
Title: Macroevolution of dimensionless life history metrics in tetrapods 

Short title: Dimensionless life histories in tetrapods 

Keywords: 

Article type: Major article 

Word count (main text only):  4751 of 5500 

 

Cecina Babich Morrow1,2, S. K. Morgan Ernest3, and Andrew J. Kerkhoff1 

1. Department of Biology, Kenyon College, Gambier, OH, USA; 2. Center for Biodiversity and 

Conservation, American Museum of Natural History, New York, NY, USA; 3. Department of 

Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 16, 2019. ; https://doi.org/10.1101/520361doi: bioRxiv preprint 

https://doi.org/10.1101/520361
http://creativecommons.org/licenses/by-nc/4.0/


2 
 

Abstract 

Life history traits represent organism’s strategies to navigate the fitness trade-offs between 

survival and reproduction. Eric Charnov developed three dimensionless metrics to quantify 

fundamental life history trade-offs.  Lifetime reproductive effort (LRE), relative reproductive 

lifespan (RRL), and relative offspring size (ROS), together with body mass, can be used classify 

life history strategies across the four major classes of tetrapods: amphibians, reptiles, mammals, 

and birds. First, we investigate how the metrics have evolved in concert with body mass. In most 

cases, we find evidence for correlated evolution between body mass and the three metrics. 

Finally, we compare life history strategies across the four classes of tetrapods and find that LRE, 

RRL, and ROS delineate a space in which the major tetrapod clades occupy mostly unique 

subspaces. These distinct combinations of life history strategies provide us with a framework to 

understand the impact of major evolutionary transitions in energetics, physiology, and ecology. 
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Introduction 

Life history traits quantify the two crucial components of fitness: survival and reproduction. A 

species’ life history strategy, i.e. how it allocates resources to survival and reproduction, impacts 

its fitness and thus its success in terms of population growth and extinction risk (Sol et al. 2012; 

Capellini et al. 2015; Allen et al. 2017). Because resources are often limited, organisms cannot 

optimize both individual survival and reproductive investment, so allocation to one component 

of life history necessitates trade-offs in other areas (Stearns 1989; Charnov and Downhower 

1995). Organisms navigate these constraints in a variety of ways to maximize overall fitness, 

creating an astonishing diversity of life history strategies across the tree of life. This diversity of 

life history strategies makes it challenging to assess the impacts of major evolutionary 

transitions: disparate evolutionary lineages may vary substantially in their reproductive 

physiologies and behaviors, schedules of growth and development, and pace and span of life. 

Comparing life histories across such varied lineages requires an approach that distills complex 

life histories into comparable and biologically meaningful metrics.  

Life history theory is an attempt to understand how natural selection generates this diversity 

based on fundamental trade-offs in survival and reproduction. In a series of publications 

(Charnov and Berrigan 1991; Charnov 1993, 2002; Charnov and Downhower 1995), Eric 

Charnov developed a general model for life history evolution based on four basic premises: 1) 

the environment dictates the expected adult mortality rate for an organism; 2) natural selection 

acts on the age at first reproduction to maximize lifetime reproductive success given that 

mortality rate; 3) once organisms reach reproductive maturity, they begin allocating energy 

previously used for growth into reproduction; and 4) juvenile mortality rates keep population 

density constant, i.e. R0 = 0. In Charnov’s model, selection on age at maturity balances the trade-
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off between maturing later, thus having more energy to invest in reproduction due to increased 

size at maturity, versus maturing earlier and accordingly increasing the probability of surviving 

to reproduction (Charnov 1993). Organisms with high adult mortality rates thus must mature 

quickly in order to reproduce before dying, while organisms with lower mortality rates can 

afford to invest more time and energy into growth. However, since life history parameters 

generally have units of mass and time, this sort of cost-benefit approach to life history theory is 

ill-equipped to compare small, short-lived organisms to large, long-lived organisms. In order to 

compare and classify such diverse life history strategies, Charnov proposed using dimensionless 

ratios and products that eliminate the mass- and time-dependence of life history parameters. 

