented low Pseudomonas, high Streptococcus, low Prevotella and low Haemophilus. 125 

Based on these results, we focused our community modeling efforts on predicting the infrequent 126 

dominance of the pathogens Enterobacteriaceae, Burkholderia and Achromobacter, and the heterogeneity 127 

in the abundances of Pseudomonas, Streptococcus, Prevotella and Haemophilus across the remaining 128 

samples. Pseudomonas, Streptococcus and Prevotella have been found by directly sampling the lung of 129 

CF patients via bronchoalveolar lavage (38), while Haemophilus is a widely-accepted CF pathogen (7). 130 

The other 10 genera (Table 1) were maintained in the model to simulate competition/cooperation with the 131 

more dominant species and to determine if the relatively low abundances of these genera could be 132 

predicted.  133 

The Community Model Can Reproduce Dominance of CF Pathogens 134 

We simulated the growth of each species individually to compare their monoculture growth rates with the 135 

nominal community nutrient uptake rates (Table S4). Interestingly, the three highest growth rates 136 

belonged to the rare pathogens Escherichia, Burkholderia and Achromobacter, while the next three 137 

highest growth rates belonged to the common pathogens Pseudomonas, Streptococcus and 138 

Staphylococcus (Figure 3A; species numbered as in Table 1). These predictions were consistent with our 139 

modeling results for the gut microbiome (39) where opportunistic pathogens consistently had higher 140 

growth rates than commensal species. The other two species Prevotella and Haemophilus commonly 141 

observed in the 75 patient samples were predicted to have much lower in silico growth rates. The three 142 

species representing Fusobacterium, Granulicatella and Porphyromonas did not grow individually due to 143 

their inability to meet the defined ATP maintenance demand, although they could grow when strategically 144 

combined with other modeled species. For example, Fusobacterium, Granulicatella and Porphyromonas 145 
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were predicted to grow in coculture with Ralstonia, Prevotella and Actinomyces, respectively. The species 146 

abundances predicted for a specified nutrient condition depended both on the monoculture growth rates 147 

and the ability of each species to efficiently utilized secreted metabolites to enhance its growth rate. These 148 

emergent cross-feeding relationships allowed otherwise slower growing species to coexist with species 149 

that exhibited high monoculture growth rates. 150 

We conducted simulations using the nominal nutrient uptake rates (Table S4) to determine if the 151 

community model could capture dominance of each rare pathogen in the absence of the other two rare 152 

pathogens. Each simulation was performed by constraining the abundances of the other two pathogens to 153 

zero, effectively producing reduced communities of 15 species. The predicted abundances from each 154 

simulation were compared to the normalized reads averaged over the patient samples which contained the 155 

associated pathogen: Enterobacteriaceae/Escherichia (samples 25-27; Figure 3B), Burkholderia (samples 156 

19-21; Figure 3C) or Achromobacter (samples 31 and 32; Figure 3D). For each simulated case, the model 157 

correctly predicted dominance of the associated pathogen. For the Burkholderia- and Achromobacter- 158 

infected patients, the abundances of the dominant pathogen as well as less prevalent species were well 159 

predicted.  160 

We performed simulations for the remaining 43 patients by reducing the community to 14 species by 161 

constraining the abundances of all three rare pathogens to zero. The model predicted abundances were 162 

compared to the normalized reads averaged over the 67 samples remaining when the 8 rare pathogen-163 

containing samples were removed (Figure 3E). The model correctly predicted that Pseudomonas, 164 

Streptococcus and Prevotella would dominate the community, although the Prevotella abundance was 165 

overpredicted at the expense of Streptococcus as well as several less abundant genera. The only other 166 

genus present in the simulated community was Staphylococcus, while the averaged reads showed a 167 

greater amount of diversity. Compared to the averaged data, individual samples showed less diversity, 168 

which is more consistent with model predictions as discussed below. 169 

The Community Model Can Reproduce Pathogen Heterogeneity Across Airway Samples 170 
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The CF airway communities exhibited a substantial degree of sample-to-sample heterogeneity when rare 171 

pathogens were present (Figure 2A) or absent (Figure 2B). We performed simulations to assess the extent 172 

to which sample-to-sample differences in taxonomic group reads could be explained by heterogeneity in 173 

the metabolic environment of the CF lung. More specifically, we randomized the community nutrient 174 

uptake rates around their nominal values (Materials and Methods; Table S4) to mimic heterogeneous lung 175 

environments shown to occur across CF patients (40, 41) and in longitudinal samples from a single 176 

patient (42). Each simulation with a set of randomized uptake rates was termed a “simulated sample,” and 177 

we tested the hypothesis that the experimental samples could be interpreted as having been drawn from 178 

the much larger set of simulated samples we generated. Due to the relatively small number of 179 

Enterobacteriaceae/Escherichia-, Burkholderia- and Achromobacter-containing samples, we only 180 

performed 100 randomized community simulations for each of these pathogens. By contrast, 1000 181 

randomized simulations were performed for communities without these three rare pathogens since the 182 

associated patient sample size was comparatively large. The single model simulation that best represented 183 

a particular patient sample was determined by the minimum least-squares error between the normalized 184 

measured reads and the predicted abundances across all simulations. For the 8 rare pathogen-containing 185 

samples, we plotted the measured reads and predicted abundances of the five most common genera 186 

(Pseudomonas, Streptococcus, Prevotella, Haemophilus, Staphylococcus) and the pathogen of interest.  187 

For the remaining 67 samples, we plotted the five most common genera plus the next most abundant 188 

genus according to measured reads. 189 

Randomized nutrient simulations were able to generate model predictions that reproduced the major 190 

features of the 3 Enterobacteriaceae/Escherichia-containing samples (Figure 4A), including the high 191 

Enterobacteriaceae/Escherichia reads and presence of the other main community members 192 

(Pseudomonas, Streptococcus and Prevotella). The Streptococcus reads were predicted relatively 193 

accurately, while Pseudomonas reads were underpredicted and Prevotella reads were overpredicted. As 194 

measured by the least-squares error, improved predictions were obtained for the 3 Burkholderia-195 
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containing samples (Figure 4B). The Burkholderia reads were accurately reproduced and Streptococcus 196 

was correctly predicted to be the second-most abundant genus, suggesting a synergism between these two 197 

genera. This prediction has experimental support from in vitro experiments showing that mucin-degrading 198 

anaerobes such as Streptococci promote the growth of CF pathogens such as B. cenocepacia when mucins 199 

are provided as the sole carbon source (43). The two Achromobacter-containing samples were well 200 

predicted in terms of Achromobacter reads and Pseudomonas being the other dominant genus (Figure 201 

