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Abstract 

In our previous paper (Bijsterbosch et al., 2018), we showed that network-based modelling of              

brain connectivity interacts strongly with the shape and exact location of brain regions, such that               

cross-subject variations in the spatial configuration of functional brain regions are being            

interpreted as changes in functional connectivity. Here we show that these spatial effects on              

connectivity estimates actually occur as a result of spatial overlap between brain networks. This              

is shown to systematically bias connectivity estimates obtained from group spatial ICA followed             

by dual regression. We introduce an extended method that addresses the bias and achieves              

more accurate connectivity estimates. 

Impact statement 

We show that functional connectivity network matrices as estimated from resting state functional             

MRI are biased by spatially overlapping network structure. 

Introduction 

Resting state functional magnetic resonance imaging (rfMRI) can be used to characterise the             

rich intrinsic functional organisation of the brain (Biswal, Yetkin, Haughton, & Hyde, 1995).             

Distributed networks of brain regions exhibit coordinated activity of neural populations both            

within and between networks, known as functional connectivity (Fox et al., 2005; Greicius,             

Krasnow, Reiss, & Menon, 2003; Raichle et al., 2001). Analytical approaches to functional             

connectivity can be broadly split into voxel-based methods (deriving map-based connectivity           

estimates to study the spatial organisation of networks) and node-based methods (approaches            

based on network-science that describe connectivity in terms of “edges” between functional            

brain regions) (Bijsterbosch, Smith, & Beckmann, 2017; Rubinov & Sporns, 2010). Here, we             

focus on node-based methods and ask how complex aspects of spatial organisation may             

influence estimated node-based functional connectivity.  
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There is growing interest in interindividual differences in these node-based functional           

connectivity patterns and their potential use as markers for health and disease (Finn et al.,               

2015; Kaiser, Andrews-Hanna, Wager, & Pizzagalli, 2015). We previously showed that           

interindividual variability in estimated functional connectivity between brain regions is, to a large             

extent, driven by variability in the spatial organisation (i.e. the precise shape and location) of               

large-scale brain networks (Bijsterbosch et al., 2018). Specifically, our previous results revealed            

that node-based functional connectivity as normally estimated from rfMRI data is influenced by a              

mixture of spatial and temporal factors, with spatial information explaining up to 62% of              

interindividual variance. This is unexpected and arguably undesirable, because temporal          

correlation-based functional connectivity estimates are often considered as an accurate          

representation of temporal coupling strength between neural populations. Therefore, there is a            

need to better separate interindividual variability in spatial and temporal domains in analytical             

approaches to rfMRI data, in order to gain a better understanding of interindividual connectivity              

profiles and derive more interpretable associations with behaviour. To identify connectivity           

measures with the strongest unique association with behaviour (i.e. potential measures for            

clinical biomarkers), we need to understand and address the reason for the previously reported              

conflation of temporal and spatial sources of interindividual variability (Bijsterbosch et al., 2018). 

 

In our earlier work we tested a number of parcellation methods, including a group-level              

functionally-defined hard parcellation (Yeo et al., 2011), an individualised multimodal hard           

parcellation (Glasser et al., 2016), and both high and low dimensional soft parcellations             

estimated with Independent Component Analysis (ICA) (Beckmann & Smith, 2004). We found            

that the cross-subject variability in spatial organisation strongly influenced node-based          

functional connectivity estimates regardless of the parcellation type/method (Bijsterbosch et al.,           

2018). There are a number of possible explanations for this previously observed influence of              

spatial organisation on functional connectivity estimates, as discussed below.  

 

Firstly, it is possible that our previous findings were driven by misalignment between the spatial               

boundaries of functional regions (“nodes”) estimated at the group-level, and the true spatial             

organisation in an individual subject. This type of misalignment refers to the lack of              

voxel-to-voxel correspondence across individuals that remains even after applying standard          

alignment approaches (here surface-based multimodal alignment (Robinson et al., 2014)). A           

direct result of such misalignment, if not accounted for in the methodological approach used to               
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estimate node timeseries, is that those timeseries will incorrectly contain a mixture of multiple              

“true” node timeseries. The effect of such mixed timeseries is potentially profound, leading to a               

sharp reduction in the accuracy of subsequently estimated temporal correlations (“edges”)           

(Smith et al., 2011). Parcellations are typically defined at the group level in order to ensure                

correspondence between nodes across subject, although some parcellation approaches         

described above include steps to account for misalignment (e.g. using a classifier for the              

multimodal parcellation, and dual regression for ICA (Hacker et al., 2013; Nickerson, Smith,             

Öngür, & Beckmann, 2017)). While these approaches are expected to appropriately account for             

misalignment, our previous findings suggested that spatial information strongly influenced          

estimated temporal correlations despite the use of dual regression or classifier steps to obtain              

subject specific maps (Bijsterbosch et al., 2018). 

 

Secondly, it is expected that different parcellation methods preferentially represent connectivity           

information in either the temporal or spatial domain. For example, “nodes” in a low dimensional               

soft parcellation take the form of spatially extended networks of brain regions, and therefore the               

connectivity between functional regions that are included in the same network are described in              

the spatial map. Conversely, these functional regions would be split into separate nodes when              

using a high-dimensional (contiguous) hard parcellation, and consequently the same          

connectivity between functional regions must be described in the edges. In our earlier work we               

tested to what extent our findings were explained by this type of within-network connectivity              

information that may be represented in low-dimensional spatial maps. The findings showed that             

the direct mapping between low-dimensional extended networks and high-dimensional node          

edges does not explain the influence of cross-subject variability in spatial organisation on             

cross-subject variability in edge estimates (see Supplementary file 1e in (Bijsterbosch et al.,             

2018)). 

 

Thirdly, it is possible that the assumptions that underlie the estimation of the group-level              

parcellation are incorrect (e.g. the spatial independence constraint in spatial ICA). If the             

assumption of spatial independence is incorrect, this would result in mis-estimated group maps,             

which may affect how functional connectivity is represented in downstream dual regression            

estimates. Breaking the spatial independence assumption implies the presence of relatively           

extensive amounts of spatial overlap between nodes, such that spatial correlations between            

node maps are present. While this type of complex, overlapping spatial structure does not easily               
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fit with the intuitive notion of nodes (and is precluded, by definition, in hard parcellations), the                

example of overlapping receptive fields with selectivity for stimulus orientation, length, width, or             

color in V1 demonstrates the possibility for hierarchically overlapping functional systems (Van            

Essen & Maunsell, 1983). Indeed, task-based functional activation patterns can be more            

accurately captured based on soft-parcellations with inherent scope for overlap, compared with            

hard parcellations (Bzdok et al., 2016). It is possible that spatial ICA may underestimate spatial               

overlap between nodes (as a result of enforcing spatial independence in the estimated maps),              

although previous work has shown that, in the presence of noise, this overlap can be recovered                

using thresholding (Beckmann, DeLuca, Devlin, & Smith, 2005).  