Since these metrics lack units, they allow comparisons between organisms that may vary widely 

on those continua, e.g. from the largest whales to the smallest frogs. Empirical evidence based on 

life history traits from 64 species of mammals has provided general support for Charnov’s 

evolutionary predictions (Purvis and Harvey 1995), but they have not been previously tested in a 

broader macroevolutionary context.  

Charnov proposed a classification of life histories is based on three particular dimensionless 

metrics which represent fundamental trade-offs which organisms must navigate in order to 

maximize fitness (Charnov 2002): lifetime reproductive effort (LRE), relative reproductive 

lifespan (RRL), and relative offspring size (ROS). The first of these, LRE (lifetime reproductive 

effort), can be interpreted as the proportion of adult mass that a female will allocate to offspring 

over her lifespan (Charnov 2002). LRE represents the relationship between that mass investment 

and adult mortality (the inverse of lifespan), thus measuring the cost of reproduction, one of the 

most crucial life history trade-offs (Stearns 1989). The second dimensionless metric, RRL 

(relative reproductive lifespan), quantifies the trade-off between the time spent preparing to 
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reproduce and the total amount of time available for reproduction (Charnov 1993, 2002). The 

final of Charnov’s dimensionless metrics, ROS (relative offspring size), measures the relative 

size at which offspring can occupy the adult niche without parental care (Millar 1977). Charnov 

hypothesized that variation in these metrics would be greater between major groups of organisms 

than within groups, since organisms within a group share similar life history constraints 

(Charnov 2002).  

We hypothesize that variation in these life history metrics between major groups of tetrapods has 

been driven by three key adaptations that impact adult survival and allocation to reproduction – 

the amniotic egg, endothermy, and flight. The amniotic egg contains membranes improving gas 

exchange, which allow amniotes to produce larger eggs and maintain much higher rates of egg 

respiration than amphibians (Thompson and Russell 1998). The increased size of the amniotic 

egg and the more substantial yolks they contain (Romer 1957) allow for more developed 

offspring, potentially increasing juvenile survival rates and reproductive allocation in amniotes. 

Endothermy enables organisms to attain greater metabolic power and potential for production 

(Gillooly et al. 2002) and exploit a wider range of environments (Rolland et al. 2018), but it is 

also energetically costly to maintain and limits the minimum size of endotherms. Without these 

constraints, ectotherms can potentially display a wider variety of life history strategies in 

response to their local environmental conditions. Finally, the evolution of flight reduces 

predation risk on volant organisms, decreasing their extrinsic mortality rates and lengthening 

their lifespans (Holmes and Austad 1994; Healy et al. 2014). Flight also imposes higher parental 

investment costs (Farmer 2000), and flight itself is energetically costly, which can potentially 

impact the availability of resources for reproduction. By altering constraints on investment in 
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reproduction and survival, these key adaptations may have impacted the evolution of life history 

strategies.  

Here we use Charnov’s dimensionless life history metrics to assess how these evolutionary 

innovations altered life history strategies of tetrapods. To conduct comparative analyses between 

groups of organisms, Charnov envisioned a “life-history cube” defined by LRE, RRL, and ROS 

as axes, with different groups of organisms occupying different regions of this trait-space 

(Charnov 2002). Since these three dimensionless metrics are hypothetically uncorrelated with 

body mass in at least some taxa, we introduced mass as a fourth axis. We employ hypervolume 

algorithms (Blonder et al. 2017) to create a four-dimensional life history “cube” to test whether 

major evolutionary transitions in metabolism, physiology, and ecology produce systematic 

variation in organisms’ life history strategies. 

Methods 

Data 

We compiled life history trait data for birds, mammals, reptiles, and amphibians from multiple 

sources to calculate the dimensionless life history metrics. For the birds and mammals, we used 

data exclusively from the Amniote Life History Database (Myhrvold et al. 2015). For the 

reptiles, we supplemented the data available in Amniote with another published set of reptile life 

history traits (Allen et al. 2017) through a two-step process. First, if a reptile species present in 

the Amniote database lacked trait data for one of the life history traits necessary to calculate the 

dimensionless metrics, we filled in the corresponding value from Allen et al. (2017). Secondly, 

we added trait data for species present in the Allen et al. database but not in Amniote. For the 

amphibians, we obtained life history trait data from the AmphiBIO database (Oliveira et al. 

