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Abstract   

Four PARP inhibitors have been approved by the FDA as cancer therapeutics, yet 

there are several clinical settings where no strong rationale exists to inform clinicians 

on which to choose in terms of clinical effectiveness and toxicity. The four drugs have 

largely similar PARP family inhibition profiles, but several differences at the 

molecular and clinical level have been reported that remain poorly understood. We 

previously hypothesized that PARP inhibitors could have an inherent capacity to 

inhibit kinases off-target. Here, we characterise the off-target kinase landscape of 

four FDA-approved PARP drugs. We demonstrate that all four PARP inhibitors have 

a unique polypharmacological profile across the kinome. Niraparib and rucaparib 

inhibit DYRK1s, CDK16 and PIM3 at clinically achievable submicromolar 

concentrations. These represent the most potently inhibited off-targets of PARP 

inhibitors identified to date and should be investigated further to clarify their potential 

implications for efficacy and safety in the clinic, including use of PARP inhibitors in 

combination with other agents, including immunotherapy.  
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INTRODUCTION 

The demonstration that BRCA1 and BRCA2 mutant human cancer cell lines and 

tumour xenografts are exquisitely sensitive to small-molecule inhibitors of poly (ADP-

ribose) polymerase (PARP) was critical for the clinical development and approval of 

PARP inhibitors as single agents and provided the first clinical exemplification of 

synthetic lethality in oncology.1,2 All PARP inhibitors currently in the clinic bind to the 

nicotinamide binding pocket of PARPs through a shared benzamide pharmacophore 

that is essential for PARP binding, but the individual agents differ in size and 

flexibility (Figure 1a).3 In 2014, olaparib was the first PARP inhibitor to be approved 

by the FDA for advanced BRCA-mutated ovarian cancer, followed by rucaparib 

which was licensed for the same indication in 2016 (Table 1).4,5 Niraparib was then 

approved in 2017 as maintenance treatment for recurrent fallopian tube, ovarian and 

primary peritoneal cancers (Table 1).6 In 2018, olaparib and rucaparib also gained 

approval as maintenance treatment in the same types of cancer while olaparib was 

additionally licensed for BRCA-mutated HER2-negative breast cancer (Table 1).4–6 

Most recently, talazoparib was approved for BRCA-mutated HER2-negative breast 

cancer7 (Table 1).  Further PARP inhibitors are under clinical development.1,8,9 No 

strong rationale currently exists for selecting one PARP drug over the others in terms 

of clinical effectiveness and toxicity and prescription is largely based on the approved 

indication for each drug as well as the reimbursement policy of the relevant 

healthcare provider.10,11 Deeper understanding of the activity and liabilities of 

individual PARP inhibitors is therefore important to aid clinical decisions and benefit 

of cancer patients.  

 

Several differences between individual PARP inhibitors have already been reported 

at the cellular and clinical levels. When used at micromolar concentrations, 

differences in DNA strand break repair, phosphorylation of several proteins, cell cycle 

arrest, and anti-proliferative activities have been described between olaparib, 
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rucaparib and veliparib in cancer cell lines.12,13 Moreover, the different capacity of 

PARP inhibitors to trap PARP at the DNA damage site is widely accepted as 

important for the mechanism of action of PARP inhibitors but the exact molecular 

mechanism of this is not completely understood.14 Differences in cancer cell 

sensitivity and synthetic lethality also emerge from recent large-scale profiling 

experiments, in some instances leading to the prediction of distinct genomic 

biomarkers (Supplementary Table 1).15,16 Overall, it seems important to investigate 

further the differences between PARP inhibitors and to explore the potential impact 

on clinical use.  

 

It is now widely accepted that drugs often bind several proteins beyond their intended 

target ‘polypharmacology’.17–21 Moreover, experimental and computational methods 

continue to uncover previously unknown off-targets of drugs.19,22–25 Alongside other 

factors such as pharmacokinetics, polypharmacology has been demonstrated to 

cause differences in side-effects between drugs of the same class.26 In addition, 

understanding of polypharmacology can lead to the exploitation of drugs in novel 

indications, such as the recent approval of crizotinib in ROS1-driven non small-cell 

lung cancer.26–28  

 

The selectivity and polypharmacology of PARP inhibitors within the PARP-family was 

recently characterised in vitro using an enzymatic inhibition assay.29 Veliparib and 

niraparib were shown to be more selective for PARP1 and PARP2 compared to 

olaparib, rucaparib and talazoparib which show broader pan-PARP activity (Figure 

1b).29 However, this differential intra-family PARP selectivity is insufficient to explain 

all the differences observed between clinical PARP inhibitors. In 2014, we reported 

for the first time that the different polypharmacology patterns between PARP 

inhibitors extended beyond the PARP enzyme family.30 We demonstrated that 

rucaparib inhibited at least nine kinases with micromolar affinity whereas veliparib 
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inhibited only two kinases and olaparib did not exhibit activity against any of the 16 

kinases tested.30 During a high throughput screen for RPS6KB1 kinase inhibitors we 

identified a series of carboxamidobenzimidazoles that were confirmed to bind 

RPS6KB1 by orthogonal methods including X-ray crystallography.31 The 

carboxamidobenzimidazoles are known inhibitors of PARP32 and the existence of a 

crystal structure of a carboxamidobenzimidazole bound to RPS6KB1 kinase31 

prompted our speculation that all PARP inhibitors could have an intrinsic capacity to 

inhibit kinases. This activity could result from the ability of their shared benzamide 

pharmacophore to interact with the highly-conserved kinase hinge region (Figure 

1a).30,31 This suggested that – depending on its individual molecular size and 

decoration – each PARP inhibitor could have a unique off-target kinase profile that 

may remain as yet unexplored and would be important to characterise.21,30 More 

recently, an unbiased, large scale, mass spectrometry-based chemical proteomics 

approach uncovered new, low-potency affinities of the PARP inhibitor niraparib.33 