 

An alternative parcellation method, designed to avoid the spatial independence constraint, is            

PROFUMO. This adopts a hierarchical Bayesian framework that includes spatial priors (for map             

sparsity and group map regularisation) and temporal priors (consistent with the hemodynamic            

response function) (Harrison et al., 2015). Maps obtained from PROFUMO commonly show            

relatively extensive amounts of spatial overlap (and hence spatial correlation) between nodes.            

These overlap regions may contain a spatial representation of complex between-node patterns            

of functional connectivity. Therefore, it is possible that the presence of these spatial correlations              

in PROFUMO maps, which are not present in un-thresholded group spatial ICA maps (by              

design, as a result of spatial independence), may explain our previous results (Bijsterbosch et              

al., 2018). 

 

The aim of this work is to disambiguate functional connectivity information in the temporal and               

spatial domains, and to determine the influence of different algorithms used for parcellation and              

connectivity estimation. Specifically, we focus on soft parcellations to determine the interaction            

between complex functional brain organisation and the estimation of spatial nodes and temporal             

edges. We adopt simulation approaches that allow direct control and knowledge of the ground              

truth, provide mathematical explanations, show examples observed in real data, and test            

associations with behaviour.  
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Results 

Dual regression performance in the presence of misalignment 

One potential explanation for our previously reported findings (Bijsterbosch et al., 2018), is             

spatial misalignment between the exact location of node boundaries in individual subjects            

compared with group maps. In a typical ICA pipeline, group ICA (using the temporal              

concatenation approach) is followed by dual regression (Nickerson et al., 2017). Dual            

regression aims to estimate subject-specific spatial maps that accurately capture spatial           

organisation, accounting for any misalignment with the group maps. We will refer to group ICA               

followed by dual regression as the ‘ICA-DR’ pipeline throughout. 

 

To assess the degree to which the ICA-DR pipeline is affected by spatial misalignment, we               

make use of the fact that data from the Human Connectome Project are available using two                

different surface-based versions of multimodal surface matching (MSM) spatial alignment          

(Robinson et al., 2018, 2014), and as volumetrically aligned data. Cortical alignment using             

“MSMSulc” is driven by gyral folding patterns alone, whereas cortical alignment using “MSMAll”             

incorporates multiple spatial features including folding patterns, myelin maps, functional resting           

state networks, and visuotopic maps for alignment. Previous work has shown substantial            

improvements in alignment when using MSMAll compared with MSMSulc, and both types of             

surface alignment are superior compared with volumetric alignment (Coalson, Van Essen, &            

Glasser, 2018).  

 

Here, we directly compare spatial alignment using MSMAll, MSMSulc, and volumetric data at             

the single subject level. Firstly, we perform single-subject ICA independently on each dataset             

(temporally concatenated across four runs; dimensionality = 25). Given that the data are             

identical apart from the alignment procedure, any differences in the spatial network boundaries             

extracted with ICA from the MSMAll or MSMSulc data should be driven exclusively by              

misalignment (although note that for volumetric data other tissue types such as white matter and               

CSF may influence the network decomposition). Furthermore, these single-subject ICA results           

are not influenced by other subjects or by the group, and can therefore be viewed as the                 

“ground truth” spatial organisation in this subject for each respective alignment type. Secondly,             
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we perform dual regression against group maps obtained from 1,004 subjects aligned using             

MSMAll (dimensionality = 25). Matching group maps in volumetric space were obtained by             

regressing each subject’s MSMAll stage 1 dual regression timeseries into that subject’s            

volumetric data, these maps were then averaged across all subjects and entered into a spatial               

ICA with the same dimensionality (to ensure spatial independence, which may not be fully              

preserved in the regression and averaging steps). These group maps are expected to better              

represent the subject-specific MSMAll-aligned data compared with the subject-specific         

MSMSulc and volumetrically aligned data. Therefore, we can directly test how well dual             

regression captures the “ground truth” spatial organisation obtained using single-subject ICA for            

each respective alignment type. This procedure was repeated separately in a subset of N=22              

subjects. 
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Figure 1: Comparison between MSMAll and MSMSulc alignment on dual regression results from 

an individual subject . A: Single-subject ICA result from MSMAll data acts as “ground truth”. B: 

Dual regression of this subject’s MSMAll data against MSMAll group maps captures 

subject-specific spatial organisation well. C: Single-subject ICA result from MSMSulc data 

shows spatial misalignment in parietal regions compared to single-subject MSMAll ICA results 

shown in A (from which the black outline was derived). D: Dual regression of this subject’s 

MSMSulc data against MSMAll group maps captures spatial organisation well, despite the 

observed spatial shift. These results illustrate dual regression being minimally affected by 

spatial misalignment. Note that the black outline in A, B, C reflects boundaries of MSMAll single 

subject results (shown in A), while the blue outline in D reflects boundaries of MSMSulc single 

subject results (shown in C). Data of Figure 1 will be made available on BALSA upon 

publication, where all 25 components can be viewed. 

 

Firstly, we perform spatial correlations between group maps and single-subject spatial ICA            

maps to determine how well the group maps represent the subject-specific organisation.            

Correlations are transformed using Fisher’s R-to-Z and entered into a one-way ANOVA with a              

factor for alignment (3 levels corresponding to MSMAll, MSMSulc, and volumetric). The main             

effect was significant (F(2,1098)=673.2, p<10-10), and all post-hoc paired tests were significant            

after Bonferroni correction (MSMAll-MSMSulc Z=0.045, p<10-10; MSMSulc-volumetric    Δ    Δ

Z=0.152, p<10-10; see Figure 1, Figure Supplement 1A). 

 

Next, we estimate the correlation between subject-specific maps obtained with dual regression            

and “ground truth” maps, separately for MSMSulc, MSMAll, and volumetrically aligned data.            

Results from a one-way ANOVA with a factor for alignment (3 levels corresponding to MSMAll,               

MSMSulc, and volumetric), showed a significant main effect, F(2,1098)=842.2, p<10-10. This           

effect was driven by a significantly lower correlation between dual regression and “ground truth”              

maps in volumetric data (MSMSulc-volumetric Z=0.242, p<10-10). Conversely, the difference in     Δ       

this correlation between MSMAll and MSMSulc did not reach significance ( Z=0.013, p=0.061;          Δ   

see Figure 1, Figure Supplement 1B).These results show that, despite misalignment between            

MSMSulc subject data and MSMAll group maps, dual regression was largely able to overcome              

this misalignment to estimate the subject-specific spatial organisation. However, dual regression           

was not able to correct for the more substantial amounts of misalignment observed in              

volumetrically aligned data. 
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An example of an individual ICA component is shown in Figure 1. These results qualitatively               

illustrate the extent to which dual regression corrected for minor misalignment between MSMAll             

and MSMSulc. There was a clear shift in the parietal node of the default mode network in                 

MSMSulc data (Figure 1C) compared with MSMAll data (Figure 1A). Nevertheless, dual            

regression against the identical set of group maps is able to accurately estimated the shifted               

versions of the subject maps (Figure 1B and 1D).  