4C). These predictions are consistent with an in vitro study showing that Achromobacter sp. enhanced the 202 

ability of multiple P. aeruginosa strains to form biofilms (44). Furthermore, a clinical study with 53 203 

patients having positive cultures for A. xylosoxidans showed that all 6 patients that were chronically 204 

infected by A. xylosoxidans were co-infected with P. aeruginosa (45).  Complete comparisons of the 205 

normalized measured reads and model predicted abundances for the 8 samples with the rare pathogens are 206 

presented in Table S7, which shows that the model generally produced less diverse communities as 207 

measured by the richness (number of species with abundances exceeding 1%) and the equitability (the 208 

inverse Simpson metric; (46)).  209 

The lack of patient samples containing Enterobacteriaceae/Escherichia, Burkholderia and 210 

Achromobacter limited our ability to analyze heterogeneity of communities with these pathogens. By 211 

contrast, the 67 samples remaining when the 8 samples containing these three pathogens were removed 212 

offered a much larger dataset for heterogeneity analysis. Each of these 67 samples was matched to one of 213 

the 1000 randomized model simulations according to the smallest least-squares error between the 214 

normalized reads of the sample and the predicted abundances of the model (Table S8). Representative 215 

results are shown for patient samples with relatively small (Figure 5A), moderate (Figure 5B) and large 216 

(Figure 5C) error values. Samples which were most accurately reproduced generally contained high 217 

Pseudomonas reads (84%+/-15%) with the remainder of the community consisting of Streptococcus and 218 

Prevotella (Figure 5A). These 22 samples were best matched by 11 distinct models, suggesting that 219 
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patient samples dominated by Pseudomonas contained a higher degree of heterogeneity than the 220 

simulated samples. 221 

The 22 samples which produced moderate prediction errors were characterized by lower and more 222 

variable Pseudomonas reads (48%+/-28%) as well as more variable distributions of Streptococcus and 223 

Prevotella reads (Figure 5B). The ensemble of randomized models could capture the relative amounts of 224 

these three genera, but often predicted the presence of Staphylococcus not observed in the patient 225 

samples. This discrepancy could be attributable to the unmodeled ability of Pseudomonas to secrete 226 

diffusible toxins which inhibit Staphylococcus respiration and render Staphylococcus less metabolically 227 

competitive in partially aerobic environments (47) such as the CF lung. Interestingly, the model ensemble 228 

could reproduce the relatively high Ralstonia reads in sample 1 while also predicting no Ralstonia in 229 

samples 15 and 69. The 23 samples which produced the largest prediction errors were characterized by 230 

much lower Pseudomonas reads (13%), higher reads of Streptococcus and Prevotella (34% and 19%, 231 

respectively; e.g. samples 26 and 74 in Figure 5C) and higher representation of less common genera. 232 

These samples also produced higher Haemophilus reads, primarily due to two Haemophilus-dominated 233 

samples (e.g. sample 39 in Figure 5C). While the model ensemble generally was able to reproduce the 234 

observed Streptococcus and Prevotella reads in these samples, the models tended to overpredict 235 

Pseudomonas and Staphylococcus at the expense of the less common genera. In particular, the ensemble 236 

underpredicted the abundances of Rothia, Fusobacterium and Gemella while the average reads of these 237 

three genera across the 23 samples summed to 16% This discrepancy could suggest that these 23 samples 238 

were obtained from patients with less advanced CF lung disease, which correlates to higher diversity 239 

communities in vivo (28, 48).  240 

To gain further insights into the ability of the community model to mimic sample-to-sample heterogeneity 241 

in the absence of rare pathogens, we compared read data and abundance predictions in the PC space 242 

calculated from the 67 patient samples. Each of the 1000 model simulations was mapped into the two-243 

dimensional space defined by the first two PCs (Figure 2B), which explained 84.2% of normalized read 244 
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data variance (Table S6). The model ensemble was able to reproduce most of the observed variability as 245 

reflected by the cloud of model simulations overlapping most of the patient samples (Figure 6A). The 246 

patient and simulated samples covered the same range of the first PC, which was heavily weighted by 247 

Pseudomonas, Streptococcus and Prevotella (Table S6). Importantly, this consistency shows that 248 

heterogeneity across these three dominant genera could be predicted from variations in the CF lung 249 

metabolic environment, as we hypothesized.  250 

The model ensemble also could reproduce variations in the second PC, which was heavily weighted by 251 

the three dominant genera and Haemophilus, for sufficiently large values of the first PC, which 252 

corresponded to relatively high Pseudomonas and low Streptococcus and Prevotella. By contrast, the 253 

model ensemble did not cover the patient samples in the lower left quadrant of the PC plot (Figure 6B). 254 

These samples were characterized by unusual combinations of relatively high Prevotella, Haemophilus, 255 

Rothia and/or Fusobacterium that the model could not reproduce in its present form. Of these 12 poorly 256 

modeled samples, Prevotella was highly represented in 8 samples. When the normalized reads of these 8 257 

samples and their associated best-fit abundances were averaged, the models overpredicted Pseudomonas, 258 

Streptococcus and Staphylococcus at the expense of the less common genera (Figure 6C). 259 

The Community Model Predicts that Pathogen Dominance is Driven by Metabolite Cross-feeding 260 

To investigate putative metabolic mechanisms by which pathogens may establish dominance in the CF 261 

lung, we used model predictions to quantify rates of metabolite cross-feeding between species. For each 262 

rare pathogen (Escherichia, Burkholderia and Achromobacter), 100 simulations performed with 263 

randomized community uptake rates were used to calculate average exchange rates of the five most 264 

significantly cross-fed metabolites between Pseudomonas, Streptococcus and the pathogen of interest. 265 

The overall metabolite exchange rate from one species to another species was calculated by determining 266 

the minimum uptake or secretion rate for each exchanged metabolite and then summing these minimum 267 

rates over all exchanged metabolites.  268 
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Escherichia was predicted to consume the organic acids acetate, formate and L-lactate produced by 269 

Streptococcus, while Streptococcus benefitted from the amino acids serine and threonine secreted by 270 