However, the chemical proteomics approach used was not able to reproduce 

published, stronger off-target kinase interactions.30 This illustrates the limitations of 

any single method for comprehensively identifying drug polypharmacology.30  

 

Here, we use computational and experimental methods to characterise the off-target 

kinase landscape of the four FDA-approved PARP inhibitors, olaparib, rucaparib, 

niraparib and talazoparib. We uncover novel, submicromolar off-target kinases – 

which to our knowledge represent the most potent off-target interactions of PARP 

inhibitors identified to date. We have also compiled and review the clinical side-effect 

profiles of the approved PARP inhibitors. Our findings further demonstrate the unique 

kinase polypharmacology of each PARP inhibitor that investigators should be aware 

of, and which could potentially open new avenues for the differential exploitation of 

clinical PARP inhibitors in precision medicine. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 14, 2019. ; https://doi.org/10.1101/520023doi: bioRxiv preprint 

https://doi.org/10.1101/520023
http://creativecommons.org/licenses/by-nc-nd/4.0/


	  

	   5	  

RESULTS 

In silico target profiling predicts new kinase off-targets of clinical PARP 

inhibitors 

We applied three parallel computational methods to predict off-targets: 1) a 

consensus of six ligand-based chemoinformatic methods integrated in the 

Chemotargets CLARITY platform34; 2) the Similarity Ensemble Approach (SEA)26; 

and 3) the multinomial Naive Bayesian multi-category scikit-learn method 

implemented in ChEMBL.35 The common principle for these methods is that 

chemically similar molecules should share similar bioactivity profiles against 

molecular targets; however, the details of the methods, including the representation 

of compounds and similarity calculations used, are distinct. We used these three 

methods to predict the kinase off-targets of the four FDA-approved PARP inhibitors, 

olaparib, rucaparib, niraparib and talazoparib. In addition to recovering most of the 

known interactions with members of the PARP family, the three methods predicted a 

total of 58 interactions between PARP inhibitors and kinases, with only 10 of them 

being previously known30 (Table 2, Supplementary Tables 2-4).  

 

CLARITY predicted 23 kinases as potential off-targets of olaparib (Supplementary 

Table 2). However, neither ChEMBL nor SEA predicted any kinase for this PARP 

drug (Supplementary Tables 3-4). A close inspection of the CLARITY predictions 

revealed that they were all generated from the similarity of olaparib to a single kinase 

inhibitor that was likely to be a false positive due to the absence within its structure of 

a benzamide moiety, which is known to be important for PARP binding 

(Supplementary Table 2).3 

 

CLARITY predicted seven kinases as potential off-targets of niraparib while ChEMBL 

predicted three kinases and the SEA method predicted one kinase (Table 2, 

Supplementary Tables 2-4). However, while all the methods predicted kinases as 
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potential off-targets for niraparib, no two methods predicted the same kinase. These 

predictions might reflect that niraparib has general kinase-binding features that are 

not specific to any single kinase, since there is no agreement between the methods 

on the specific kinases. However, it is still interesting that all the three methods 

predict kinases as potential off-targets of niraparib, particularly given that the only 

known kinase off-target of niraparib reported previously in the literature had low 

affinity (DCK IC50 = 67.9 µM).33 In addition, some of the kinase inhibitors that are 

identified as similar to niraparib present PARP-binding features. For example, 

CHEMBL2035040, a weak AKT inhibitor, shares the key benzamide moiety with 

niraparib and other PARP inhibitors.  

 

We have previously demonstrated that rucaparib inhibits nine kinases with 

micromolar potency.30 Given the high degree of polypharmacology of many kinase 

inhibitors, we hypothesized that rucaparib could inhibit more kinases than the ones 

already identified. None of the three computational methods used here predicted the 

nine kinase off-targets of rucaparib that are already known. CLARITY, ChEMBL and 

SEA correctly predicted four, two and four known kinase off-targets, respectively, for 

rucaparib. Additionally, CLARITY predicted three new kinases, and ChEMBL 

predicted nine new kinase off-targets (Table 2, Supplementary Tables 2-4). Overall, 

twelve new kinase off-targets in total were predicted for rucaparib. 

 

Finally, CLARITY and ChEMBL predicted only one kinase off-target each for 

talazoparib whilst SEA predicted none (Table 2). This low number of kinase off-target 

predictions suggests that it less likely that talazoparib inhibits kinases 

(Supplementary Tables 2-4).  

 

Overall, the lack of consensus on specific kinase off-targets between the three 

computational methods (Table 2, Supplementary Tables 2-4) is noteworthy and 
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requires future exploration of the methodology, especially given the expanding use of 

these approaches.36 It is particularly puzzling given that all three methods are based 

on chemical structure similarity and use the same underlying medicinal chemistry 

databases – highlighting the sensitivity of such predictions to the specific 

computational representation of compounds and statistics utilised. Based on our 

experience, we advise that, until these methodologies improve, researchers should 

apply as many predictive computational methods as possible.  However, despite the 

differences in the detail, an important message is that all three methods did predict a 

range of kinases as potential off-targets of niraparib and rucaparib, thus increasing 

the confidence in our hypothesis that additional kinase off-targets are likely to be 

found for PARP drugs (Table 2).  