 

Cross-subject relationship between temporal and spatial connectivity 

As discussed in the introduction, there are multiple potential reasons for the previously observed              

influence of spatial information on estimated node-based functional connectivity, including          

spatial misalignment and inappropriate parcellation assumptions. In the previous section we           

show that the contribution of spatial misalignment is likely to be relatively minor provided that               

surface-based alignment is used in conjunction with the ICA-DR pipeline. Next, we aim to test               

the role of inappropriate parcellation assumptions. 

 

Previous rfMRI research has utilised the spatial shape and amplitude of intrinsic networks             

(Filippini et al., 2009), or temporal correlation patterns between timeseries extracted from nodes             

(Smith et al., 2011). However, correlations between network/node spatial maps (“spatial edges”)            

are not commonly studied. A potential reason for this is that many parcellation approaches (by               

design) result in binary, non-overlapping node maps (Glasser et al., 2016; Gordon et al., 2016;               

Yeo et al., 2011). To begin to elucidate the interaction between estimated functional connectivity              

in the spatial and temporal domains, we first assess the relationship between temporal             

correlations and spatial correlations estimated with spatial ICA using HCP data.  

 

Group ICA was performed using all data from 1,004 HCP subjects, and the dimensionality of               

decomposition was fixed at 50 nodes. Following group ICA (using the temporal concatenation             

approach), dual regression was performed to derive subject-specific node timeseries and spatial            

maps. Dual regression comprises two stages, where stage 1 involves multiple spatial regression             

against group spatial ICA node maps (resulting in subject-specific node timeseries), and stage 2              
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involves multiple temporal regression against the stage 1 timeseries (resulting in subject-specific            

node spatial maps).  

 

Subject-specific node timeseries derived from 50 nodes are correlated to estimate a 50x50             

network matrix of temporal edges, and subject-specific node spatial maps from 50 nodes are              

correlated to estimate a 50x50 network matrix of spatial edges. Pearson’s correlation coefficient             

(“full correlation”) is used for both temporal and spatial edge estimates. Note that, while group               

spatial ICA maps are uncorrelated due to the spatial independence constraint, the            

subject-specific node maps derived from stage 2 of dual regression can be correlated. We              

subsequently directly compare the relationship between spatial and temporal network matrices           

across all edges and subjects.  

 

 

Figure 2: Direct comparison of spatial and temporal edges estimated with dual regression 

(following group ICA). Each point in the figure panels represents one edge in one subject (i.e. 
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1225 edges x 1004 subjects are shown). The results show that full temporal and full spatial 

edges obtained from ICA-DR are negatively correlated. This negative correlation largely persist 

when ‘outlier’ edges with a spatial correlation below -0.2 are removed from the comparison 

(r=-0.19) 

 

The results reveal a significant negative correlation (across edges and subjects) between            

ICA-DR temporal network matrix edges and ICA-DR spatial network matrix edges (Figure 2).             

This means that when the spatial maps for two nodes are less correlated (e.g. there is less                 

spatial overlap), then there is more positive functional connectivity between these nodes. This             

negative association is surprising, because one might expect the presence of less spatial             

overlap between two nodes to be associated with less functional connectivity (rather than more)              

between those nodes.  

 

Temporal and spatial network matrix estimation in ICA followed by dual regression 

We now provide evidence that the negative association between node spatial map correlations             

and functional connectivity in Figure 2 could be the result of dual regression being used on                

spatial ICA maps that are incorrect, due to the assumption of spatial independence being wrong               

(e.g. when there is spatial overlap between nodes).  

 

Consider that neuroimaging data can be summarised as a linear combination of a set of    Y            

spatial maps and a set of timeseries following the outer product model:S T  

 

RSY = T ′  [1] 

QQSY = T ′ ′  [2] 

 

Here is a square rotation matrix, which may be changed from the identity matrix in QR = Q ′                

order to enforce independence in either the spatial or temporal domain (as is the case in ICA).                 

The covariance matrix of , forming the basis of the dense connectome, can now be written as:Y  

 

ov(Y ) ov(TQQS )c = c ′ ′ [3] 

ov(Y ) ov(TQ) cov(QS )c = c ′ ′ [4] 
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If the rotation matrix enforces spatial independence, is equal to the identity    QQ ′     ov(QS )c ′ ′       

matrix. Equation 4 therefore shows that all covariance information must be contained in             

in the case of spatial independence. Hence, as estimated from spatial ICA (orov(TQ)c        ov(TQ)c        

equivalently from stage 1 dual regression) reflects a weighted combination of the ground truth              

temporal and spatial covariance. Generally speaking, each parcellation method sits somewhere           

along a continuum of how the total combined temporal and spatial covariance structure is              

represented, as determined by the form of the rotation matrix . For example, both          QQ ′     

non-overlapping hard parcellations and spatial ICA represent all covariance structure          

temporally, whereas temporal ICA represents all covariance structure spatially (Smith et al.,            

2012). PROFUMO does not explicitly enforce orthogonality or independence in either domain,            

and sits along this continuum between both extremes based on model parameters and priors.  

 

To explain the negative correlation between dual regression spatial and temporal network            

matrices (Figure 2), we need to look at stage 2 of dual regression. Here, a multiple temporal                 

regression is performed using the timeseries from equation [4] to estimate node spatial     QT          

maps: 

 

inv(TQ) YSDR = p [5] 

 

Assuming that are zero mean and unit variance, the first part of the pseudo-inverse  QT              

is equal to the inverse of the covariance matrix (i.e. the partial correlation betweenTQ  TQ ) (  ′  
−1               

stage 1 dual regression timeseries multiplied by -1). Therefore, the spatial maps obtained in              

equation [5] ( ) are negatively weighted by the partial correlation between the stage 1  SDR             

timeseries ( ). As we saw in equation [4], represents a weighted combination of the QT        ov(TQ)c        

ground truth spatial and temporal covariance due to the enforced spatial independence.            

Therefore, the inflated temporal correlations in will negatively weight the correlations      ov(TQ)c       

between spatial maps, resulting in the negative correlation observed in Figure 2.  

 

It is worth noting that the above theory holds in the absence of any added unstructured noise,                 

which is expected to be present in realistic rfMRI data. Previous work has shown that               

thresholding can be used in the presence of noise to recover spatial overlap between group               
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spatial ICA node maps (Beckmann et al., 2005). Therefore, using thresholded maps to extract              

timeseries may be an appropriate technique to provide more accurate measures of spatial and              

temporal network matrices for the ICA-DR pipeline. This thresholding approach is discussed and             

tested in detail below in the section entitled “Using mixture-model thresholding to improve ICA              

dual regression estimates”. 