2017). 
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Calculation of Dimensionless Metrics 

We used the combined amniote and amphibian data to calculate the three dimensionless life 

history metrics for 1,650 tetrapod species, including 171 birds, 842 mammals, 491 reptiles, and 

113 amphibians. 

Lifetime Reproductive Effort (LRE) 

The first dimensionless metric, LRE, is the product of reproductive effort and average adult 

lifespan. Charnov defines reproductive effort as 𝑅/𝑚, where 𝑅 is the organism’s average 

reproductive allocation per unit time and m is the average adult body mass (Charnov 2002). To 

calculate 𝑅, we multiplied litter or clutch size by the number of litters or clutches per year, 

yielding the number of offspring per year, and then multiplied this value by the mass of offspring 

at independence. AmphiBIO reports a minimum and maximum clutch size, so we averaged these 

two values when calculating 𝑅. We defined independence as fledging for birds, weaning for 

mammals, hatching for reptiles, and offspring or egg for amphibians (whichever value for 

offspring mass was provided in AmphiBIO). After calculating R, we divided by the average 

adult body mass for the amniotes and the maximum adult body mass for the amphibians to 

calculate reproductive effort. While Charnov’s model calls for an average body mass, AmphiBIO 

only provides a maximum adult body mass, so we used this value to provide an approximate 

value of this metric for amphibians (Oliveira et al. 2017). Finally, we multiply reproductive 

effort by adult lifespan to calculate LRE. We used maximum longevity, rather than average 

longevity, for all classes due to data quality and availability. 

Relative Reproductive Lifespan (RRL) 

To calculate RRL, we divided adult lifespan by the time to female maturity. Since Amniote 

reports longevity in years and age at female maturity in days, we converted longevity to days to 
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keep the ratio dimensionless. AmphiBIO reports minimum and maximum age at sexual maturity, 

so we averaged these values to calculate an average. 

Relative Offspring Size (ROS) 

In order to calculate the final dimensionless metric, ROS, we divided mass at independence by 

average adult body mass. We used the same criteria for independence for birds, mammals, 

reptiles, and amphibians as used to calculate R. Since AmphiBIO reports offspring size as 

minimum and maximum lengths rather than mass, we used allometry equations for Anura and 

Caudata to convert these lengths to offspring mass (Santini et al. 2017). We used the models 

predicting mass from SVL for Anura and Caudata, rather than those including habitat and 

paedomorphy since the majority of frog species in AmphiBIO existed in multiple habitats and 

paedomorphy was not reported for the salamander species. After converting the minimum and 

maximum lengths at independence to mass, we averaged these two masses to calculate mass at 

independence for the amphibians. 

Correlated Evolution Analyses 

We first examined whether the dimensionless metrics exhibit correlated evolution with adult 

body mass. For the mammals, we performed phylogenetic analyses using the Fritz et al. species-

level supertree with the best date estimates (Fritz et al. 2009). For the birds, we used the dated 

phylogeny of extant bird species published by Jetz et al. (2012). We constructed our bird 

phylogeny using the Hackett et al. (2008) backbone (Jetz et al. 2012). Since reptiles are a 

paraphyletic group, we restricted our phylogenetic analyses to Squamata, the most diverse reptile 

order. To analyze this order, we used a time-calibrated phylogeny of squamates (Zheng and 

Wiens 2016). Finally, for the amphibians, we used a congruified time-tree from the 

PhyloOrchard package (O’Meara et al. 2013), using the Alfaro et al. timetree of gnathostomes 
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(Alfaro et al. 2009) as the reference and the Pyron and Wiens amphibian phylogeny as the target 

(Pyron and Wiens 2011). 

We stitched together these four phylogenies to create a tetrapod phylogeny to visualize LRE, 

RRL, and ROS across all four classes. We used divergence estimates from the TimeTree of Life 

(Hedges et al. 2006) to combine the individual phylogenies according to a pipeline used by 

Uyeda et al. (2017). 