 

Kinome profiling with a binding assay uncovers differential polypharmacology 

between clinical PARP inhibitors 

To follow up the computational analysis, we performed a comprehensive in vitro 

kinome screen. To do this we employed the DiscoveRx (https://www.discoverx.com) 

KinomeScan in vitro binding technology37,38 that has been widely used for kinome 

profiling in drug discovery. At the time of conducting our screen, this kinome panel 

was the largest commercially available and comprised 468 in vitro binding assays 

corresponding to 392 unique human kinases (76% of the human kinome)39 

(Supplementary Table 5). Also included were assays comprising mutated, deleted, 

phosphorylated or autoinhibited forms of proteins (n = 63), secondary or 

pseudokinase domains (n = 8), non-human isoforms (n = 3) and CDK complexes 

with different cyclins (n = 2) (Supplementary Table 5). The assays were performed at 

a single relatively high concentration of 10 µM to identify initially both low and high 

potency off-targets. 
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The results of the use of the in vitro binding assay for kinome profiling reveal marked 

differences between the kinase polypharmacology of PARP inhibitors. As illustrated 

in Figure 2, rucaparib and niraparib bind to many kinases while talazoparib binds 

only to two kinases with modest affinity and olaparib does not bind to any of the 392 

kinases tested (Supplementary Table 5). The technology used involves a competition 

assay, defining activity as ≥65% of the kinase being competed off an immobilised 

ligand at 10 µM38. Using this measure, rucaparib binds to 37 kinases while niraparib 

binds to 23 kinases (Table 2, Supplementary Table 5). Moreover, there is only partial 

overlap between the measured kinase polypharmacology of niraparib and rucaparib, 

with both drugs binding to 15 shared kinases. Interestingly, the two kinases to which 

talazoparib showed weak binding are CLK3 and MTOR, neither of which bind the 

more broadly acting rucaparib and niraparib.  

 

Importantly, as illustrated in Figure 2, the off-target kinase activities of the four PARP 

inhibitors do not cluster in one single kinase family but are fairly widely distributed 

across the kinome. When carried out at the 10 µM concentration used, the in vitro 

binding assay is able to recover most previously known off-targets of rucaparib, 

including the most potent known interactions with PIM1 and DYRK1A. However, the 

previously described weaker interactions of rucaparib with PRKD2, CDK9, PIM2 and 

ALK were not reproduced by the binding assay. A further two known off-targets, 

CDK1 and DCK, were not available in the kinome panel used.  

 

Overall, our results provide empirical evidence that the polypharmacology profile is 

indeed different for the four different PARP inhibitors studied. Consistent with the 

prediction by the computational methods, rucaparib and niraparib demonstrate 

multiple kinase polypharmacology, with less or no off-targets for talazoparib and 

olaparib. 
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Orthogonal catalytic inhibition assay confirms DYRK1s, PIM3 and CDK16 as 

submicromolar off-targets of niraparib and rucaparib 

Next, we validated the observed activities in an orthogonal experimental method, 

namely direct inhibition of kinase catalytic activity using Reaction Biology’s HotSpot 

platform (http://www.reactionbiology.com).40 This platform employs a widely-used 

and validated radiometric assay which measures inhibition of catalytic activity.41 Of 

the 24 kinases showing the greatest binding by the PARP inhibitors (≥85% binding at 

10 µM, Supplementary Table 5) four were not available for follow-up testing at 

Reaction Biology (Highlighted in Supplementary Table 5). Thus, in total we tested 20 

kinases in a radiometric catalytic inhibition assay, initially at a 1 µM of the PARP 

inhibitors (Table 3). Of these, four were inhibited more than 50% by rucaparib and/or 

niraparib, namely DYRK1B, CDK16/cyclin Y, PIM3 and DYRK1A (Table 3).  

 

Some of the initial hits identified in the DiscoveRx KinomeScan binding assay – such 

as TSSK3 – could not be reproduced using the orthogonal radiometric catalytic 

assay. This is frequently observed when comparing binding and catalytic assays,42 

due to factors such as differences in assay methods and conditions (e.g. protein 

constructs and drug concentrations used). Interestingly, although the primary hits 

from the binding assay are widely distributed across the kinome tree (Figure 2), the 

20 selected kinases showing the greatest binding by the PARP inhibitors are from 

only 5 different kinase groups and the submicromolar kinase off-targets of PARP 

inhibitors in the radiometric catalytic assay are all from the CMGC and CAMK groups 

(Table 3). At the submicromolar level tested in the catalytic assay (> 50% inhibition at 

1 µM), rucaparib inhibited kinases from both groups but niraparib inhibited only two 

kinases from the CMGC group. DYRK1B was the only kinase inhibited by both 

rucaparib and niraparib at concentrations below 1 µM (Table 3). These results further 

emphasize the different kinase polypharmacology behaviour exhibited between these 

two clinical PARP inhibitors. 
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Given our identification of potent new submicromolar off-targets that could have 

clinical implications, we measured the IC50 for the submicromolar kinases in the 

catalytic assay (> 50% inhibition at 1 µM) using Reaction Biology’s radiometric 10-

point concentration-response inhibition assay (Figure 3). Rucaparib inhibits three 

kinases (CDK16, PIM3 and DYRK1B) with submicromolar IC50 values, the most 

potent being CDK16 (IC50 = 381 nM). In contrast, niraparib inhibits only two kinases 

with submicromolar IC50 values, the most potent being DYRK1B (IC50 = 254 nM). To 

our knowledge, this is the first report of submicromolar non-PARP family off-targets 

of PARP inhibitors.  