 

To show the effects of the theory described above, we performed a two dimensional simulation               

that includes two correlated maps (25% overlap; each map occupying 1 percent of total voxels).               

We generated data for 50 subjects by taking the outer product of the maps with two correlated                 

timeseries, and entered simulated data from all 50 subjects into a spatial ICA using the temporal                

concatenation approach. Random noise was added to each map in each subject, but there was               

no systematic misalignment across simulated subject data. The full simulation was repeated            

across 10 instances to obtain robust results. Example group maps estimated using spatial ICA              

show somewhat weaker weights in the overlapping region, consistent with the independence            

constraint (Figure 3A and insert). The group maps are used in a dual regression pipeline to                

obtain estimated subject timecourses (and derived temporal correlations), and estimated subject           

maps (and derived spatial correlations). As described in the theory above and consistent with              

the results shown in real data in Figure 2, the derived spatial and temporal network matrices are                 

inversely correlated with each other (Figure 3B). As expected, the temporal network matrix             

edges were shifted positively compared to the ground truth (Figure 3C), and the spatial network               

matrix edges were shifted negatively compared to the ground truth (Figure 3D). Nevertheless,             

the individual maps and timecourses estimated with ICA-DR are highly correlated with the             

ground truth (Figure 3E). Hence, even though the first-order map and timecourse estimates from              

ICA-DR may have good accuracy, second-order spatial and temporal edge estimates can be             

more strongly affected by systematic shifts if the assumption of spatial independence is not met.  
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Figure 3: Simulation results showing the effects of assuming spatial independence when there 

is spatial overlap between nodes. A: Spatial ICA leads to an underestimation of map weights in 

the overlapping area and an introduction of negative weights to meet the assumption of spatial 

independence. B: The temporal correlation between timeseries (Tnet) as estimated by dual 

13 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 15, 2019. ; https://doi.org/10.1101/520502doi: bioRxiv preprint 

https://doi.org/10.1101/520502
http://creativecommons.org/licenses/by/4.0/


regression is a weighted sum of the ground truth temporal correlation and the ground truth 

spatial correlation, leading to a negative correlation between temporal and spatial (Snet) 

correlations estimated with ICA-DR. C: Temporal correlations estimated with dual regression 

(orange) are inflated compared to the ground truth (blue). D: Spatial correlations estimated with 

dual regression (orange) have a negative bias compared to the ground truth (blue). E: Despite 

large shifts in temporal and spatial correlations observed in C and D, the accuracy of estimated 

timeseries (magenta) and spatial maps (green) is relatively high. 

 

The theory and simulation above describe the effects of the presence of “true” spatial overlap on                

estimated temporal and spatial correlations obtained from a traditional ICA-DR pipeline. Spatial            

overlap is shown to affect estimated temporal and spatial correlation such that: i) temporal              

correlations between stage 1 dual regression timeseries are a weighted sum of ground truth              

spatial and temporal correlations, and ii) spatial correlations between stage 2 dual regression             

node maps are inversely weighted by the partial correlation between timeseries.  

 

In our previous work we showed that simulated data containing *only* interindividual variation in              

node spatial maps resulted in a substantial amount of interindividual information in temporal             

network matrices estimated with ICA-DR (Bijsterbosch et al., 2018). There, the spatial            

information in the simulated data (i.e. the simulation “ground truth”) were subject-specific PFM             

maps, which are known to contain spatial overlap (Harrison et al., 2015). Therefore, the theory               

above provides a clean (and mathematical) explanation for how the “ground truth” spatial             

correlations present between PFM spatial maps can contaminate temporal correlations          

estimated from traditional ICA-DR. 

 

Evidence for the existence of overlap in real data 

The theory and results in the previous sections show the potential effect of “true” spatial overlap                

on results obtained from the ICA-DR pipeline. An important question is what level of overlap in                

the spatial organisation of large-scale brain networks is present in rfMRI data. While it is not                

straightforward to know the “ground truth” functional organisation in the human brain, we             

present several results that can provide insights.  
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The first approach is to simply take subject-specific map estimates obtained from different             

parcellation methods (ICA-DR and PROFUMO), and to sum the grayordinate-wise weights           

across all maps. Subject-specific maps are first normalized (separately per node) to a maximum              

of 1 and thresholded such that voxel weights between -0.2 and 0.2 are set to zero to remove                  

background noise. These steps are needed to avoid the resulting summary overlap maps being              

driven by either node maps with strong weights or by contributions from background weights.              

For each subject, a summary map is obtained by summing the absolute values at each               

grayordinate across all node maps. These summary maps are subsequently averaged across            

all subjects. The results of this simple approach reveal areas of overlap in the              

temporo-parietal-occipital junction (Figure 4A). Overlap areas are spatially consistent between          

ICA-DR and PROFUMO approaches, although PFM maps show somewhat more extensive           

regions with high overlap. 

 

In addition, it is of interest to compare maps obtained from ICA and PROFUMO. PROFUMO               

does not enforce the spatial independence constraint and is therefore well suited to capture              

overlap. Figure 4B shows a direct comparison of the overlap between two matching group-level              

components obtained from PROFUMO and ICA. The spatial correlation between un-thresholded           

ICA and PFM maps is high (r=0.84 between the red maps and r=0.80 between the green maps).                 

However, the spatial correlation between the two un-thresholded PFM maps is strong (r=0.46),             

whereas there is no correlation between the two un-thresholded ICA maps. While the             

thresholded maps in Figure 4B on the right show that ICA captures some of the overlapping                

regions, the extent of these is qualitatively reduced compared to PFM maps on the left. 
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Figure 4: Overlap as estimated from data from the Human Connectome Project. A: The absolute 

sum across node maps reveals a cortical pattern of overlap regions. Overlap occurs most 

noticeably in the temporal-parietal-occipital junction, and the spatial organisation is similar 

between PROFUMO results (left) and ICA-DR results (right). As expected, overlap is somewhat 

more extensive in PROFUMO results compared with ICA-DR. B: A specific example shows that 

overlap is increased between PFM maps, even when highly similar spatial maps are found with 

ICA-DR. Data of Figure 4 will be made available on BALSA upon publication, where overlap 

between all map pairs can be visualised. 
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Using mixture-model thresholding to improve ICA dual regression estimates 

We have demonstrated that if the assumption of spatial independence is incorrect, then this              

induces negative correlations between node spatial maps, which in turn can contaminate            

functional connectivity through dual regression. We now consider an alteration to traditional ICA             

dual regression to alleviate this contamination. The proposed method works by reducing the             

problematic negative spatial correlations present in the node/component spatial maps following           

spatial ICA. This is known as thesholded dual regression, in which a Gaussian/Gamma mixture              

model can be fitted to the histogram of an ICA component map to determine a threshold used to                  

zero the background. This allows better recovery of ground truth spatial correlations in simple              

simulations (see Figure 3 in (Beckmann et al., 2005)).  