Escherichia (Figures 7A and 7D). Due to the existence of alternative optima with respect to the secretion 271 

products (49), L-lactate secretion was not predicted in Streptococcus monoculture even through the 272 

metabolic reconstruction supported L-lactate production (19) [www.vmh.life]. While Streptococcus 273 

strains are well known to product L-lactate as the primary product via homolactic fermentation (50, 51), 274 

we chose not to manually curate the metabolic reconstruction since in silico L-lactate synthesis was 275 

induced by the presence of other community members such as Escherichia. Pseudomonas was minimally 276 

involved in metabolite exchange due to its low average abundance (~1%) across the 100 simulations. 277 

Hence, our model suggested that organic acid cross-feeding could play a role in Enterobacteriaceae 278 

propagation in the CF lung. 279 

More complex cross-feeding relationships were predicted for Burkholderia-containing communities that 280 

supported average Pseudomonas and Streptococcus abundances both exceeding 10%. The largest 281 

exchange rates were predicted for formate and acetate produced by Streptococcus and consumed by 282 

Burkholderia (Figures 7B and 7E). The two species also exchanged amino acids, with Streptococcus 283 

providing alanine to Burkholderia, and Burkholderia producing aspartate and serine for Streptococcus. 284 

Burkholderia provided the same two amino acids to Pseudomonas while receiving a small exchange of 285 

acetate in return. Pseudomonas also consumed formate secreted by Streptococcus. These model 286 

predictions suggested that acetate, formate and alanine produced by Streptococcus via heterolactic 287 

fermentation (50) could promote Burkholderia growth in vivo. Indeed, in vitro experiments have shown 288 

that mucin-degrading anaerobes such as Streptococci may promote the growth of CF pathogens such as B. 289 

cenocepacia by secreting acetate (43). 290 

Compared to the other two pathogens, Achromobacter was predicted to be less efficient at cross-feeding 291 

having only small uptake rates of alanine, L-lactate and threonine secreted by the other two species. By 292 

contrast, Pseudomonas was predicted to benefit from relatively large uptake rates of formate produced by 293 
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Streptococcus and succinate produced by Achromobacter.  Collectively, these model predictions could 294 

help explain the enhanced ability of Burkholderia to dominate the simulated CF airway communities 295 

compared to Achromobacter (Figure 4) despite the single-species growth rates of the two species being 296 

similar (Figure 3). 297 

Similar cross-feeding analyses were performed for 1000 simulations with randomized nutrient uptake 298 

rates in 14-species communities lacking Escherichia, Burkholderia and Achromobacter. To investigate 299 

the possibility of differential cross-feeding patterns, the simulations were split into 500 cases with the 300 

highest Pseudomonas abundances and 500 cases with the lowest Pseudomonas abundances (Figure 8A). 301 

For each set of 500 simulations, the average exchange rates of the five most significantly cross-fed 302 

metabolites between the four most abundant species (Pseudomonas, Streptococcus, Prevotella and 303 

Staphylococcus) were calculated. The overall metabolite exchange rate between any two species were 304 

calculated from the individual metabolite uptake and secretion rates as before. 305 

When Pseudomonas abundances were predicted to be relatively high (average 61%), community 306 

interactions were dominated by Pseudomonas consumption of formate, ethanol, acetate and aspartate 307 

secreted by the other three species (Figure 8B). Formate cross-feeding was predicted to be particularly 308 

important, which was consistent with an in vitro study showing that expression of the P. aeruginosa fdnH 309 

gene (encoding a formate dehydrogenase) was elevated in synthetic sputum medium compared to glucose 310 

minimal media (52). Similarly, the expression of the P. aeruginosa adhA (encoding an alcohol 311 

dehydrogenase) was elevated in patient-derived CF sputum compared to in vitro rich medium (53).  Since 312 

P. aeruginosa strains have the capability to uptake both formate and ethanol (54, 55), these in vitro 313 

studies suggest that this cross-feeding mechanism could occur in CF airway communities. Staphylococcus 314 

was the major source of exchanged formate and ethanol (Figure 8D), a prediction consistent with studies 315 

showing that P. aeruginosa benefits from the presence of S. aureus (47, 56). Both alanine and aspartate 316 

have been shown to serve as preferred carbon sources for P. aeruginosa in a minimal medium 317 

supplemented with lyophilized CF sputum (52). However, the ensemble model did not predict exchange 318 
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of L-lactate between P. aeruginosa and S. aureus, which differs from coculture experiments that mimic 319 

the CF lung environment (47). Strong interactions between P. aeruginosa and various Streptococci also 320 

have been reported (28), although the importance of metabolite cross-feeding in mediating these 321 

interactions remains incompletely understood (57). Finally, in the model Pseudomonas supplied small 322 

amounts of D-lactate for Prevotella and Staphylococcus consumption, a prediction consistent with an in 323 

vitro study showing P. aeruginosa anaerobic production of the LldA enzyme catalyzing D-lactate 324 

synthesis (58).  325 

When Pseudomonas abundances were predicted to be relatively low (average 32%), metabolite cross-326 

feeding remained dominated by Pseudomonas consumption of secreted byproducts and amino acids 327 

(Figure 8C). Pseudomonas was predicted to have high consumption rates of formate produced by all three 328 

other species and L-lactate synthesized only by Streptococcus, consistent with the ability of S. salivarius 329 

(59) and P. aeruginosa (47) to synthesize and consume L-lactate, respectively. Higher exchange rates 330 

between Streptococcus and Staphylococcus were predicted when Pseudomonas abundances were 331 

relatively low (Figure 8E). The two species cross-fed alanine and L-lactate produced by Streptococcus, 332 

and aspartate and ethanol secreted by Staphylococcus. Our predicted cross-feeding relationships in 333 

Pseudomonas- and Streptococcus-dominated communities could provide insights into CF disease 334 

progression, as high abundances of Streptococcus relative to Pseudomonas has been shown to correlate to 335 

higher diversity airway communities and improved CF clinical stability (28). 336 

Discussion 337 

The airways of cystic fibrosis (CF) patients are commonly infected by complex communities of 338 

interacting bacteria, fungi and viruses which complicate disease assessment and treatment. The unique 339 

bacterial communities resident in individual patients can be longitudinally resolved to the genus level by 340 

applying 16S rRNA gene amplicon library sequencing to sputum and bronchoscopy samples (8). While 341 