 

Docking experiments to study PARP-kinase polypharmacology at the atomic 

level  

To attempt to understand the underlying basis of PARP-kinase polypharmacology at 

the atomic level we used in silico docking to predict the binding modes of clinical 

PARP inhibitors for their most potent kinase off-targets.  

 

Of the four protein kinases inhibited with submicromolar affinities by rucaparib or 

niraparib (Figure 3), only DYRK1A and CDK16 had a 3D structure deposited in the 

PDB.43 Using GOLD (https://www.ccdc.cam.ac.uk/solutions/csd-

discovery/components/gold/), we compared the binding poses of all four clinical 

PARP inhibitors against these two kinases (Figure 4 and Supplementary Figure 1).  

Docking scores using GOLD’s S(PLC) scoring function are concordant with kinase 

binding affinity (Figure 5 and Supplementary Figure 1). In order to facilitate the 

analysis of the molecular interactions between PARP inhibitors and kinase proteins 

in the best GOLD scoring poses, we used LigPlot+ to generate 2D schematic 

diagrams of these protein-ligand interactions.  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 14, 2019. ; https://doi.org/10.1101/520023doi: bioRxiv preprint 

https://doi.org/10.1101/520023
http://creativecommons.org/licenses/by-nc-nd/4.0/


	  

	   11	  

Additionally, we analysed the structures of the two kinases co-crystalized with 

inhibitors that share the cyclic benzamide moiety found in most PARP inhibitors  

(Supplementary Table 7).44 In the case of DYRK1A, no hydrogen-bond interaction 

was formed in the best scoring GOLD pose of the PARP inhibitors olaparib, 

rucaparib, niraparib and talazoparib with the kinase. In contrast, the cocrystalized 

inhibitor forms two hydrogen bonds with DYRK1A (Figure 4). In the case of CDK16, 

only rucaparib and talazoparib form one hydrogen bond each while the cocrystalyzed 

ligand interacted via four hydrogen bonds with CDK16 (Supplementary Figure 1).  

 

There was no evident relationship between the number of overall interactions in the 

best docking poses and the affinity of each PARP inhibitor for CDK16 or DYRK1A. 

The lack of shared contacts demonstrates that it is unlikely that the benzamide 

moiety, which is a key feature for PARP binding, is a major contributor to kinase 

binding.30 This is consistent with our experimental results as all our tested PARP 

inhibitors contain this moiety. It is possible that the flatter shape of niraparib and 

rucaparib might allow a better fit in the kinase binding sites as compared to the 

bulkier talazoparib and the more flexible olaparib. In turn, this might be responsible 

for their better docking scores and affinities for kinases. However, experimental 

validation of this binding is required to confirm any of these hypotheses. 

 

Analysis of clinical data shows differential side-effects between PARP 

inhibitors 

As shown in Figure 1, all examined PARP inhibitors have low nanomolar potencies 

against their PARP targets whereas the potencies against kinases are in the 250 nM 

to low micromolar range. Moreover, drug penetration inside solid tumours is 

frequently limited.45 Therefore, at the potencies identified here, it is unlikely that the 

inhibition of kinases by rucaparib and niraparib contributes to therapeutic activity at 

the tumour site.  
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However, we reasoned that submicromolar kinase off-targets activities are 

sufficiently potent to have potential additional, clinically relevant pharmacological 

effects in better perfused organs outside the immediate tumour site. Rucaparib and 

niraparib received FDA-approval in 2016 and 2017 for a recommended dose of 

600mg taken twice daily and 300mg taken once daily, respectively (Table 1).5,6 At 

these clinical doses, their steady-state Cmax concentrations in plasma range 

between 2-9 µM for rucaparib46 and 3-4 µM for niraparib.47 These micromolar Cmax 

concentrations are well above the submicromolar in vitro IC50 concentrations for their 

most potent kinase off-targets.   

 

There are no clinical trials comparing PARP inhibitors directly side by side. 

Consequently, we first used the FDA prescribing information4–6 to analyse all 61 

reported adverse events and laboratory abnormalities for the four FDA-approved 

PARP inhibitors (Supplementary Table 8). Given the lack of direct, quantitative, 

comparative studies, we summarised the findings into qualitative categories to allow 

comparison (Supplementary Table 9). Next, we abstracted the reported adverse 

reactions in the four largest clinical trials of olaparib,48 rucaparib49, niraparib50 and 

talazoparib51. Despite obvious limitations in comparing different trials, the 

combination of the abstracted information provides high-level insights into similarities 

and differences between the different PARP inhibitor side-effects (detailed in 

Supplementary Tables 8-9).  

 

Of the 61 analysed parameters, 21 are shared between all four approved PARP 

inhibitors although some are only rarely observed. These include frequently observed 

side-effects of cancer therapeutics such as nausea, vomiting or diarrhoea. Of the 61 

parameters, 40 were reported to be commonly observed side-effects for at least one 

of the four drugs (Supplementary Table 9). Several of these effects are shared 
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between most PARP drugs, such as the increase in serum creatinine, which is 

reported during treatment with olaparib, rucaparib and niraparib but not talazoparib 

(Figure 5). Other side-effects, such as palpitations, are reported only for two clinical 

PARP inhibitors. Finally, all four drugs have unique commonly observed side-effects 

not shared with other PARP inhibitors. For example, rucaparib is the only PARP 

inhibitor reported to increase cholesterol and talazoparib is the only PARP inhibitor 

reported to produce alopecia (Figure 5). All these nineteen distinct side-effects are 

commonly observed for their respective drugs (as reported in the Prescribing 

Information). Overall, FDA-approved PARP drugs appear to have distinct side-effect 

profiles and we hypothesize that their unique polypharmacological profiles could 

contribute to them.  