We performed phylogenetic least-squares regression analyses (PGLS) (Grafen 1989) using the 

phylogenies listed above to determine how much of the variation in the relationship between 

each of the three dimensionless metrics and body mass can be explained by evolutionary 

relationships. We conducted PGLS using the branch-length transformation indicated by the best-

fit model of body mass evolution for each class. We fit Brownian motion, Ornstein-Uhlenbeck, 

Pagel’s lambda, and kappa models of log body mass using the GEIGER package in R (Harmon 

et al. 2008). To determine the best-fit model, we ranked by Akaike Information Criterion (AIC) 

and selected the model with the lowest AIC value. 

Hypervolume Analyses 

We used hypervolumes (Blonder et al. 2014, 2017) to investigate the way that different groups of 

organisms vary with respect to their life history strategies. For the species with complete data 

coverage, we created four-dimensional hypervolumes with adult body mass and the three 

dimensionless metrics as axes. All four axes were log-transformed for analysis. We generated 

hypervolumes for the four major classes of tetrapods: birds, mammals, reptiles, and amphibians. 

All hypervolumes were created using the hypervolume R package using the Gaussian KDE 

method with the default Silverman bandwidth estimator (Blonder et al. 2017). To compare 

hypervolumes between groups, we calculated individual volumes and pairwise overlap metrics, 
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including Sorensen similarity and the fraction of unique volume. The size of these hypervolumes 

represents the total diversity of life history strategies for a given class, while the overlap 

indicates the similarity in strategies between classes. 

Code for all analyses, as well as data files, can be found at 

https://github.com/KerkhoffLab/bodymasspatterns (see Supplementary Information and Figures). 

Results 

Metric values across classes 

We compared values for the three dimensionless metrics across the four tetrapod classes to 

examine variation in life history strategies across the major groups. LRE showed a distinct 

increase across the classes, from amphibians to reptiles to mammals, and finally to birds 

(ANOVA; F=1017.8; d.f.=3; p<2.2×10-16) (Fig. 1B). ROS demonstrated a similar pattern to 

LRE: mean log ROS differed across all four classes (Tukey HSD; p<0.05), increasing by 98.1% 

from amphibians to birds (Fig. 1D). RRL also differed between all four classes (ANOVA; 

F=242.9; d.f.=3; p<2.2×10-16) (Fig. 1C). Mammals had the highest mean RRL value, followed by 

birds, reptiles, and amphibians (Tukey HSD; p<0.05). 
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Figure 1. Frequency polygons of (A) log-transformed body mass, (B) LRE, (C) RRL, and (D) 

ROS for tetrapod species with values for all three of the dimensionless traits. 

When viewed on the tetrapod phylogeny, LRE shows distinct shifts in values across the four 

classes: higher values of LRE appear to have evolved both in birds and mammals, while the 

amphibians display consistently low values (Fig. 2A). In comparison, RRL does not show as 

clear distinctions between classes, but, in general, the lowest values are found in amphibians and 

reptiles (Fig. 2B). There are certain clades of mammals, however, like the family Soricidae, 

which have low RRL values comparable to or lower than those found in amphibians and 

squamates. In the birds, as well, certain Charadriiformes have quite low RRL values. Of the three 

metrics, ROS shows the most dramatic shifts across the four classes of tetrapods (Fig. 2C), with 

the lowest values in amphibians, followed by squamates, and finally mammals and birds. 
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Figure 2. Plots of (A) LRE, (B) RRL, and (C) ROS across a supertree of tetrapods. Trait values 

along the edges and at nodes were estimated based on a Brownian motion model of evolution. 

The color ramp bar serves as a legend for trait values and a scale for branch lengths. 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 16, 2019. ; https://doi.org/10.1101/520361doi: bioRxiv preprint 

https://doi.org/10.1101/520361
http://creativecommons.org/licenses/by-nc/4.0/


13 
 

Correlated Evolution 

Next, we performed phylogenetic analyses to investigate possible evolutionary mechanisms that 

may influence the relationship between these metrics and body mass across different clades. 