16S rRNA gene sequencing technology provides an unprecedented capability to identify bacterial 342 

pathogens in the CF lung, other analyses are required to understand how community members interact 343 
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and how these interactions impede or promote disease progression. Metabolomics represents a powerful 344 

tool to interrogate the complex metabolic environment of the CF lung (60), but the number and depth of 345 

studies published to date has been limited. Metabolic modeling is a complementary tool for probing 346 

complex microbial communities and their interactions mediated through competition for host-derived 347 

nutrients and cross-feeding of secreted metabolites (11). Community metabolic models can provide 348 

information difficult to obtain by purely experimental means, such as the combined impact of nutrient 349 

environment and metabolic interactions on community composition. Metabolic models also can predict 350 

the rates of metabolite exchange between species and identify cross-feeding relationships difficult to 351 

delineate through metabolomic analyses. 352 

We used 16S rRNA gene sequence data from three published studies (26-28) to construct and test a 353 

metabolic model for prediction of airway community compositions in adult CF patients. The assembled 354 

dataset consisted of 75 distinct samples from 46 patients who were judged to be stable or recovered from 355 

treatment in the original studies. Principal component analysis performed on 16S read data showed 356 

considerable heterogeneity of community composition across the 75 samples, including three patients 357 

infected with Enterobacteriaceae, Burkholderia and Achromobacter pathogens. Interestingly, each of 358 

these three patients was infected by only one of these “rare” pathogens, a characteristic we used to 359 

simplify our metabolic model simulations. The remaining 67 samples from 43 patients were largely 360 

dominated by Pseudomonas and/or Streptococcus but still exhibited substantial composition 361 

heterogeneity which provided a sufficiently-rich dataset to explore sample-to-sample variability.  362 

The community metabolic model was constructed by ranking the identified taxa according to their total 363 

reads across the 75 samples and representing each taxonomic group with a single genome-scale metabolic 364 

reconstruction obtained from the AGORA database (www.vmh.life) (19). To limit model complexity, 365 

only the 17 top-ranked taxa (16 genera and 1 combined family/genus) were included. The resulting in 366 

silico community contained the most common CF pathogens (Pseudomonas aeruginosa, Haemophilus 367 

influenzae, Staphylococcus aureus), “rare” pathogens (Escherichia coli, Burkholderia cepacian, 368 
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Achromobacter xylosoxidans), and 11 other species commonly observed in the CF sputum samples (e.g. 369 

Prevotella melaninogenica, Rothia mucilaginosa, Fusobacterium nucleatum). The 17 modeled taxa 370 

provided substantial coverage of the read data with an average coverage of 95.6+/-3.9% across the 75 371 

samples. Because our in silico objective of growth rate maximization tends to produce low diversity 372 

communities dominated by ~5 species (39), the relatively low diversity of these adult CF lung samples 373 

made them particularly well suited for analysis through metabolic modeling as compared to considerably 374 

more diverse bacterial communities found elsewhere in the human body (e.g. intestinal tract (39, 61); 375 

chronic wounds (62)). 376 

The community metabolic model required specification of host-derived nutrients that mimicked the CF 377 

lung environment in terms of the nutrients available, their allowed uptake rates across the community, and 378 

their allowed uptake rates by individual species. Given that the 17-species model contained 271 379 

community uptake rates and a total of 2,378 species-specific uptake rates, a model tuning method was 380 

developed to manage the daunting complexity. A putative list of host-derived nutrients was compiled by 381 

starting with the synthetic sputum medium SCFM2 (63) and adding other nutrients either required for 382 

monoculture growth of at least one modeled species, measured in metabolomic analyses of CF sputum 383 

samples or identified through in silico analyses. The resulting 81 nutrients were separated into 14 distinct 384 

groups to facilitate tuning of nominal community uptake rates to qualitatively match average read data for 385 

the rare pathogen samples and the Pseudomonas/Streptococcus-dominated samples. This tuning process 386 

proved to be the bottleneck of model development even under the simplifying assumption that the species 387 

uptake rates were not limiting. A more streamlined and experimentally-driven tuning process would be 388 

facilitated by the availability of matched 16S and metabolomics data for large sets of CF sputum samples. 389 

Despite the challenges associated with defining physiologically-relevant nutrient uptake rates, the 390 

community model was able to predict species abundance in qualitative agreement with average read data 391 

for Enterobacteriaceae-, Burkholderia-, Achromobacter- and Pseudomonas/Streptococcus-dominated 392 

samples. The modeling effort was simplified by omitting the other two rare pathogens when simulating 393 
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the 3 Enterobacteriaceae-, 3 Burkholderia- and 2 Achromobacter-containing samples and omitting all 394 

three rare pathogens when simulating the other 67 samples, as justified through analysis of the 16S rRNA 395 

gene sequence data. The 15-species models used to simulate the rare pathogen-containing samples were 396 

able to reproduce dominance of the associated pathogen and, to a lesser extent, the abundances of less 397 

prevalent species. However, satisfactory prediction of the 2 Achromobacter-containing samples required 398 

the addition of four carbon sources (arabinose, fumarate, galactonate, xylose) which have not been 399 

measured in the CF lung to our knowledge. While there is some experimental evidence to support their 400 

inclusion, the need to add these four metabolites to elevate in silico Achromobacter growth could point to 401 

limitations of the modeled nutrients and their defined uptake rates. 402 

The 14-species model used to simulate the rare pathogen-free samples predicted that Pseudomonas and 403 

Streptococcus would be the dominant genera, and that Prevotella and Staphylococcus also would be 404 

present in the community. These predictions provided qualitative agreement with the 16S rRNA gene 405 

sequence read data averaged across the 67 samples, although the predicted abundance of Prevotella was 406 

comparatively high and the predicted diversity was comparatively low.  Given the uncertainty associated 407 

with identifying host-derived nutrients and translating these available nutrients into appropriate 408 

community uptake rates, we considered our predictions to provide satisfactory in silico recapitulation of 409 

measured community compositions across the set of four dominant CF pathogens.  410 