 

DISCUSSION 

In this study, we computationally predict and experimentally characterise the off-

target kinase landscape of the four clinical PARP inhibitors that are currently 

approved. We demonstrate that each PARP inhibitor has a unique off-target profile 

across the kinome. We uncover novel kinase off-targets for the FDA-approved PARP 

drugs niraparib and rucaparib which we experimentally confirm to have 

submicromolar inhibitory activities (Figures 2 and 3). Niraparib inhibits DYRK1A and 

DYRK1B whilst rucaparib inhibits CDK16, PIM3 and DYRK1B – all with 

submicromolar affinities (Figure 3). We propose that the inhibition by niraparib and 

rucaparib of DYRK1A, CDK16 and PIM3, among other kinases, may have potential 

clinical relevance and thus warrant further investigation. Moreover, our findings 

highlight the importance of considering kinase off-targets in the future discovery and 

development of PARP inhibitors. 

 

Our results also illustrate the challenge of comprehensively uncovering drug 

polypharmacology. We find limitations in all screening assay formats, including 
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differences seen with computational prediction methodologies and also chemical 

proteomics. For example, although all computational methods that we used predicted 

kinases as potential off-targets of PARP inhibitors, the methods showed little overlap 

either in the precise computational predictions or with the results of our experimental 

data (Supplementary Tables 2-6). It is important to note that currently available 

bioactivity data in public databases are strongly biased towards commonly studied 

targets, including many kinases. This bias may well contribute to the strong 

computational prediction of kinase polypharmacology that we observe in this study. 

Increasing the target coverage of the public databases will improve the training of 

computational models. Meanwhile, users of such methods are advised to apply as 

many methods as possible in order to seek consistent predictions and to rely only on 

those that are experimentally validated.  

 

The availability of experimental in vitro target profiling panels at contract research 

organisations is strongly enabling – especially democratising off-target identification 

and validation for smaller enterprises and academic groups. However, technological 

differences between platforms, including expression constructs and systems, 

purification procedures and assay conditions, affect the results found.42 In this study, 

most of the already known off-targets of PARP inhibitors were reproduced by the in 

vitro competitive binding platform that we used for initial profiling. However, in line 

with previous observations,42 some of the strongest binding signals at 10 µM were 

not reproduced using a well-established radiometric catalytic assay. Moreover, 

although increasing in coverage, current screening panels are not yet fully 

comprehensive – even across widely-studied target families such as kinases.52 

Finally, the results of a recent chemical proteomics analysis of the selectivity of 

clinical PARP inhibitors failed to identify our experimentally confirmed findings – but 

of course are able to sample a broader fraction of the proteome.33 There are several 

factors limiting the use of chemical proteomics in this setting, such as the level of 
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expression of proteins in the cells used and the unknown full effects of the attached 

tags across the proteome. 

 

It is clear that no method is free of limitations. Overall, our results illustrate the 

complementarity between different methods in addressing the challenging task of 

systematically uncovering the molecular target profile of drugs to further our 

understanding of polypharmacology and its potential impact for efficacy and safety in 

the clinic. 

 

The clinical PARP inhibitors exhibit different sensitivity across cancer cell lines when 

measured in large-scale screens, enabling the prediction of distinct genomic 

biomarkers of drug sensitivity (Supplementary Table 1).53 It is possible that 

differential effects between cell lines may relate to the different polypharmacology of 

PARP inhibitors.  Both the observed differential cellular effects and the differential 

polypharmacology necessitate consideration of more system-wide effects of PARP 

inhibitors and their kinase off-targets, particularly in organs that are exposed to high 

drug concentrations, such as the blood and the liver. Indeed both DYRK1A and 

CDK16 proteins are highly expressed in the bone marrow, immune cells and the liver 

while CDK16 is very broadly expressed.54 

 

As discussed above, rucaparib and niraparib display a high degree of selectivity for 

PARPs (low nanomolar) over kinases (high nanomolar). Therefore, at the tumour site 

in vivo, these off-target activities are unlikely to have significant anti-tumour effect. 

However, the clinical concentrations achieved, especially at sites of higher drug 

concentrations including the liver, may have potential clinical implications for the off-

target activities. 
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We analysed the FDA prescribing information and data from major clinical trials for 

the four FDA-approved PARP inhibitors and identify differences in their side-effects. 

The comparison shows that each PARP drug has a unique clinical side-effect profile 

and we hypothesize that this may potentially relate to the unique off-target profile 

(Figure 5, Supplementary Tables 8-9). Since side-effects could result through a 

multitude of mechanisms, it is not possible to ascribe each side-effect to specific off-

targets. Nevertheless, it is tempting to speculate that the unique inhibition of PIM3 by 

rucaparib and not by olaparib, niraparib or talazoparib may contribute to the unique 

elevations in cholesterol that are observed in patients treated with rucaparib but not 

other three PARP inhibitors (Figure 3). The only PARP family member for which 

rucaparib shows greater affinity than the rest of the PARP inhibitors, and which has 

been associated with cholesterol homeostasis, is PARP10.55 However, the small 

difference in affinity for PARP10 (Figure 1) between olaparib, niraparib and 

talazoparib (below 4-fold in the case of niraparib) does not strongly support this 

hypothesis. Interestingly, PIM3 has been recently found to be regulated downstream 

