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Abstract  20 

Dominant coral-associated Endozoicomonas bacteria species are hypothesized to play a role in 21 

the global sulfur cycle by metabolizing Dimethylsulfoniopropionate (DMSP) into Dimethylsulfide 22 

(DMS); a climate active-gas, which releases sulfur into the atmosphere; however, no sequenced 23 

genome to date harbors genes for this process. We assembled high-quality (>95% complete) 24 

genomes of two new strains (Acr-1 and Acr-5) of a recently added species Endozoicomonas 25 

acroporae isolated from the coral Acropora muricata. We identified the first DMSP lyase—a 26 

dddD gene homolog found in all E. acroporae, and functionally characterized bacteria being 27 

capable of metabolizing DMSP into DMS via the DddD cleavage pathway using RT-qPCR and Gas 28 

chromatography (GC). This study confirms the role of Endozoicomonas in the global sulfur cycle. 29 

 30 

 31 
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Introduction 38 

The genus Acropora contains some of the most abundant reef-building corals in the Indo-Pacific 39 

[1], and these corals are also some of the most significant producers of 40 

dimethylsulphoniopropionate (DMSP) [2, 3]. DMSP is present in coral tissue, mucus and 41 

endosymbiont dinoflagellates (Symbiodiniaceae) [4, 5]. It is the central molecule in the marine 42 

sulfur cycle and precursor to dimethylsulphide (DMS), a climate-active gas [6, 7]. DMSP is 43 

hypothesized to be part of the coral holobiont antioxidant system [8] and it act as an 44 

osmoprotectant against salinity fluctuations [3]. DMSP also acts as a signal molecule that 45 

attracts specific bacterial groups, which can form coral holobionts and underpin coral health [9].  46 

 Coral-associated bacteria use DMSP produced by corals and their symbiotic algae as a 47 

reduced sulfur and carbon source [9, 10]; they can also metabolize it into DMS [6, 7]. DMSP 48 

degradation by marine organisms takes place via two pathways, the cleavage pathway and the 49 

demethylation pathway [10, 11].  A recent study reported that the majority of DMSP-degrading 50 

bacteria belong to class Gammaproteobacteria, which includes Alteromonas-, Arhodomonas-, 51 

Idiomarina-, Pseudomonas- and Spongiobacter-related organisms [12]. Of these, Arhodomonas-52 

, Pseudomonas-, and Roseobacter-related species harbor a DMSP lyase—i.e. the dddD gene, 53 

first identified in Marinomonas sp. for degrading DMSP [13]. Endozoicomonas species, which 54 

are predominantly associated with keeping their coral host healthy [14], have been 55 

hypothesized to play role in the global sulfur cycle by effectively metabolizing DMSP into DMS 56 

[15, 16]. However, no previous study has confirmed the genus’ role. Here, we provide the 57 

conclusive evidence that one of Endozoicomonas species metabolize DMSP into DMS.  58 
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 59 

Material and Methods 60 

We de-novo assembled high quality (>95% complete) genomes of two new strains (Acr-1 61 

and Acr-5) of a recently added species Endozoicomonas acroporae isolated from the coral 62 

Acropora muricata and identified for the first time a dddD gene homolog capable of 63 

metabolizing DMSP into DMS via the DddD cleavage pathway in all the E. acroporae strains. 64 

Furthermore, we functionally characterized the expression of the dddD gene and quantified the 65 

amount of DMS released using RT-qPCR and Gas chromatography (GC). Comparative genomic 66 

analysis of genus Endozoicomonas was performed to ascertain its genomic characteristics and 67 

features. We also profiled the abundance of E. acroporae species from two previous studies on 68 

different species of corals in Penghu, Taiwan [17] and the Red Sea, Saudi Arabia [18] (for details 69 

see supplementary data: material and methods).  70 

 71 

Results and Discussion 72 

E. acroporae species are dominant coral-associated bacteria in the Red Sea, Saudi Arabia 73 

(Fig S2A, B) and Penghu, Taiwan (Fig S2C, D), depicting their wide distribution among different 74 

coral species. When comparing E. acroporae Acr-1, Acr-5 with previously assembled type strain 75 