 

In order to estimate timecourses such that the temporal network matrices more accurately             

match the ground truth, we propose to perform thresholding of the subject-specific spatial maps              

obtained from dual regression stage 2 using Gaussian/Gamma mixture modelling. Specifically,           

the proposed solution includes the following stages (Figure 5): 

1. Multiple regression of subject data against group maps (identical to current stage 1) 

2. Multiple regression of subject data against stage 1 timeseries (identical to current stage             

2) 

3. Thresholding of stage 2 spatial maps using mixture modelling (newly proposed stage 3) 

4. Multiple regression of subject data against stage 3 thresholded maps (newly proposed            

stage 4) 

These stage 4 timeseries will then be used for the estimation of temporal network matrices,               

instead of using the intermediate timeseries from dual regression stage 1. Below, we use              

simulations to test this thresholded ICA-DR procedure against the standard ICA-DR pipeline            

and against PROFUMO. 

 

In stage 3 above, mixture modelling is used to approximate the distribution of voxelwise spatial               

weights in a given subject-specific stage 2 map using a Gaussian for the background, and two                

Gamma distributions for positive and negative tails (Beckmann et al., 2005). The mean and              

standard deviation of the Gaussian background distribution are used to shift and rescale the              

map weights and a threshold of 2 is applied to set the background to zero. 
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Figure 5: Summary schematic of the stages involved in the proposed thresholded dual 

regression procedure. The timeseries output from Stage 4 should be used to perform further 

node-based analyses. 

 

Dual regression can be performed as part of two different analysis pipelines with relatively              

separate goals and interpretations. Firstly, dual regression can be performed in order to draw              

inferences regarding the spatial shape and local amplitude of networks. This analysis procedure             

is best performed on the un-thresholded stage 2 spatial maps, because subject-specific            

thresholding may introduce unwanted biases in the subsequent voxel-wise inference performed           

on the maps. Secondly, dual regression can be performed in order to extract timecourses used               

to estimate temporal network matrices (and hence downstream inferences based on           

network-matrix edge comparisons across subjects). For this second analysis pipeline we show            

here that using stage 4 timeseries instead of stage 1 timeseries is beneficial in order to more                 

clearly separate spatial and temporal information (at least in the typical case of whole-brain              

analyses; spatial ICA performed within a small region of interest may behave differently if the               

number of background voxels is reduced relative to the number of ‘active’ voxels, such that the                

mixture model may not be valid). A third potential use of dual regression is to study spatial                 
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network matrices. While spatial relationships between networks are not typically studied, there is             

increasing interest in cross-subject differences in spatial network organisation. Spatial network           

matrices (which should be studied using stage 3 thresholded maps) reflect a relatively simple              

metric related to overlapping organisation and may become of increasing interest, particularly            

when studying associations with behaviour. 

 

Direct comparisons of PROFUMO and ICA accuracy using simulations 

To test the accuracy of estimates obtained from PROFUMO, traditional ICA-DR, and            

thresholded ICA-DR (described in the previous section), we simulated an rfMRI dataset            

containing a ground truth set of nodes. To generate the simulations, we followed the general               

framework described in detail in (Harrison et al., 2015), with slight changes to some of the                

parameters. Briefly, the simulated data contained 10,000 voxels, 30 subjects, 2 runs per             

subject, and 600 timepoints per run. This full simulation is repeated 10 times in order to obtain                 

well-sampled results. 

 

In the spatial domain, a binary atlas of 100 non-overlapping contiguous parcels was generated,              

and random subject-specific warps were applied as a simplified representation of misalignment            

(with the maximum possible voxelwise displacement equal to the average parcel size). Then, 15              

non-binary spatial node maps were generated by specifying weights for each atlas parcel             

determining how strongly it contributes to each spatial node. While the parcel identities were              

fixed, the strength of the weights varied from subject-to-subject. In the temporal domain, sparse              

and correlated ‘neural’ timecourses were generated and convolved with subject-specific          

haemodynamic response functions. 

 

Following the generation of subject data, the full PROFUMO, traditional ICA-DR, and            

thresholded ICA-DR pipelines are performed to obtain group maps, subject-specific maps, and            

subject-specific timeseries. To test the performance of each of these approaches, we calculate             

(at a subject level): i) the correlation between estimated and ground truth timeseries, ii) the               

correlation between estimated and ground truth spatial maps, iii) the correlation between            

estimated and ground truth results for each temporal network matrix edge (across subjects),             

and iv) the correlation between estimated and ground truth results for each spatial network              

matrix edge (across subjects).  
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In addition, we focus on a specific subset of the edges (across all repeats of the simulation) with                  

significantly positive ground truth spatial correlation based on a one-tailed t-test against zero             

(after Bonferroni correction for multiple comparison across 15*14/2 edges * 10 iterations = 1050              

comparisons). A total of 126 edges (out of 1050) showed significant ground truth positive spatial               

correlation. The simulations are designed to have reasonable, but not excessive, amounts of             

spatial overlap (consistent with the results in Figure 4A), and therefore the spatial correlations              

are relatively weak, despite being significantly different from zero. We investigate these specific             

edges further because the tests described above are correlation-based and it is possible that              

interindividual variance is captured well (leading to good results in correlation-based tests) even             

in the presence of a considerable bias in absolute network matrix values. We aim to test                

whether there is any absolute bias away from ground truth network matrix values (as measured               

with the positive-edge comparisons), and how well each method captures relative differences            

between individuals (as measured using the correlation-based tests) 

20 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 15, 2019. ; https://doi.org/10.1101/520502doi: bioRxiv preprint 

https://doi.org/10.1101/520502
http://creativecommons.org/licenses/by/4.0/


 

Figure 6. Simulation results to compare traditional ICA-DR, thresholded ICA-DR, and 

PROFUMO performance. A: Correlations between ground truth and estimated subject 

timeseries is high across all three methods. B: Correlations between ground truth and estimated 

subject spatial maps is highest in PROFUMO results (red), and improved in thresholded ICA-DR 

results (blue) compared to traditional ICA-DR results (green). Similar results are found for 

cross-subject correlations of temporal network matrix edges (C), and for cross-subject 
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correlations of spatial network matrix edges (D). Results in A-D are shown for all maps that 

achieved a minimum group-average spatial correlation between ground truth and estimated 

maps of r=0.5 across the three methods. Figures E and F show results for a subset of edges 

with significantly positive spatial correlation. Here, the first “ground truth” column shows the 

distribution of ground truth edge strengths, whereas columns 2-4 show the difference between 

estimated and ground truth edge strengths (i.e. results in columns 2-4 that are closest to zero 

are best).  