of mTORC1 by miR-33 – encoded by the SREBP loci.56 SREBP and miR-33 are 

known regulators of cholesterol homeostasis.57 Moreover, transgenic mice 

overexpressing PIM3 in the liver showed an increase of lipid droplet accumulation58 

while PIM1 is known to stabilize the cholesterol transporter56 and there is substantial 

functional redundancy in the PIM kinase family. Accordingly, the high drug 

concentrations that the liver is exposed to and the unique inhibition of PIM3 by 

rucaparib (Figure 3) are consistent with the hypothesis that PIM3 kinase inhibition 

may be responsible for this differential side-effect (Figure 5). However, further 

experimental and clinical validation is needed to verify this hypothesis, such as 

comparing biomarkers of PIM3 response in patients treated with different PARP 

inhibitors.  
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Interestingly, olaparib does not show off-target activity against any of the kinases 

tested but its unique side-effects suggest that this drug could have off-target effects 

beyond kinases. Testing PARP inhibitors side by side in clinical trials and the 

comprehensive characterisation of their polypharmacology beyond the kinome would 

be very valuable to further our understanding of their differences at the molecular 

and clinical levels and to explore opportunities for their maximal exploitation for 

patient benefit. 

 

The distinct off-target and side-effect profiles between PARP inhibitors that we have 

identified also caution against the assumption that PARP inhibitors are clinically 

equivalent in all disease and treatment scenarios. Moreover, any differences could 

be magnified when PARP inhibitors are used in combination with other drugs that 

could synergise differently with the different off-target activities of clinical PARP 

inhibitors. This might be particularly important in drug combinations with 

immunotherapy due to the likely higher concentrations of PARP inhibitors in the 

blood compared to the tumour site. These higher concentrations could make the 

weaker kinase off-target activities capable of impacting the immune response. 

Currently, there are at least 30 clinical trials studying combinations between PARP 

inhibitors and immunotherapies (Supplementary Table 10) but none is comparing 

more than one PARP inhibitor side by side. DYRK1A has been shown to have an 

important role in immune system homeostasis by regulating the branching point 

between Th17 and Treg differentiation.59 Treg cells are known to modulate the 

tumour suppressive microenvironment and the prevention of their suppressive 

activities through immune checkpoint blockade is a major focus of current oncology 

research.60 In this context, the off-target inhibition of DYRK1A may potentially play a 

role in increasing the Treg cell population that in turn may antagonise the effects in 

PARP-immunotherapy drug combinations. If this is the case, the combination of 

olaparib or niraparib with immunotherapy drugs may give different results and we 
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recommend that this should be investigated carefully. Moreover, the submicromolar 

off-target interactions between rucaparib and PIM3 may also play a role in immune 

system homeostasis. PIM3 is known to regulate STAT3 by phosphorylating Tyr-705 

which is uniquely dephosphorylated after rucaparib treatment at micromolar 

concentrations in cellular models.13,61,62 STAT3 has recently been shown to be 

involved in the control of responder T-cell senescence induced by human Treg 

cells.60 Consequently, the inhibition of STAT3 phosphorylation by rucaparib via PIM3 

may play a role in reducing responder T-cell senescence produced by Treg cells and 

thus synergise with immunotherapy.60 A recent study has also shown that inhibition 

of PIM kinases improved anti-tumour T cell therapy in an animal model via 

modulating T cell homeostasis.63 However, all the PIM kinases were simultaneously 

inhibited in the study – and thus these results need to be validated for the selective 

inhibition of PIM3. Overall, several kinase off-targets of PARP inhibitors could 

modulate T cell homeostasis and their potential implications should be validated 

further to maximize PARP drug combinations with immunotherapy. 

 

In summary, our study demonstrates that PARP inhibitors have an inherent capacity 

to inhibit kinases off-target and illustrates that each of the clinically approved PARP 

inhibitors investigated in this work has a unique polypharmacological kinase profile. 

Of particular note, we identify novel submicromolar off-target kinases for rucaparib 

and niraparib. We demonstrate through our analysis of prescribing information and 

key clinical trials that FDA-approved PARP drugs have distinct clinical side-effect 

profiles and we recommend that studies be undertaken to determine the potential 

contribution of off-target kinase effects to drug side-effects.  Our study highlights the 

field’s currently limited understanding of drug polypharmacology and its implications 

for efficacy and safety in the clinic. This is particularly important when considering 

drug combinations with limited understanding of the polypharmacological liabilities of 

the combined drugs. However, through the application of complementary 
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technologies, we can map key polypharmacological profiles and generate testable 

hypotheses with clinical potential. In this way, we can help facilitate the maximal 

exploitation of PARP inhibitors and other drugs for patient benefit. 
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METHODS 

In silico target profiling  

Three computational methods based on chemical similarity were used to predict the 

kinase off-targets of clinical PARP inhibitors. The canonical SMILES used to define 

the chemical structures of the four clinical PARP inhibitors analysed were obtained 

from ChEMBL.35 The first method used was the predefined consensus of six ligand-

based chemoinformatic methods available in the Chemotargets CLARITY platform 

(https://www.chemotargets.com) and a predefined panel including PARPs and 

kinases was selected for off-target prediction.34 Secondly, we used the Similarity 

Ensemble Approach (SEA) method (http://sea.bkslab.org/) set to default 

parameters.26 And the third method used was the multinomial Naive Bayesian multi-

category scikit-learn similarity-based method implemented in ChEMBL that can be 

accessed from the ChEMBL website (https://www.ebi.ac.uk/chembl/).35 The raw data 

from the predictions we obtained can be accessed in Supplementary Tables 2-4. 