E. acroporae Acr-14T [19, 20] (supplementary results Table S1, Fig S1), all three strains of E. 76 

acroporae have a dddD gene homolog that encodes a DMSP lyase. RT-qPCR analysis of the dddD 77 

gene from E. acroporae Acr-14T cultured in 1 mM DMSP resulted in 42.77, 56.52, and 91.37 78 
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times higher expression than samples cultured without DMSP after 16, 24 and 48hrs, 79 

respectively (Fig 1A). The amount of DMS released when the culture (E. acroporae Acr-14T) was 80 

incubated in a DMSP-rich environment was significantly higher (t-test, p-value <0.05) than 81 

controls (Fig 1B). The temporal increase in the concentration of released DMS confirms that E. 82 

acroporae can metabolize DMSP into DMS. The discovery of the dddD gene in Endozoicomonas 83 

provides new insights into the evolution of the DMSP cleavage pathway and further confirms 84 

the hypothesis that Endozoicomonas plays a role in the global sulfur cycle.  85 

Comparative genomic analysis identified that only E. acroporae have the DMSP 86 

metabolism gene(s) so far (Table S2). Further, we report high genomic divergence using Amino-87 

Acid Identity (AAI), Average Nucleotide Identity (ANI) and DNA-DNA Hybridization (DDH) (Fig 2A, 88 

B, and C) in the genus and also a reduced core genome (308 genes) (supplementary data: 89 

results, Fig S5). Genomes of Endozoicomonas species are large (5.43 ~ 6.69 Mb) (Table S2) and 90 

encode genes for all essential amino-acids [21], giving clues about not predominant genome 91 

streamlining as identified in symbiotic bacteria [22] and other symbiotic life stages [21]. 92 

Moreover, E. acroporae species have the highest number of T3SS genes in Endozoicomonas 93 

(supplementary data: results, Table S3), suggesting an intricate relationship with their host. 94 

Besides, E. acroporae strains have different Insertion Sequence (IS) elements than E. 95 

montiporae, hinting that the two coral-isolates have different evolution histories [23] 96 

(supplementary data: results, Fig S3). Furthermore, diverse phage insertions in Endozoicomonas 97 

species genomes suggest different infection histories (supplementary data: results, Table S4). In 98 

addition, E. montiporae and E. acroporae do not share any branches, according to core-genome 99 

based phylogenetic analysis; instead, their strains cluster tightly within their clades (Fig 2D). 100 
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These results indicate that host and Endozoicomonas species have a complex nature of co-101 

diversification. All species in this genus have a high percentage of oxidative stress responsive 102 

genes, which might be attributed to resistance against low oxygen environment in the ocean as 103 

well as highlight the genus Endozoicomonas’ adaptation to marine environments 104 

(supplementary data: results, Fig S4). 105 

 106 

Conclusion 107 

Endozoicomonas is the most dominant coral-associated bacterial group. Here, we link 108 

their function in the global element cycle. In addition, comparative genomic analysis of the 109 

genus Endozoicomonas gives clues about high genomic divergence and genome plasticity. 110 

Although, current understanding of the interaction among coral-microbe-sulfur cycle is still not 111 

clear, the results from this study will be beneficial for investigating the global change in the reef 112 

ecosystem functioning with the changing environment. 113 

Data Availability 114 

E. acroporae Acr-1 and Acr-5 assembled draft genomes are submitted to GenBank under 115 

accession numbers SAUT00000000 and SAUU00000000, respectively. 116 
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 188 

Figure Legends 189 

Figure 1. A) RT-qPCR expression analysis; relative DddD gene expression increased significantly 190 

with time (0, 16, 24, 48 hours) when cultures were grown with 1mM DMSP compared to no 191 

DMSP (t-test p value <0.05). B) Quantification of DMS released, DMS release was only observed 192 

in the 1mM DMSP+ active bacteria condition, not in conditions b or c. 193 

Figure 2. Genomic divergence analysis using heat-maps from A) AAI, B) ANI, and C) DDH. 194 

Phylogenetic analysis D) Core-genome (308 genes)-based unrooted phylogenetic tree with E. 195 

acroporae strains forming a separate clade, as shown in zoomed image. 196 
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