 

The results show that the accuracy of estimated timeseries is relatively good in all of the                

analysis pipelines tested here (Figure 6A). The accuracy of spatial map estimation is superior in               

PROFUMO compared to both variations of the ICA-DR pipeline (Figure 6B). As expected, the              

accuracy of spatial map estimates was improved using the thresholded ICA-DR pipeline            

compared to the traditional ICA-DR pipeline (Figure 6B). Similar overall results are found for the               

accuracy of spatial network matrices (Figure 6D). These biases in secondary estimates for             

spatial and temporal edges are also found in the absence of any between-subject spatial              

misalignment, confirming that this effect is independent of any potential misalignment problems            

(Figure 6, Figure Supplement 1). When focusing on edges with significantly positive ground             

truth spatial correlation, PROFUMO outperformed both ICA-DR pipelines for estimating spatial           

edges (Figure 6E), whereas thresholded ICA-DR results were closest to the ground truth for              

estimating temporal edges (Figure 6F). 

 

Linking spatial overlap and temporal network matrices to behaviour 

In our previous work we found a strong relationship between PROFUMO spatial maps and a               

behavioural mode that includes positive and negative traits (Bijsterbosch et al., 2018). Here, we              

repeat the canonical correlation analysis (CCA) on 1,001 HCP subjects to estimate multivariate             

relationships between a set of behavioural variables and a set of edges. For the edges, we test                 

both spatial and temporal network matrices obtained from one of the pipelines described above.              

Temporal network matrices are classically used as a proxy for neural coupling, and are              

commonly studied in the literature. On the other hand, spatial network matrices reflect spatial              

overlap between resting state networks, which is an aspect of functional connectivity that has              

not yet received attention in the existing literature. Here, we aim to test which of these different                 
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aspects of functional connectivity is most strongly and uniquely associated with individual            

differences in behaviour. 

 

Details of the CCA procedure can be found in our previous work (Bijsterbosch et al., 2018).                

Briefly, CCA takes a set of behavioural measures and a set of edges as inputs and determines                 

a linear combination of each such that the resulting scores are maximally correlated between              

the two sets of input variables. Previous work has shown a strong relationship between a               

behavioural population mode of variation that includes positive measures (such as IQ and             

self-reported life satisfaction) and negative measures (such as drug and alcohol use) (Smith et              

al., 2015).  

 

To determine the unique variance contained in spatial and temporal network matrices            

respectively, we adopted the same partial CCA approach that was used previously (Bijsterbosch             

et al., 2018; Smith et al., 2015). We regress spatial edges onto temporal edges within each                

method (after dimensionality reduction), and enter the residuals into a standard CCA against             

behavioural measures. Hence, the partial CCA results remove any shared          

behaviourally-relevant variance that is present in both spatial and temporal network matrices            

within the overall method (i.e. within PROFUMO/ standard ICA-DR/ thresholded ICA-DR). 

 

 

Figure 7. Full and partial CCA results between spatial (Snet) or temporal (Tnet) network 

matrices against behaviour. The strongest association with behaviour is found for PFM spatial 

edges. Temporal network matrices estimated with thresholded ICA-DR (thres) are less strongly 

linked to behaviour than those estimated with traditional ICA-DR (orig), and show a greater 
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reduction when partialling out matching spatial edges. The dashed line indicates the mean 

p<0.05 significance level from permutation testing. 

  

All of the spatial and temporal matrix results obtained with any of the three pipelines show                

significant associations with behaviour (Figure 7, blue bars). The strongest relationship with            

behaviour is observed for spatial network matrices estimated with PROFUMO (RUV=0.72), which            

is significantly stronger than with the original ICA-DR temporal network matrix result (p=0.03),             

and compared with the thresholded ICA-DR temporal network matrix result (p=0.001). This            

finding is closely linked to our earlier work, where we reported a strong CCA result for PFM                 

spatial maps, but there are key differences in the way brain-based inputs to the CCA were                

calculated between these two findings. Here, we use subject-specific spatial network matrices            

as input (i.e. only including spatial correlations between maps), whereas our previous results             

were based on the full set of subject spatial maps (i.e. including all spatial features in all maps).                  

Hence, these results show that spatial overlap (and resulting correlation) is a key             

behaviourally-relevant aspect of spatial information. 

 

Out of the results that reach significance in Figure 7, subject behavioural weights are              

significantly correlated with the previously reported positive-negative population mode of          

behaviour (Bijsterbosch et al., 2018; Smith et al., 2015) for all results except for PFM temporal                

netmats. The PFM temporal netmats are instead linked to variables such as blood pressure              

(diastolic and systolic), hematocrit values, and alcohol use, therefore representing a more            

physiological population mode. Correlation with the positive-negative mode was reduced for all            

partial CCA results compared with full CCA results (Rfull=0.14 to Rpartial=0.01 for ICA-DR             

thresholded temporal network matrices; Rfull=0.42 to Rpartial=0.21 for ICA-DR original temporal           

network matrices; Rfull=0.39 to Rpartial=0.16 for PFM spatial network matrices). Hence, the partial             

results were less similar to the positive-negative behavioural mode than the full CCA results,              

indicative of shared behaviourally-relevant information between spatial and temporal network          

matrices in all of the approaches that were tested. Specifically, the amount of overall shared               

variance between temporal and spatial network matrices was 29.6% for original ICA-DR, 26.8%             

for thresholded ICA-DR, and 24.5% for PROFUMO. Hence, these results show reduced            

conflation of temporal and spatial information in both thresholded ICA-DR and PROFUMO            

compared with traditional ICA-DR. Interestingly, the partial CCA result for the ICA-DR            

thresholded temporal network matrix was no longer significantly linked to the positive-negative            

24 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 15, 2019. ; https://doi.org/10.1101/520502doi: bioRxiv preprint 

https://doi.org/10.1101/520502
http://creativecommons.org/licenses/by/4.0/


behavioural mode (Rpartial=0.01, pBonferroni=1), supporting the interpretation that cross-subject         

behavioural variability in temporal network matrices is largely driven by spatial information.  

Discussion 

We previously showed that the spatial topographical organisation of functional networks is most             

strongly predictive of cross-subject variability in behaviour, and that functional connectivity           

(temporal) network matrices contain little unique trait-level cross-subject information that is not            

also reflected in spatial maps (Bijsterbosch et al., 2018). Here, we aimed to determine and               

address the reason for this conflation of temporal and spatial sources of interindividual             

variability, focussing on the pipeline that uses ICA for parcellation and dual regression for the               

estimation of subject maps and timeseries. Our results reveal that functional networks are often              

spatially overlapping (Figure 4), and that individual differences in the amount of spatial overlap              

(and resulting spatial correlation) is likely to explain our previous results. Spatial overlap is              

underestimated in spatial ICA (due to the statistical independence constraint; Figure 3A),            

systematically affecting downstream dual regression steps, such that the resulting temporal           

network matrices are negatively weighted by any spatial correlations present in the underlying             

true networks. These effects, discussed mathematically in section “Temporal and spatial           

network matrix estimation in ICA followed by dual regression”, and shown in simulated (Figure              

3) and real data (Figure 2), directly explain our previous dual regression-based results.  