 

In vitro kinome profiling measuring drug binding 

DiscoveRx’s KinomeScan in vitro active site-directed competition binding assay 

(https://www.discoverx.com) was used to quantitatively measure interactions 

between the four clinical PARP inhibitors and their largest kinase panel. At the time 

when the assays were performed (date: 29/11/2016), 468 in vitro binding assays 

were available, corresponding to 392 unique human kinases (76% of the human 

kinome)39 (Supplementary Table 5).  

 

In vitro kinase radiometric assays 

Reaction Biology’s HotSpot platform (http://www.reactionbiology.com),40 that uses a 

radioisotope  filter  binding  assay, was used to validate the hits from the kinome 

binding assay with greater effects at 10 µM. The radiometric assay is designed to 

directly detect the true product without the use of modified substrates, coupling 
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enzymes, or detection antibodies. Test or control compounds are incubated with 

kinase, substrate, cofactors, and radioisotope-labeled ATP (32P-ɣ-ATP or 33P-ɣ-

ATP). The reaction mixtures are then spotted onto filter papers, which bind the 

radioisotope-labeled catalytic product. Unreacted phosphate is removed via washing 

of the filter papers.41 

 

Docking experiments 

We selected the crystal structures of DYRK1A (PDB ID: 4AZE) and CDK16 (PDB ID: 

3MTL) because they were the only ones cocrystalized with a ligand presenting a 

cyclic benzamide that mirrors the one present in all PARP inhibitors (Supplementary 

Table 7). The PDB files were prepared using the standard preparation method 

implemented in GOLD v5.6 (https://www.ccdc.cam.ac.uk/solutions/csd-

discovery/components/gold/). The binding site was described selecting residues at a 

distance of 6 Å from the cocrystalised ligand.  The ligand structures were extracted 

from the PDB and edited to define the correct atom types. Docking was performed 

using standard variables for high conformation sampling (30 GA runs) and amide 

bond and ring system flexibility of the ligand were enabled. Best docking poses were 

analysed with LigPlot+.44 

 

Side-effect analysis 

FDA prescribing information was downloaded from the FDA website 

(www.accessdata.fda.gov; accessed: 24/10/2018). The raw data describing the side-

effects and laboratory abnormalities and their frequency was extracted from the FDA 

prescribing information documents (Supplementary Table 8). A total of 64 side-

effects and laboratory abnormalities were described for the four FDA-approved 

PARP drugs (Supplementary Table 8). From the 64 side-effects, ‘decrease in 

leucocytes’ and ‘leukopenia’ were considered redundant side-effects and therefore 

were merged.  Similarly, ‘nasopharyngitis / URI / sinusitis / rhinitis / influenza’ and 
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‘(upper) respiratory tract infection’ were also considered analogous and merged. 

Finally, ‘ALT increase’ and ‘AST increase’ were also merged in a single side-effect. 

Accordingly, the final number of side-effects and laboratory abnormalities considered 

was 61 (Supplementary Table 9). The information was subsequently transformed into 

a binary format (1 = side-effect present; 0 = side-effect absent) (Supplementary 

Table 9). Uncommon side-effects by the definition of the FDA label were 

distinguished from common in two different columns (Supplementary Table 9). 

Differential side-effects were then compared to larger published clinical trials of 

olaparib, rucaparib and niraparib.48–50 Several side-effects that appeared differential 

only using the FDA labels were found to have been reported in larger clinical trials, 

such as dyspepsia, headache or myalgia that had been reported for rucaparib in the 

latest clinical trial despite not being included in the FDA label (Supplementary Table 

8-9).49 Figure 5 summarises the nineteen side-effects that are different between 

PARP inhibitors and were also reported as common for at least one PARP inhibitor. 
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FIGURES & TABLES  

Figure 1. Chemical structures and known PARP activities of clinical PARP inhibitors. 

a Chemical structures of the four FDA-approved PARP drugs. The benzamide core 

pharmacophore shared by all clinical PARP inhibitors is highlighted in bold and 

coloured orange. The rest of the chemical structure that is not shared between the 

inhibitors and confers them with different size and flexibility is coloured grey. b 

Known target profile of clinical PARP inhibitors across members of the PARP 

enzyme family. IC50 values are obtained from the literature and the database 

ChEMBL and ranges are given where there is more than one published value.29,35  
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Figure 2. Kinome profiling of the four FDA-approved PARP inhibitors across 392 

unique human kinases and 76 mutated, atypical and other forms. This was carried 

out using the in vitro binding platform of DiscoveRx’s KinomeScan®.38 The assays 

were perfomed at a single 10 µM concentration. The TREEspot™64 representations 

of the kinome tree, with superimposed in vitro binding data for each PARP inhibitor, 

illustrate how rucaparib and niraparib bind to a significant number of kinases while 

talazoparib only modestly binds to two kinases and olaparib does not bind to any of 

the kinases tested. 
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Figure 3. Concentration-response curves and IC50 calculation for the most potent 

kinase off-target interactions of clinical PARP inhibitors. a concentration-response 

curves of the interactions with greater binding effect at 10 µM of niraparib (top) and 

rucaparib (bottom) analysed in triplicate using Reaction Biology’s HotSpot 

radiometric assay that directly measures kinase catalytic activity.40 b Table 

summarising the calculated IC50 values for the kinase off-targets DYRK1B, CDK16, 

PIM3 and DYRK1A. 
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Figure 4. Docking poses with the top GOLD S(PLC) score of four clinical PARP 

inhibitors in DYRK1A kinase.  In the top left panel, all ligands are superimposed and 

the whole protein structure is displayed using MacPyMOL (PyMOL v1.8.0.6). In 

subsequent panels, LigPlot+44 was used to generate schematic diagrams of protein-

ligand interactions for the cocrystalized ligand and clinical PARP inhibitors. The lower 