A hallmark of CF lung infections is poorly understood differences in bacterial community compositions 411 

between patients and in longitudinal samples collected from a single patient (40). We performed 412 

simulations to test the hypothesis that these differences might be partially attributable to sample-to-413 

sample variations in the nutrient environment in the CF lung. Nutrient variability was simulated by 414 

randomizing the community uptake rates around their nominal values found through manual model 415 

tuning. We performed 100 model ensemble simulations for each 15-species community containing a rare 416 

pathogen to determine if the associated patient samples could be well fit by a simulated sample. Using the 417 

least-squares difference between the measured reads and predicted abundances as the goodness-of-fit 418 
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measure, we found that the model ensembles could satisfactorily reproduce the community compositions 419 

of the 8 rare pathogen-containing samples. The best-fit models tended to provide good predictions of rare 420 

pathogen reads due their relatively large values (average 65% across the 8 samples), while the accuracy of 421 

read predictions for less prevalent species was more variable.  422 

Due to the availability of a much larger dataset of 67 patient samples, the rare pathogen-free model 423 

consisting of 14 species afforded an opportunity to investigate sample-to-sample heterogeneity in more 424 

depth. We performed 1000 model ensemble simulations with randomized nutrient uptake rates to find 425 

best-fit models. Patient samples with relatively high Pseudomonas reads tended to be well fit because the 426 

model predicted Pseudomonas dominance over a wide range of nutrient conditions. Less accurate but still 427 

satisfactory fits were obtained for patient samples with moderate Pseudomonas and relatively high 428 

Streptococcus reads. The model ensemble proved somewhat deficient in fitting samples with high reads 429 

of Prevotella or of the less common genera Haemophilus, Rothia and Fusobacterium. This deficiency 430 

could be attributable to the in silico lung environment not containing key nutrients and/or not specifying 431 

sufficiently large uptake rates of supplied nutrients to support high abundances of these genera.  432 

The quality of sample fits also was correlated to the sample diversity, with the best fits having the lowest 433 

average diversity (inverse Simpson index of 0.10), moderate fits having an intermediate average diversity 434 

(inverse Simpson index of 0.18), and poor fits having the highest average diversity (inverse Simpson 435 

index of 0.23). For these three sets of samples, the best-fit models had average diversities of 0.10, 0.16 436 

and 0.20, respectively. We believe that the lower predicted diversities were attributable to the modeling 437 

assumption that the CF lung community maximizes its collective growth rate. Using a community 438 

metabolic model of the human gut microbiota (39), we have shown that increased bacterial diversity 439 

(typically associated with health) can be achieved by simulating suboptimal growth rates under the 440 

hypothesis that disease progression correlates to a collective movement towards maximal growth. 441 

Therefore, the assumption of maximal community growth may inherently limit our ability to accurately 442 
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reproduce more diverse samples, and rather simulate conditions associated with disease, such as 443 

dominance of a single pathogen. 444 

By optimizing cross-feeding of secreted metabolites, the community model was able to predict the 445 

coexistence of multiple species at the maximal community growth rate rather than just predicting a 446 

monoculture of the single species with the highest monoculture growth rate. Because the SteadyCom 447 

method (25) used to formulate and solve the community model does not allow direct incorporation of 448 

mechanisms by which one species could inhibit the growth of another species other than by nutrient 449 

competition, the predicted community growth rate always was greater than the highest individual growth 450 

rate of the coexisting species. Consequently, the formulated model was incapable was capturing more 451 

complex interactions such as Pseudomonas secretion of diffusible toxins that inhibit the growth of other 452 

CF pathogens (64). 453 

Despite this limitation, the community model could be analyzed to understand the putative role of 454 

metabolite cross-feeding in shaping community composition. The model predicted that the rare pathogens 455 

Escherichia and Burkholderia were particularly efficient cross-feeders, using acetate, formate and other 456 

secreted metabolites to establish dominance over less harmful bacteria. By contrast, the model predicted 457 

Achromobacter to be substantially less adept at exploiting secreted metabolites for growth enhancement. 458 

While we were able to simulate Achromobacter dominance through addition of four carbon sources 459 

possibly present in the CF lung, the model suggested that other non-modeled mechanisms may be 460 

involved in promoting Achromobacter expansion. One possibility is that Achromobacter utilizes its 461 

ability to form multispecies biofilms (44, 65) to establish favorable metabolic niches for enhanced 462 

growth. 463 

In the absence of the three rare pathogens, the model predicted that Pseudomonas would be the primary 464 

beneficiary of cross-fed metabolites including acetate, alanine and L-lactate from Streptococcus and 465 

aspartate, ethanol and formate from Staphylococcus. These complex cross-feeding relationships were an 466 

emergent property of the community model that could not predicted from monoculture simulations and 467 
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are consistent with published experimental data presented above. For example, the single-species models 468 

predicted that acetate, CO2 and formate would be the primary secreted byproducts yet the community 469 

model also cross-fed ethanol, D-lactate, L-lactate and succinate which were not predicted to be secreted in 470 

any monoculture simulation. We hypothesized that model ensemble simulations with relatively high and 471 

low Pseudomonas abundances would show differential cross-feeding patterns. While some of the specific 472 

cross-fed metabolites changed between the two cases, cross-feeding from Streptococcus and 473 

Staphylococcus to Pseudomonas remained the dominant feature of the simulated communities. In our 474 

assimilated dataset of 75 patient samples, Pseudomonas reads were above 10% in 55 samples and above 475 

50% in 35 samples. Our model predictions provide putative metabolic mechanisms that may help explain 476 

why Pseudomonas so efficiently colonizes the adult CF lung and why Pseudomonas commonly 477 

establishes dominance over other species once colonized.  478 

Our community metabolic model generated several predictions that could be tested experimentally with 479 

an appropriately designed in vitro community. For example, a 5-species in vitro system consisting of 480 

Pseudomonas aeruginosa, Streptococcus sanguinis, Prevotella melaninogenica, Haemophilus influenzae 481 

and Staphylococcus aureus would provide substantial coverage of our 16S rRNA gene sequencing data as 482 

the five genera account for 81% of reads across the 75 samples and greater than 75% of reads in 56 483 

samples. Specific model predictions that could be tested in vitro include the variability of community 484 

compositions by changing nutrient levels in a synthetic CF medium, and the cross-feeding of specific 485 

metabolites by genetically altering the secretion and/or uptake capabilities of these metabolites in the 486 

relevant species. The availability of such in vitro data linking the nutrient environment, cross-feeding 487 

mechanisms and community composition would allow direct testing of a simplified 5-species model and 488 

facilitate the development of improved community models for the analysis of CF sputum samples.  489 

Materials and Methods 490 

Patient Data: CF airway community composition data was obtained from three published studies in which 491 

patient sputum samples were subjected to 16S rRNA gene amplicon library sequencing (26-28). The 492 
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assimilated dataset contained 75 distinct samples from 46 patients who were clinically stable or recovered 493 

from treatment for an exacerbation event. Additional samples from these three studies corresponding to 494 

exacerbation or antibiotic treatment were not included in the modeled dataset to avoid the complications 495 

of predicting these events. The top 72 taxonomic groups (typically genera) accounted for over 99.8% of 496 

total reads across the 75 samples (Figure 1A; Table S1). To limit complexity, the community metabolic 497 

model described below was limited to 17 taxonomic groups that accounted for 95.6% of total reads 498 