Based on the AIC values, we used the Ornstein-Uhlenbeck model for the ectotherms, and Pagel’s 

lambda model for the endotherms. After accounting for evolutionary relationships, body mass 

was negatively correlated with LRE in amphibians and mammals (p<0.05), but there was no 

significant relationship for the squamates and birds (p>0.05) (Table 1). RRL, on the other hand, 

was only significantly correlated with body mass in the squamates (p=0.0155) (Table 1). Body 

mass was negatively correlated with ROS across all the clades after accounting for phylogeny 

(p<0.05). The magnitude of the slope of this relationship decreased from the oldest class 

(Amphibia) to the youngest (Aves) (Table 1). 

Table 1. Coefficients for phylogenetic least-squares analysis (PGLS) between each log-

transformed dimensionless metric and log body mass for species with trait values for all three 

metrics and body mass. PGLS was performed using a correlation matrix based on the model of 

body mass evolution with the lowest AIC for each class: Ornstein-Uhlenbeck for amphibians and 

squamates and Pagel’s lambda for mammals and birds.  

METRIC SLOPE P-VALUE MODEL PARAMETER 

LRE    

Amphibia -0.2929724 0.0072 α = 0.25 

Squamata -0.0281069 0.3832 α = 0.0625  

Mammalia -0.167501 0.0000 λ = 0.9534441   

Aves 0.055526 0.3971 λ = 0.9018349 

RRL    

Amphibia 0.1154432 0.0676 α = 0.125 

Squamata 0.0738576 0.0155 α = 0.03125 

Mammalia 0.0093386 0.6707 λ = 0.9890338 

Aves 0.0483497 0.3156 λ = 0.8360123  

ROS    

Amphibia -0.800967 0 α = 0.01323586 

Squamata -0.3818124 0 α = 0.04124191  

Mammalia -0.1568193 0 λ = 0.8780286  

Aves -0.1126316 0.0001 λ = 0.9964604  
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Hypervolumes 

Even though the four tetrapod classes overlap in several of the individual life history metrics as 

well as body mass, they occupy distinct regions of multidimensional life history space. As 

predicted by Charnov’s life history “cube” (Charnov 2002), the four-dimensional hypervolumes 

for each class vary in size, shape, and area of trait space occupied (Fig. 3). The volume of each 

hypervolume, representing diversity in trait combinations present for a given group, decreased 

dramatically across classes in order of evolution. The two ectothermic hypervolumes, Amphibia 

and Reptilia, were 4.81 and 3.06 times larger, respectively, than the mammal hypervolume, 

while the bird hypervolume was 17% of the size of the mammal hypervolume. The class 

hypervolumes also occupied highly distinct regions of the trait space. The birds and mammals 

had the most overlap, still with a Sorensen similarity of only 0.1392 (Table 2). The amphibian 

hypervolume was the most unique, not overlapping with the endotherm hypervolumes at all, and 

only having a Sorensen similarity of 0.0271 with the reptiles (Table 2).  

Table 2. Sorensen similarity of hypervolumes between classes. 

 MAMMALIA REPTILIA AMPHIBIA 

AVES 0.13924977 0.0019117080 0.0000 

MAMMALIA  0.05623637 0.0000 

REPTILIA   0.02714009 
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Figure 3. Gaussian hypervolumes for the four classes of tetrapods. Large colored points 

represent the centroids of each hypervolume. Small dark points represent trait values for 

individual species while small light points represent random points. Volume of bird hypervolume 

is 36.69, mammal is 214.98, reptile is 657.93, and amphibian is 1034.54. 

Discussion 

Charnov’s dimensionless life history metrics, (LRE, RRL, and ROS) provide a novel framework 

to compare organisms’ life history strategies. The three dimensionless metrics show a range of 

patterns of correlated evolution, which drive their relationships with body mass in extant species. 

Furthermore, the major tetrapod classes display unique combinations of these metrics (Figure 3). 

The differences in subspaces occupied by each class may reflect the effects of crucial 

evolutionary transitions in energetics, physiology, and ecology. Thus, LRE, RRL, and ROS 
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enable us to compare life history strategies. By observing how the metrics change in tandem with 

major adaptations, such as evolution of the amniotic egg, endothermy, and flight, we explore the 

possible ecological and evolutionary influences on life history. 