Table summarises the value of the GOLD scoring function for the highest-scoring 

pose – the one represented – and the IC50 determined in this work (Figure 3) or 

extracted from the literature for each of the ligands. 
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Figure 5 The nineteen differential adverse reactions between FDA-approved clinical 

PARP inhibitors extracted from the FDA prescribing information and published 

results of the largest clinical trials. Side-effect frequencies are not considered due to 

the differences between the cut-offs used in each trial and FDA prescribing 

information for each PARP inhibitor (see Methods for details). Each adverse reaction 

considered common for at least one PARP drug and not identified for at least another 

PARP inhibitor is represented as a circle. The circles are coloured according to the 

drugs that present this adverse reaction in their prescribing information or publication 

of their largest clinical trial.  
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Table 1. Evolution of the indications for FDA-approved PARP inhibitors. Data 

extracted from the FDA Hematology/Oncology (Cancer) Approvals & Safety 

Notifications (accession date 29th May 2018).65 

PARP inhibitor 
Year of 

approval 
Indication and expanded indication 

Olaparib 

2014 

Treatment of patients with deleterious or suspected 

deleterious germline BRCA mutated (gBRCAm) 

advanced ovarian cancer who have been treated 

with three or more prior lines of chemotherapy. 

2017 

Maintenance treatment of adult patients with 

recurrent epithelial ovarian, fallopian tube, or 

primary peritoneal cancer, who are in a complete 

or partial response to platinum-based chemotherapy. 

2018 

Treatment of patients with deleterious or suspected 

deleterious germline BRCA-mutated (gBRCAm), 

HER2-negative metastatic breast cancer who have 

been treated with chemotherapy either in the 

neoadjuvant, adjuvant, or metastatic setting. 

Rucaparib 

2016 

Treatment of patients with deleterious BRCA 

mutation (germline and/or somatic) associated 

epithelial ovarian, fallopian tube or primary 

peritoneal cancer who have been treated with two 

or more chemotherapies. 

2018  

Maintenance treatment of recurrent ovarian, 

fallopian tube, or primary peritoneal cancer who 

are in a complete or partial response to platinum-

based chemotherapy. 

Niraparib 2017 

Maintenance treatment of adult patients with 

recurrent epithelial ovarian, fallopian tube, or 

primary peritoneal cancer who are in complete or 

partial response to platinum-based chemotherapy. 

Talazoparib 2018 

Treatment of patients with deleterious or suspected 

deleterious germline BRCA-mutated (gBRCAm), 

HER2-negative locally advanced or metastatic 

breast cancer. 
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Table 2. Comparison between the number of kinases predicted for clinical PARP 

inhibitors by three in silico target profiling methods and experimentally identified by in 

vitro kinome binding at 10 µM. *Prediction originating from the similarity to a single 

kinase inhibitor that is likely a false positive. 

 

Method Class Method  
Olaparib 

#kinases 

Rucaparib 

#kinases 

Niraparib 

#kinases 

Talazoparib 

#kinases 

Computational 

CLARITY34 23* 7 7 1 

ChEMBL35 0 11 3 1 

SEA66 0 4 1 0 

Experimental 
In vitro binding 

(KinomeSCAN®)38 
0 37 23 2 
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Table 3. Validation of the kinase binding hits with greater binding effect at 10 µM 

from the kinome profiling (Figure 2, Supplementary Table 5) using an orthogonal 

radiometric catalytic assay. The assay directly measures kinase catalytic activity 

using a widely-validated radiometric assay.40 The table displays the average of 

duplicate (n = 2) measurements of the percentage of enzyme inhibition relative to 

DMSO controls sorted by maximum percentage of inhibition. All assays were 

performed using 1 µM of drug concentration and Km concentration of ATP. From all 

the tested kinases, only 4 inhibit the enzyme by >50%.  These most potent 

interactions, expected to be submicromolar, are displayed in bold. n.b. not binding 

(Supplementary Table 5). n.d. not determined due to low binding (Supplementary 

Table 5). * n = 1.  

 

Kinase	  Group	   Gene	  Name Kinase	  complex	  
and	  aliases Niraparib Rucaparib 

CMGC DYRK1B -‐ 82% 53% 

CMGC CDK16 CDK16/cyclin	  Y	  
(PCTAIRE,	  PCTK1) n.b. 82% 

CAMK PIM3 -‐ 15% 78% 
CMGC DYRK1A DYRK1 76% 49% 
CMGC HIPK1 -‐ 40% -‐16% 
CAMK MYLK4 -‐ 19% 36% 
Other AURKB Aurora	  B 34% n.b. 
CMGC HIPK2 -‐ 23% -‐6% 
CAMK PIM1 -‐ 22% 27%* 
CMGC CSNK2A1 CK2a 12% 21% 
AGC LATS2 -‐ 17% n.b. 
CMGC CSNK2A2 CK2a2 -‐1% 17% 
AGC CIT STK21 10% 15% 
Other HASPIN Haspin 10% -‐6% 
CMGC CDK4 CDK4/cyclin	  D3 n.b. 10% 
CMGC HIPK3 -‐ 5% -‐12% 
CAMK TSSK3 STK22C n.b. -‐1% 
PKL PIK3C3 VPS34 -‐1%* n.b. 
CAMK PIM2 -‐ -‐5% n.b. 
CAMK STK17A DRAK1 n.d. -‐6% 
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