(Figure 1B; Table S2). Reads from the family Enterobacteriaceae and the genus Escherichia were 499 

combined and represented as a single genus. To allow direct comparison with the species abundances 500 

predicted by the model, the reads for each sample were normalized over the 17 modeled genera to sum to 501 

unity (Table S3). 502 

Community Metabolic Model: For simplicity, each genus was represented by a single species commonly 503 

observed in CF airway communities (1, 6-9, 66), although we note that genera such as Streptococcus (28) 504 

can have considerably diversity with respect to species representation. As mentioned above, the combined 505 

Enterobacteriaceae/Escherichia taxonomic group was represented by the single species Escherichia coli. 506 

A genome-scale metabolic reconstruction for each species (Figure 1C) was obtained from a large database 507 

of AGORA models (19) (www.vmh.life). Table 1 lists the representative strain used for each genus, the 508 

normalized reads fractionally associated with each genus averaged across the 75 samples (also shown in 509 

Figure 1B), and the number of samples for which the normalized reads exceeded 1%. The community 510 

model accounted for 13,845 genes, 19,034 metabolites and 22,412 reactions within the 17 species as well 511 

as 271 uptake and secretion reactions for the extracellular space shared by the species. 512 

The genera Pseudomonas, Streptococcus and Prevotella dominated most communities, both in terms of 513 

average reads for individual samples and the number of samples in which they exceeded 1%. 514 

Interestingly, Enterobacteriaceae/Escherichia, Burkholderia and Achromobacter exceeded 0.1% in only 515 

single patients represented by 3, 3, and 2 samples, respectively. Moreover, no patients were infected by 516 

more than one of these “rare” pathogens, as the maximum reads of the other two pathogens never 517 
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exceeded 0.1% in these 8 samples. Therefore, for modeling purposes the 75 samples were partitioned 518 

into: 3 Enterobacteriaceae/Escherichia-containing samples with Burkholderia and Achromobacter 519 

absent; 3 Burkholderia-containing samples with Enterobacteriaceae/Escherichia and Achromobacter 520 

absent; 2 Achromobacter-containing samples with Enterobacteriaceae/Escherichia and Burkholderia 521 

absent; and 67 samples with all three rare pathogens absent. 522 

Model Tuning and Simulation: The nutrient environment in the CF lung is complex and expected to vary 523 

between patients as well as between longitudinal samples for individual patients depending on disease 524 

state. While metabolomic analyses have been performed on CF sputum and bronchoscopy samples (40, 525 

60, 66, 67), these studies were insufficient to define supplied nutrients for the metabolic model due to 526 

their limited metabolite coverage. Furthermore, we found that based on our model, the synthetic sputum 527 

medium SCFM2 used in previous in vitro CF microbiota studies (63, 68) would not support growth of 528 

any of the 17 modeled species due to the lack of ions (Co2+, Cu2+, Mn2+, Zn2+), amino acids (asparagine, 529 

glutamine) and other metabolites (see below) essential for growth. While the medium likely would 530 

contain trace amounts of the missing ions, the requirement of these other metabolites for growth suggests 531 

limitations for the AGORA metabolic models with respect to biosynthetic pathways leading to biomass 532 

formation. Given the semi-curated nature of the AGORA models (19), such discrepancies were expected 533 

and had to be addressed by adding the missing essential metabolites to the modeled medium. A final 534 

complication was that the community model required specification of nutrient uptake rates, which were 535 

unknown even if medium component concentrations were specified due to the lack of species-dependent 536 

uptake kinetics for each nutrient. Because such uptake information is rarely available even for highly 537 

studied model organisms such as Escherichia coli (69), a simplified approach was used to define nutrient 538 

uptake rates for the community model.  539 

Supplied nutrients in the community model were defined by starting with the SCFM2 medium and adding 540 

the four ions and two amino acids listed above. We found that each species required additional 541 

metabolites in the medium to support biomass formation. These 29 additional metabolites were identified 542 
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and added to the modeled medium such that all 17 species were capable of monoculture growth (see 543 

Table S4). For example, the P. aeruginosa model required addition of uracil and menaquinone 7, while in 544 

vitro experiments have shown that these metabolites are synthesized de novo and not required in the 545 

medium (63). Next, we added four carbon sources (fructose, maltose, maltotriose, pyruvate) and 8 other 546 

metabolites (adenosine, cytidine, glycerol, guanosine, hexadecanoate, inosine, octadecenoate, uridine) 547 

measured in the CF lung (67) and the terminal electron acceptor O2 to simulate aerobic respiration. 548 

Finally, we added four additional carbon sources (arabinose, fumarate, galactonate, xylose) that increased 549 

in silico Achromobacter growth such that Achromobacter would be competitive with other species when 550 

it was present in the community. While these carbon sources were identified in silico, there is 551 

experimental evidence to support their inclusion in the simulated CF lung environment. Fumarate has 552 

been shown to be elevated in sputum samples from young CF patients (70). Arabinose and xylose are 553 

constituents of extracellular polymer substance (EPS) produced by common human pathogens including 554 

the modeled genera Pseudomonas, Staphylococcus and Escherichia (71), suggesting their possible 555 

presence in the CF lung. Pathogenic Achromobacter strains isolated from CF patients has been shown to 556 

grow on galactonate as a sole carbon source (72), supporting the hypothesis that Achromobacter has 557 

evolved to utilize galactonate available in the CF lung. 558 

The community uptake rates of the 86 supplied nutrients were tuned by trial-and-error to produce species 559 

abundances in approximate agreement with the average reads listed in Table 1, which were derived from 560 

actual patient samples. To reduce the number of adjustable rates, the nutrients were grouped together and 561 

a single uptake rate was used for each group. These 14 groups were defined as: (1) 16 common metals 562 

and ions; (2) 29 essential growth metabolites; (3) 8 CF lung metabolites; (4) 19 amino acids; (5) the 563 

amino acids alanine and valine, which have been reported to be elevated in the CF lung compared to other 564 

amino acids (67); (6)-(11) each of the 6 carbon sources available in the CF lung; (12) O2; (13) NO3; and 565 