Amphibians to amniotes: evolution of the amnion 

Amphibians are notably different from the amniote groups (reptiles, birds, and mammals) in their 

life histories. Amphibians take longer to reach reproductive maturity relative to their total 

reproductive lifespan (lowest mean RRL; fig 1c), invest much less in reproduction (lowest mean 

LRE; fig 1b), and produce smaller offspring at independence relative to adult size (lowest ROS; 

fig 1d). Many of these differences reflect the constraints imposed by a non-amniote egg. 

Amniotic eggs contain unique membranes which allow them to be much larger and maintain 

higher rates of respiration than those of amphibians, which are limited by the rate of diffusion of 

oxygen through the egg (Seymour and Bradford 1995; Thompson and Russell 1998). Because 

offspring can spend longer in the egg, amniotes supply their eggs with substantial yolks that 

allow offspring to develop to a greater degree before hatching (Romer 1957). These adaptations 

allow amniotes to emerge at a higher stage of development than amphibian offspring do (Romer 

1957) and may help amniotes reach reproductive maturity more quickly—and spend a greater 

proportion of their total lifespan reproducing—compared to amphibians. These impacts of the 

amniote egg on the size of the offspring and the extra investment parents provide their offspring 

in yolk may also explain why amniotes exhibit higher levels of lifetime reproductive investment 

and relative offspring size than amphibians (Fig 1B, D).  

While the vast majority of comparative life history research focuses on amniotes (Western and 

Ssemakula 1982; Shine 2005; Sibly et al. 2012; Healy et al. 2014; Capellini et al. 2015), our 

work highlights the incredible diversity of amphibian life history strategies compared to other 
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tetrapods. Amphibians occupy a region of the life history trait space that is almost completely 

unique from the other three classes. Moreover, the amphibian life history hypervolume was the 

largest in volume by almost an order of magnitude (Fig 3), indicating that amphibians possess 

remarkable diversity in their strategies, especially considering that the hypervolume axes are all 

log-transformed. This diversity may be driven by the variety of modifications to amphibian life 

cycles, from neotony to viviparity, which permit variation in clutch size and offspring size 

(Wilbur and Collins 1973). 

Endotherms vs. ectotherms: the impact of thermic strategy 

While the amphibians exhibit the greatest range of life history metric combinations, both of the 

ectothermic classes occupy regions of trait space many orders of magnitude larger than those 

occupied by the endothermic classes (Fig 3). This pattern is consistent with the hypothesis that 

while endothermy conveys advantages (Rolland et al. 2018), it also comes with costs and 

constraints that can limit life history strategies (Tinkle et al. 1970; Allen et al. 1999; Shine 2005). 

Endothermy is related to higher metabolic power (Uyeda et al. 2017) and potential for 

production and an enhanced ability to maintain activity under a broader range of conditions 

(Crompton et al. 1978; Rolland et al. 2018). These advantages may allow endotherms to have 

more resources for reproduction (Farmer et al. 2003) or decrease adult mortality through impacts 

on foraging durations and predator avoidance (Bennett and Ruben 1979; Bennett 1991). 

However, endothermy is energetically expensive (Bennett and Ruben 1979; Koteja 2004) and it 

is especially difficult for small organisms to maintain the thermal differential with their 

environment that endothermy requires. These constraints and advantages have the potential to 

alter the viability of different life history strategies via their impact on reproductive allocation 

and survival. Our results suggest that these advantages and constraints conferred by endothermy 
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have resulted lower flexibility and variability among endothermic species in their life history 

strategies.  

The life history pattern in relative offspring size (ROS) exhibits the strongest constraint in 

endotherms. Mammals and birds produce offspring that must attain a greater proportion of their 

adult mass before independence, which requires greater parental investment. Not only is mean 

ROS higher for endotherms than ectotherms, the endotherms also demonstrate much less 

variation, implying that endothermy may constrain the possible range of ROS. The need for 

greater offspring size for endotherms could reflect that the fact that thermogenic tissue is 

expensive to produce and that offspring may need greater levels of parental investment to 

produce it (Case 1978). It is also difficult–and energetically costly–for small individuals to 

maintain a thermal differential with the environment which could necessitate greater parental 

investment to help offspring reach a size that reduces their thermoregulatory costs (Farmer et al. 