 

As discussed in the introduction, one potential reason for our earlier findings could have been               

linked to residual spatial misalignment between group and subject maps (Bozek et al., 2018;              

Demirtas et al., 2018; Kong et al., 2018). The results in Figure 1 reveal that dual regression                 

obtains relatively accurate estimates in the presence of minor misalignment (as modelled with             

MSMAll compared with MSMSulc), suggesting that spatial misalignment may not contribute           

strongly when care is taken to adopt surface-based alignment methods and subject-specific            

node-definition approaches. Therefore, our earlier findings (in HCP data) are more likely            

explained by the biases introduced as a result of spatial overlap, and not by residual spatial                

misalignment. However, dual regression was not able to account for more extensive            

misalignment which is seen when using volume-based alignment procedures (Coalson et al.,            

2018). Therefore, it is likely that misalignment may influence functional connectivity estimates            
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for analyses performed in volumetric space (Smith et al., 2011). Similarly, misalignment is likely              

to play a larger role when using anatomically-derived hard parcellations that are unlikely to              

match the subject-specific functional organisation well.  

 

The detailed explanation of our previous findings presented here only applies to the results that               

were obtained using a dual regression pipeline. Mathematical differences in timeseries           

estimation imply that the theory described here cannot explain our earlier findings obtained             

using a masking procedure with hard parcellations (i.e. Yeo and HCP_MMP1.0) (Glasser et al.,              

2016; Yeo et al., 2011). We are currently undertaking similarly detailed investigations to further              

understand our previous results in these hard parcellations. Early qualitative observations           

suggest the presence of complex patterns of partial overlap between multiple extended            

networks, that cannot easily be modelled by a parcel containing overlap voxels and one or more                

parcels containing non-overlap voxels. Speculatively, it is possible that parcellation methods are            

therefore unable to isolate overlap into a distinct parcel (which would allow results to be               

unbiased, particularly at a sufficiently high dimensionality), and instead parcel boundaries in            

regions of overlap are determined by the network with the strongest amplitude (or lowest              

cross-subject variance), leading to mixing of extracted timeseries (Smith et al., 2011). Further             

work is needed to test this hypothesis and to develop parcellation methods that address this               

issue. 

 

The biases described in this work can be addressed using a relatively straightforward extension              

to the existing dual regression pipeline. Specifically, we suggest a further regression step after              

standard dual regression, that uses thresholded subject maps to estimate timeseries. It has             

previously been shown that thresholded maps (using Gamma-Gaussian mixture modelling)          

better capture spatial overlap (Beckmann et al., 2005; Bielczyk et al., 2018). Here, we explicitly               

test this approach and report greater accuracy in the estimation of timeseries, spatial maps, and               

both temporal and spatial network matrices when compared with traditional dual regression            

(Figure 6). When dual regression is performed with the aim of extracting timeseries and              

estimating network matrices (as opposed to statistical tests of spatial map shape and             

amplitude), we recommend adopting this thresholded dual regression extension in order to            

accurately estimate node timeseries. While this approach may lead to somewhat lower            

associations with behaviour (Figure 7), it is driven more purely by uniquely temporal connectivity              

information, rather than conflating both temporal and spatial connectivity. Thresholded dual           

26 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 15, 2019. ; https://doi.org/10.1101/520502doi: bioRxiv preprint 

https://doi.org/10.1101/520502
http://creativecommons.org/licenses/by/4.0/


regression will be implemented in the next version of FSL dual_regression           

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/DualRegression). 

 

Our results show that spatial correlations obtained from PROFUMO are most strongly linked to              

behaviour (Figure 7). This finding is an indirect replication of our earlier work (Bijsterbosch et al.                

2018), but here it is driven purely by correlations between spatial maps, while we previously               

entered the cross-subject covariance matrix of the full weighted spatial maps. Hence, this result              

indicates that cross-subject variance in spatial correlations (rather than in more complex aspects             

of spatial organisation) are behaviourally-relevant. Unfortunately, spatial correlations obtained         

from thresholded dual regression are not as strongly associated with behaviour (Figure 7),             

which is likely linked to the fact that PROFUMO outperforms thresholded dual regression in the               

accuracy of estimated spatial maps and correlations (Figure 6).  

 

The methodological challenge of accurately modelling spatial overlap in network organisation           

that is addressed here has important implication for a number of key neuroscientific questions.              

Our findings show that spatial overlap was prominent in the temporo-parietal-occipital junction            

and in primary visual cortex (Figure 4). The hierarchical functional organisation of V1 is relatively               

well-understood to represent overlapping receptive fields with selectivity for stimulus orientation,           

length, width, or color (Van Essen & Maunsell, 1983). On the other hand, the complex functional                

organisation in the inferior parietal lobule, and its involvement in wide-ranging perceptual and             

cognitive functions, is the topic of ongoing research and debate (Carter & Huettel, 2013;              

Igelström & Graziano, 2017; Lin et al., 2018; Mars et al., 2012). Further evidence of the highly                 

complex spatial nature of functional organisation can also be found in recent gradient-based             

analyses of cortical topography (Haak, Marquand, & Beckmann, 2017; Margulies et al., 2016).             

These spatial complexities are largely ignored in most current connectomics approaches, where            

the use of group-based anatomical hard atlases (such as the AAL) is still highly pervasive. This                

likely limits the ability to gain further insights into the organisation and function of cortical regions                

such as the temporo-parietal-occipital junction. As such, the results presented here and            

elsewhere emphasise the need for modern connectomics research to acknowledge and           

appropriately account for the presence of highly complex, hierarchically overlapping functional           

organisation.  

It is possible that the overlapping organisation identified here may be linked to complex patterns               

of inter-digitation between large-scale networks (Braga & Buckner, 2017). We did not find any              
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evidence for inter-digitated patterns here, although the results in Figure 4 do show adjacency of               

two separate networks in a number of distinct cortical zones, consistent with the findings of               

Braga et al. A larger number of data points per subject may be needed to estimate further                 

detailed patterns of inter-digitation in regions that we refer to here as ‘overlapping’ (e.g. there is                

a roughly three-fold increase in the Braga et al dataset compared to HCP data). Alternatively, a                

truly overlapping hierarchical spatial organisation may be represented as inter-digitation in           

seed-based correlation results (as opposed to multivarate decomposition methods), because          

correlations may effectively be reduced in regions of overlap relative to neighbouring            

non-overlapping regions, creating interdigitated patterns. Hence, further work is needed to           

understand the relationship between overlapping and inter-digitated functional organization. 