(14) 4 Achromobacter-related carbon sources. The 86 nutrients and their nominal community uptake rates 566 

determined through this tuning procedure are listed in Table S4 and depicted graphically in Figure 1D. 567 
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Because these nutrient uptakes rates were derived for the entire patient population and not an individual 568 

patient sample, a different strategy was used to simulate sample-to-sample heterogeneity based on the 569 

hypothesis that differences in nutrient availability could account for heterogeneity in measured reads. 570 

Individual patient samples were simulated by randomly perturbing the community uptake rate for each of 571 

the 14 nutrient groups listed above between 33% and 300% of its nominal value. Uniformly distributed 572 

random numbers were generated for each group such that the number of cases with the uptake rates in the 573 

range [33%-100%) and [100%-300%] were statistically equal. The bounds used for the uptake rate of 574 

each metabolite also are listed in Table S4.  575 

Community Simulations: We used the SteadyCom method (25) to perform community simulations as 576 

detailed in our previous study on the human gut microbiota (39). SteadyCom performs community flux 577 

balance analysis by computing the relative abundance of each species for maximal community growth 578 

while ensuring that all metabolites are properly balanced within each species and across the community. 579 

Each species model used a non-growth associated ATP maintenance (ATPM) value of 5 mmol/gDW/h, 580 

which is within the range reported for curated bacterial reconstructions. Cross-feeding of all 21 amino 581 

acids and 8 common metabolic byproducts (acetate, CO2, ethanol, formate, H2, D-lactate, L-lactate, 582 

succinate) was promoted by increasing the maximum nutrient uptake rates of these nutrients in each 583 

species model to 2.5 and 5 mmol/gDW/h, respectively. Outputs of each SteadyCom simulation included 584 

the community growth rate, the abundance of each species, and species-dependent uptake and secretion 585 

rates of each extracellular metabolite. The nominal nutrient uptake rates produced a single community not 586 

directly comparable to any single patient sample (Figure 1E), while each set of randomized uptake rates 587 

produced a unique community that was interpreted as a prediction of an individual patient sample (Figure 588 

1F). 589 

Data availability 590 

All data used for metabolic model development and testing is provided in the Supplemental Material. 591 
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List of Tables 785 

1. CF genera analyzed. Shown is a list of the 17 species/strains included in the CF airway community 786 

model, the normalized fractional reads for the associated genera averaged across the 75 samples, and 787 

the percentage of samples in which the normalized reads exceeded 1%. 788 

List of Figures 789 

1. Overview of the community metabolic modeling framework driven by patient microbiota 790 

composition data. (A) 16S rRNA gene sequence data for 46 patients averaged across 75 distinct 791 

samples for the 72 highest ranked taxonomic groups (typically genera). (B) 16S rRNA gene sequence 792 

data for the 17 highest ranked taxonomic groups normalized to sum to unity and then averaged across 793 

the 75 samples. The error bars represent the variances of the normalized read data. (C) AGORA strain 794 

models (19) selected for 17 species that represent each taxonomic group. (D) Definition of the 795 

nutrient environment through specification of the community uptake rate of each extracellular 796 

metabolite. (E) Species abundances predicted from a SteadyCom (25) simulation with nominal 797 

community uptake rates compared to normalized reads for a random patient sample. (F) Average 798 

species abundances predicted from an ensemble of SteadyCom simulations with randomized 799 

community uptake rates compared to normalized reads averaged across the patient samples. 800 

2. PCA performed on the normalized read data. (A) PCA performed for all 75 samples with the 801 

normalized reads for each taxonomic group plotted using the first three principle components (PCs) 802 

that explained 57.3%, 12.3% and 8.2%, respectively, of the data variance. Sample points for 803 

Enterobacteriaceae, Burkholderia and Achromobacter appeared as outliers. (B) PCA performed for 804 

67 samples when the 8 samples containing Enterobacteriaceae, Burkholderia and Achromobacter 805 

were removed. The normalized reads for each taxonomic group were plotted using the first two PCs 806 

that explained 72.6%, and 11.7%, respectively, of the data variance. 807 

3. Single-species and community simulations performed with the nominal nutrient uptake rates in Table 808 

S3. (A) Single-species growth rates with the species numbered according to Table 1. (B) Comparison 809 
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of predicted species abundances to the average of the normalized reads for the single patient infected 810 

with Enterobacteriaceae/Escherichia (samples 25-27). (C) Comparison of predicted species 811 

abundances to the average of the normalized reads for the single patient infected with Burkholderia 812 

(samples 19-21). (D) Comparison of predicted species abundances to the average of the normalized 813 

reads for the single patient infected with Achromobacter (samples 31, 32). (E) Comparison of 814 

predicted species abundances to the average of the normalized reads for the 43 patients not infected 815 

with Enterobacteriaceae/Escherichia, Burkholderia or Achromobacter (samples 1-18, 22-24, 28-30, 816 

33-75). 817 

4. Taxonomic reads for patient samples containing rare pathogens compared to species abundances 818 

predicted from community models with randomized nutrient uptake rates. The genera Pseudomonas, 819 

Streptococcus, Prevotella, Haemophilus and Staphylococcus and the indicated rare pathogen 820 

(Enterobacteriaceae/Escherichia, Burkholderia or Achromobacter) are shown for each case. (A) 821 

Individual models that best fit the 3 Enterobacteriaceae/Escherichia-containing samples 25-27 822 

selected from an ensemble of 100 15-species models without Burkholderia or Achromobacter. (B) 823 

Individual models that best fit the 3 Burkholderia-containing samples 19-21 selected from an 824 

ensemble of 100 15-species models without Enterobacteriaceae/Escherichia or Achromobacter. (C) 825 

Individual models that best fit the 2 Achromobacter-containing samples 31 and 32 selected from an 826 

ensemble of 100 15-species models without Enterobacteriaceae/Escherichia or Burkholderia. Each 827 

abundance for a patient sample is shown in the first bar and each abundance predicted by the 828 

corresponding model is shown in the second bar with red outline. 829 

5. Taxonomic reads for patient samples without rare pathogens compared to species abundances 830 

predicted from community models with randomized nutrient uptake rates. The genera Pseudomonas, 831 