2003; Shine 2005). Because resources for reproduction are limited, increases in offspring 

investment generate decreases in the number of offspring that can be produced (Smith and 

Fretwell 1974). Thus, this need to invest in larger offspring may preclude endotherms from life 

history strategies that produce many small, mostly independent offspring with minimal parental 

care. Without the constraints imposed by endothermy, ectotherms can take on a wider range of 

life history traits, including decreased offspring size and increased fecundity (Tinkle et al. 1970; 

Allen et al. 1999; Shine 2005).  

While we found an increased diversity of life history strategies in ectotherms, other studies have 

shown that amphibians and reptiles have a slower rate of environmental niche evolution than 

birds and mammals (Rolland et al. 2018). Previous research has highlighted a similar 

relationship between life history flexibility and environmental niche. An increase in the number 
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of annual life history stages in adults (e.g. breeding, migration, molting, etc.) allows the 

organism to maximize fitness across a greater range of environmental conditions (Wingfield 

2008). Mammals and especially birds exhibit more of these stages than ectotherm clades. Having 

a large number of these stages, however, limits life history flexibility in terms of timing 

(Wingfield 2008). We find a similar trade-off: while endotherms can tolerate a much wider range 

of climates (Rolland et al. 2018), ectotherms exhibit much more flexibility in life history 

strategies. These results suggest that, while endothermy offers organisms options in terms of 

environmental niches (Rolland et al. 2018), it also imposes certain constraints on life history. 

Taking flight: the importance of volancy 

Volancy drives changes in longevity and parental investment that impose strong constraints on 

the three dimensionless metrics. Lifespan is longer in birds, as well as in volant mammals, 

compared to non-volant mammals (Holmes and Austad 1994; Healy et al. 2014). Research has 

suggested that flight enables organisms to escape predation more successfully (Pomeroy 1990; 

Holmes and Austad 1994), which in turn decreases extrinsic mortality and increases longevity. 

Volancy also affects life history via its impact on parental care. In general, volant species must 

allocate more energy to parental care in order to supply young with food prior to independence 

(Farmer 2000). These effects of flight lead to a variety of changes in the three metrics in both 

birds and bats, although these two clades also face separate constraints that affect their life 

history strategies differently.  

Despite the increase in longevity driven by flight, birds have slightly lower RRL values than all 

mammals, including bats. If birds had similar ages at female maturity as mammals, we would 

expect RRL to be higher in birds due to this longer lifespan. We observed the opposite, however, 

with mammals having a significantly higher mean RRL value, indicating that birds take 
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relatively longer to mature despite having longer overall lifespans. Volancy itself does not appear 

to cause lower RRL, however, since bats have RRL values more similar to mammals than to 

birds. Instead, it appears as though birds have unique constraints on breeding not faced by 

mammals. Almost all small birds wait at least one year from hatching before they begin 

breeding, while small mammals do not. Several factors may play a role in this discrepancy. First, 

migration is more common in small birds than in small mammals, and this additional life history 

stage constrains the timing of breeding (Wingfield 2008). Second, even in non-migratory 

species, birds have a higher metabolic rate and body temperature than mammals (Nagy 1987). 

Since reproduction typically necessitates an additional increase in metabolic rate (Farmer 2000), 

birds have more seasonal constraints on breeding due to the need to maintain the incredibly high 

energy investment in breeding. Finally, since birds have lower mortality rates in general, they 

may be able to afford a longer period of investment in growth before beginning reproduction, as 

predicted by Charnov’s evolutionary model (Charnov 1993). This collection of factors may 

contribute to lower avian RRL values compared to mammals. 

Birds display the highest LRE values of all four tetrapod classes. Volancy is the most important 

driver of increased lifespan in endotherms, which leads to increases in LRE by increasing the 

amount of time birds can devote to reproduction over their lifetime (Healy et al. 2014). 

Furthermore, birds have the highest metabolic rates and body temperatures of all tetrapods (Nagy 

1987). Reproduction necessitates a further metabolic increase beyond this already high 

investment (Farmer 2000). The elevated LRE of birds may reflect that extra cost of avian 

reproduction compared to that of mammals and ectotherms. 