 

In conclusion, we replicate our previous work showing that spatial topographical network            

organisation is most strongly linked to behaviour (Figure 7), and additionally show that             

cross-subject variability in spatial overlap between complex cortical networks is a key source of              

behaviourally-relevant information. Furthermore, we show that this spatially overlapping network          

structure is underestimated when using a common parcellation technique (ICA), resulting in the             

conflation of temporal and spatial connectivity information in derived network matrices (from            

dual regression). We present a solution that obtains more accurate estimates of temporal and              

spatial network matrices based on thresholded spatial maps. 
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Materials and Methods 

Dataset 

Data from the Human Connectome Project S1200 release were used including 1,004 subjects             

with 4800 resting state timepoints (Van Essen et al., 2013). The data were preprocessed using               

the HCP minimally preprocessing pipeline (Glasser et al., 2013), followed by FIX cleanup of              

artificial components obtained from single-run ICA (Smith et al., 2013). Three subjects were             

excluded for CCA purposes due to incomplete genetic information (i.e. N=1,001 for CCA).  

Simulation 1 

The simulation for Figure 3 contained two-dimensional spatial maps with 10,000 voxels. A total              

of 50 subjects with 200 timepoints each were simulated, and the full simulation was repeated 10                

times. Two spatial nodes were generated using a Laplacian distribution ( ) for the          ; σ .5μ = 0  = 0    

background and linearly added uniformly distributed (ranging between 2-12) weights. Each           

spatial node included 100 voxels (out of 10,000), with 25% overlap between the two spatial               

nodes to ensure ground truth spatial correlation. Normally distributed timeseries were generated            

for each node, and a shared normally distributed timeseries was added to both to ensure               

ground truth temporal correlation. Simulated data for each subject was generated by taking the              

outer product between simulated timeseries and spatial maps, resulting in a 10,000 x 200              

dataset. For each repeat, these datasets were concatenated across all 50 subjects before             

running group ICA, following by dual regression. 

Simulation 2 

A second simulation was performed to enable a direct comparison between the results from              

original ICA-DR, thresholded ICA-DR, and PROFUMO. The key differences between simulation           

1 and simulation 2 are: a) a spatial model that builds complex modes from an atlas of                 

contiguous parcels, and b) a temporal model of the ‘neural’ timeseries that is convolved with a                

hemodynamic response function. Simulation 2 was based on previous work (Harrison et al.,             

2015), and is described in more detail below: 

 

Atlas generation: the 10,000 voxels were split into 200 contiguous parcels, with the parcel              

widths drawn from a Dirichlet distribution. The parcel weights were then drawn from a Gamma               
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distribution. The gradient of the warp field was generated by convolving random Gaussian noise              

with a boxcar function, passing through a nonlinearity to limit the range to [-1,1] (i.e. to ensure                 

the warp remained invertible). 

 

Node generation: each node was formed from a number of spatially contiguous regions. The              

number of regions followed a Poisson distribution, the total number of parcels followed a beta               

distribution, and the number of parcels per region followed a Dirichlet distribution. Several             

regions were made to be anticorrelated (i.e. were given negative weights). The parcel weights              

again followed a gamma distribution. 

 

Time course generation: ‘neural’ time courses were simulated at 0.1 Hz. The frequency spectra              

of these were randomly generated, with a bias towards low frequencies. Correlations were             

induced based on group, subject, and run covariance matrices each drawn from a Wishart              

distribution. Finally the time courses were sparsified by setting sub-threshold time points to zero. 

 

HRF convolution: the time courses were convolved with random draws from the FLOBS basis              

set, with a unique HRF being generated for every subject. 

 

Outer product model: the time courses and spatial maps were combined by taking the outer               

product, and a weak nonlinearity was applied to the resulting voxelwise timecourses to simulate              

saturation of the HRF in regions exhibiting high levels of activity. 

 

Noise model: finally, noise was added to the BOLD signal. This consisted of a structured and                

unstructured noise subspace: the structured subspace consisted of a set of ‘confounds’, which             

consisted of the outer product of Gaussian spatial maps and time courses. The unstructured              

noise was weakly non-Gaussian, following a Student’s t-distribution. 

 

The code, containing all used parameter values, is available from          

https://git.fmrib.ox.ac.uk/samh/PFM_Simulations. 
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Mixture modelling 

Spatial maps for resting state fMRI networks are commonly relatively sparse, with a large              

proportion of voxels or grayordinates considered to be part of the background (i.e. many voxels               

have relatively low weights and do not contribute to the network). In the presence of additive                

Gaussian noise, we can therefore model the distribution of spatial weights in any single ICA               

components using a mixture of one Gaussian distribution (for the background) and two Gamma              

distributions (for the positive and negative aspects of the ICA networks). Subsequently, the             

mean and standard deviation of the Gaussian distribution (background) are used to shift and              

rescale the distribution of spatial weights for each map, and a threshold of ±2 is used to                 

threshold the spatial map such that background voxels are set to zero. Previous work has               

shown that this threshold procedure can accurately capture ground truth spatial correlations            

(Beckmann et al., 2005). Here, we adopt mixture model thresholding in a proposed extension to               

dual regression designed to estimate ICA timeseries and derived correlations with improved            

accuracy. 

Data and code availability 

HCP data are distributed from the Connectome Coordination Facility         

(https://www.humanconnectome.org/). The simulation code is available from       

https://git.fmrib.ox.ac.uk/samh/PFM_Simulations. Brain data for figures 1 and 4 will be made           

available on Balsa (https://balsa.wustl.edu/) upon acceptance.  
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The effect of spatial misalignment on dual regression estimates was tested by comparing data 

that were aligned using MSMAll, MSMSulc, and volumetric alignment approaches. A: 
Correlation between group ICA maps and individual-subject ICA maps (which can be seen as 

the “ground truth”) is highest for MSMAll and lowest for MSMSulc. B: Correlation between 
subject-specific dual regression spatial estimates (stage 2 maps) and individual-subject ground 
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truth ICA maps show that dual regression can appropriately correct for minor misalignment 
between MSMSulc and MSMAll. However, dual regression spatial estimates from volumetrically 

aligned data are significantly less well matched to the ground truth maps. Coloured area 
represents one standard deviation (across 22 subjects). 

 
Figure 6 - figure supplement 1 

 
Comparison across different simulations for the accuracy of temporal edge estimation [A], and 

for the accuracy of spatial edge estimation [B]. The ‘full simulation’ included both spatial overlap 
and spatial misalignment (this matches the results in Figure 6). The ‘no misalignment’ simulation 

was run with identical parameters, except that there was no misalignment between subjects. 
The ‘no overlap’ simulation was again run with identical parameters, except that spatial maps 
were forced to be uncorrelated at the level of individual subjects by running spatial ICA at this 
stage in the simulation prior to generating the data. Results show similar biases in spatial and 

temporal edge estimates from standard dual regression in the full and no misalignment 
simulations, indicating that this effect is observed irrespective of spatial misalignment. The no 
overlap simulation also shows improvement of thresholded dual regression over standard dual 
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regression, likely as a result of the effective reduction of noise that is achieved when 
thresholding the maps. Note that there are no meaningful spatial edges in the ‘no overlap’ 

simulation, so it is expected that none of the methods estimate this. 
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