Streptococcus, Prevotella, Haemophilus and Staphylococcus and the next most abundant genera are 832 

shown for each case. Individual models that best fit the 67 patient samples were selected from an 833 

ensemble of 1000 14-species models without Enterobacteriaceae/Escherichia, Burkholderia or 834 
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Achromobacter. (A) Three representative samples for which the least-squares error measures were 835 

within the smallest third of all samples. (B) Three representative samples for which the least-squares 836 

error measures were within the middle third of all samples. (C) Three representative samples for 837 

which the least-squares error measures were within the largest third of all samples. Each abundance 838 

for a patient sample is shown in the first bar and each abundance predicted by the corresponding 839 

model is shown in the second bar with red outline. 840 

6. Principal component analysis (PCA) of taxonomic reads for patient samples without rare pathogens 841 

and species abundances predicted from 14-species community models with randomized nutrient 842 

uptake rates. (A) Representation of the 67 patient samples in the two-dimensional space defined by 843 

the first two principal components (PCs) obtained when PCA is performed on the normalized reads of 844 

these patient samples. Species abundances predicted from an ensemble of 1000 models transformed 845 

into the PC space of the normalized read data. (B) Enlarged view of the lower left  portion of the PCA 846 

plot in Figure 6A. (C) Average genera reads obtained for 8 samples (5, 6, 10, 39, 42, 43, 49, 57, 61, 847 

68, 70, 74) in Figure 6B with elevated Prevotella representation compared to the average abundances 848 

predicted from the best-fit models for these 8 samples with the species number as in Table 1. 849 

7. Predicted metabolite crossfeeding relationships for 15-species communities containing Escherichia, 850 

Burkholderia or Achromobacter. Negative rates denote metabolite uptake and positive rates denote 851 

metabolite secretion. The overall metabolite exchange rate from one species to another species was 852 

calculated by determining the minimum uptake or secretion rate for each exchanged metabolite and 853 

then summing these minimum rates over all exchanged metabolites. The arrow thickness is 854 

proportional to the overall metabolite exchange rate between the two species. (A) Average exchange 855 

rates of the five highest crossfed metabolites between the three most abundant species for 100 model 856 

ensemble simulations containing Escherichia. (B) Average exchange rates of the five highest crossfed 857 

metabolites between the three most abundant species for 100 model ensemble simulations containing 858 

Burkholderia. (C) Average exchange rates of the five highest crossfed metabolites between the three 859 
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most abundant species for 100 model ensemble simulations containing Achromobacter. (D) 860 

Schematic representation of overall metabolite exchange rates for Escherichia-containing 861 

communities corresponding to Figure 7A. Pseudomonas was omitted due to its low exchange rates 862 

compared to the other two species. (E) Schematic representation of overall metabolite exchange rates 863 

for Burkholderia-containing communities corresponding to Figure 7B. (F) Schematic representation 864 

of overall metabolite exchange rates for Achromobacter-containing communities corresponding to 865 

Figure 7C. 866 

8. Predicted metabolite crossfeeding relationships for 14-species communities without Escherichia, 867 

Burkholderia and Achromobacter. 1000 model ensemble simulations were performed and split into 868 

500 cases with relatively high Pseudomonas abundances and 500 cases with relatively low 869 

Pseudomonas abundances. (A) Average abundances of the five most highly represented species for 870 

the high and low Pseudomonas abundance cases. (B) Average exchange rates of the five highest 871 

crossfed metabolites between the four most abundant species for high Pseudomonas abundance cases. 872 

(C) Average exchange rates of the five highest crossfed metabolites between the four most abundant 873 

species the low Pseudomonas abundance cases. (D) Schematic representation of overall metabolite 874 

exchange rates for high Pseudomonas abundance cases corresponding to Figure 8B. (E) Schematic 875 

representation of overall metabolite exchange rates for low Pseudomonas abundance cases 876 

corresponding to Figure 8C. 877 
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Table 1. CF genera analyzed. Shown is a list of the 17 species/strains included in the CF airway 879 

community model, the normalized fractional reads for the associated genera averaged across the 75 880 

samples, and the percentage of samples in which the normalized reads exceeded 1%. 881 

Species 

Number 

Species Strain Name Average 

Reads 

Sample 

Reads > 1% 

1 Pseudomonas aeruginosa NCGM2.S1 0.447 
 

 85.3% 

2 Streptococcus sanguinis SK36 0.213 88.0% 

3 Prevotella melaninogenica ATCC 25845 0.098 74.7% 

4 Escherichia coli str. K-12 substr. MG1655 0.029 4.0% 

5 Haemophilus influenzae R2846 0.028 22.7% 

6 Burkholderia cepacia GG4 0.026 4.0% 

7 Rothia mucilaginosa DY-18 0.026 48.0% 

8 Fusobacterium nucleatum subsp. nucleatum ATCC 25586 0.023 26.7% 

9 Staphylococcus aureus subsp. aureus USA300 FPR3757 0.023 34.7% 

10 Veillonella atypica ACS-049-V-Sch6 0.016 48.0% 

11 Achromobacter xylosoxidans NBRC 15126 0.014 2.7% 

12 Gemella haemolysans ATCC 10379 0.015 30.7% 

13 Granulicatella adiacens ATCC 49175 0.012 36.0% 

14 Neisseria flavescens SK114 0.008 18.7% 

15 Actinomyces naeslundii str. Howell 279 0.009 21.3% 

16 Porphyromonas endodontalis ATCC 35406 0.006 20.0% 

17 Ralstonia sp 5 7 47FAA 0.004 6.7% 
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Figure 1 884 

885 

Figure 2 886 
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Figure 3 888 

 889 

Figure 4 890 
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Figure 6 894 
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Figure 8 898 
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Supplementary Materials 902 

Table S1. 16S sequencing reads for the top 72 taxonomic groups assembled from three published CF 903 

studies. 904 

Table S2. 16S sequencing reads for the top 17 taxonomic groups assembled from three published CF 905 

studies. 906 

Table S3. Normalized 16S sequencing reads for the top 17 taxonomic groups assembled from three 907 

published CF studies. 908 

Table S4. Minimum, nominal and maximum community uptake rates for supplied nutrients. 909 

Table S5. Principal component analysis of normalized read dataset containing all 75 samples. 910 

Table S6. Principal component analysis of normalized read data excluding 8 samples containing 911 

Enterobacteriaceae/Escherichia, Burkholderia and Achromobacter. 912 

Table S7. Comparison of normalized reads and model predicted abundances for 8 patients samples 913 

containing the pathogen Enterobacteriaceae/Escherichia, Burkholderia and Achromobacter. 914 

Table S8. Comparison of normalized reads and model predicted abundances for 9 representative patient 915 

samples not containing the pathogens Enterobacteriaceae/Escherichia, Burkholderia or Achromobacter. 916 
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