Flight appears to be a strong constraint on mean relative offspring size (ROS) values. Bats 

occupy a range of ROS values much more similar to that of birds than other mammals (Fig. S-1). 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 16, 2019. ; https://doi.org/10.1101/520361doi: bioRxiv preprint 

https://doi.org/10.1101/520361
http://creativecommons.org/licenses/by-nc/4.0/


21 
 

In terms of the trait space defined by the three dimensionless metrics, they resemble birds far 

more than mammals on the ROS axis, while behaving much more like mammals in their range of 

LRE values (Fig. S-2). This evidence suggests that flight operates particularly on ROS out of the 

three metrics: volant organisms must approach adult body mass before they can be independent 

from their parents. 

Relationship between lifetime reproductive effort and relative offspring size 

As both lifetime reproductive effort (LRE) and relative offspring size (ROS) increase across the 

four tetrapod classes from amphibians to birds, these two metrics demonstrate a striking positive 

correlation (Fig. 3). Tetrapods with high reproductive effort and high longevity tend to have 

higher masses at independence relative to their adult body mass and vice versa. As clades have 

evolved successive adaptations, from the amniotic egg to endothermy, and finally volancy, 

organisms have moved towards these higher reproductive investments and relative masses at 

maturity. This relationship is constrained in two ways. First, ROS is a component of LRE, which 

calculates reproductive effort as the product of ROS, longevity, and the number of offspring per 

year. Thus the slope of the correlation between LRE and ROS is approximately the average 

number of offspring per year across an organism’s reproductive lifespan. This value is 

proportional to average reproductive output R0, i.e. fitness. R0 is hypothesized to be the product 

of survival to adulthood and this value, which is the ratio of LRE to ROS (Charnov et al. 2007). 

In the log-log plot of LRE vs. ROS, we observe higher intercepts in the endotherm classes 

compared to the ectotherm classes, indicating that the endotherms may have higher R0 values. 

However, we also observe increasing slopes of the log-log plot moving from amphibians through 

birds, indicating a more complex interaction between these two metrics. Additionally, the case 

study of bats indicates that other factors influence this relationship. Bats resemble birds in their 
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constraints on ROS, but they exhibit LRE values like those of other mammals (Fig. S-2). Further 

study of the relationship between LRE and ROS may provide a method to compare relative 

fitness between and within classes. 

Conclusions 

The Charnov dimensionless life history metrics provide a useful tool for exploring the causes and 

consequences of life history variation among clades. These metrics have, in most cases, evolved 

with body mass in a correlated fashion within classes. Nonetheless, lifetime reproductive effort 

(LRE), relative reproductive lifespan (RRL), and relative offspring size (ROS) provide a highly 

informative lens through which to investigate life history strategies across a wide range of 

organisms. The four tetrapod classes differ drastically in their combinations of LRE, RRL, and 

ROS, indicating that they adopt different strategies to address fundamental life history trade-offs. 

We find that ectotherms have tremendous variation in life history strategies, while birds are 

highly constrained relative to even mammals. These distinctions imply that major adaptations in 

energetics, physiology, and ecology result in changes to the dimensionless metrics, and, by 

extension, the underlying trade-offs they represent. 
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Supplementary Information and Figures 

Data and Code. 

R code for all figures and analyses, as well as data and links to data files can be found at 

https://github.com/KerkhoffLab/bodymasspatterns. 

 

 

 

Figure S-1. Frequency polygons of (A) log-transformed body mass, (B) LRE, (C) RRL, and (D) 

ROS for bird, mammal, and bat species with values for all three of the dimensionless traits. 
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Figure S-2. Bat metric values overlaid on Gaussian hypervolumes of birds and mammals. Large 

colored points represent the centroids of each hypervolume. Small dark points represent trait 

values for individual species while small light points represent random points. 

 

Table S-1. Sorensen similarity of hypervolumes between birds, mammals, and bats. 

 AVES MAMMALIA 

CHIROPTERA 0.1924 0.2807 

AVES  0.1392 
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