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Abstract
Cross frequency coupling (CFC) is emerging as a fundamental feature of brain activity, correlated

with brain function and dysfunction. Many different types of CFC have been identified through

application of numerous data analysis methods, each developed to characterize a specific CFC type.

Choosing an inappropriate method weakens statistical power and introduces opportunities for

confounding effects. To address this, we propose a statistical modeling framework to estimate high

frequency amplitude as a function of both the low frequency amplitude and low frequency phase;

the result is a measure of phase-amplitude coupling that accounts for changes in the low frequency

amplitude. We show in simulations that the proposed method successfully detects CFC between the

low frequency phase or amplitude and the high frequency amplitude, and outperforms an existing

method in biologically-motivated examples. Applying the method to in vivo data, we illustrate how
CFC evolves during a seizure and is affected by electrical stimuli.

Introduction
Brain rhythms - as recorded in the local field potential (LFP) or scalp electroencephalogram (EEG) -

are believed to play a critical role in coordinating brain networks. By modulating neural excitability,

these rhythmic fluctuations provide an effective means to control the timing of neuronal firing

[23, 9]. Oscillatory rhythms have been categorized into different frequency bands (e.g., theta [4-10

Hz], gamma [30-80 Hz]) and associated with many functions: the theta band with memory, plasticity,

and navigation [23]; the gamma band with local coupling and competition [39, 6]. In addition,

gamma and high-gamma (80-200 Hz) activity have been identified as surrogate markers of neuronal

firing [58, 50, 27, 56, 83, 61], observable in the EEG and LFP.

In general, lower frequency rhythms engage larger brain areas and modulate spatially localized

fast activity [7, 14, 78, 44, 43]. For example, the phase of low frequency rhythms has been shown

to modulate and coordinate neural spiking [77, 31, 26] via local circuit mechanisms that provide

discrete windows of increased excitability. This interaction, in which fast activity is coupled to slower

rhythms, is a common type of cross-frequency coupling (CFC). This particular type of CFC has been

shown to carry behaviorally relevant information (e.g., related to position [32, 1], memory [65],

decision making and coordination [20, 55, 87, 29]). More generally, CFC has been observed in

many brain areas [7, 14, 19, 72, 24, 11], and linked to specific circuit and dynamical mechanisms

[31]. The degree of CFC in those areas has been linked to working memory, neuronal computation,
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communication, learning and emotion [71, 33, 12, 21, 38, 46, 37, 36, 66], and clinical disorders

[28, 86, 80, 4, 22], including epilepsy [82]. Although the cellular mechanisms giving rise to some

neural rhythms are relatively well understood (e.g. gamma [85, 84, 48], and theta [71]), the neuronal

substrate of CFC itself remains obscure.

Analysis of CFC focuses on relationships between the amplitude, phase, and frequency of

two rhythms from different frequency bands. The notion of CFC, therefore, subsumes more

specific types of coupling, including: phase-phase coupling (PPC), phase-amplitude coupling (PAC),

and amplitude-amplitude coupling (AAC) [31]. PAC has been observed in rodent striatum and

hippocampus [72] and human cortex [11], AAC has been observed between the alpha and gamma

rhythms in dorsal and ventral cortices [57], and between theta and gamma rhythms during spatial

navigation [64], and both PAC and AAC have been observed between alpha and gamma rhythms

[53]. Many quantitative measures exist to characterize different types of CFC, including: mean vector

length or modulation index [11, 70], phase-locking value [24, 42, 75], envelope-to-signal correlation

[8], analysis of amplitude spectra [15], coherence between amplitude and signal [18], coherence

between the time course of power and signal [53], and eigendecomposition of multichannel

covariance matrices [16]. Overall, these different measures have been developed from different

principles andmade suitable for different purposes, as shown in comparative studies [70, 15, 54, 51].

Despite the richness of this methodological toolbox, it has limitations. For example, because

each method focuses on one type of CFC, the choice of method restricts the type of CFC detectable

in data. Applying a method to detect PAC in data with both PAC and AAC may: (i) falsely report no

PAC in the data, or (ii) miss the presence of significant AAC in the same data. Changes in the low

frequency power can also affect measures of PAC; increases in low frequency power can increase

the signal to noise ratio of phase and amplitude variables, increasing the measure of PAC, even

when the phase-amplitude coupling remains constant [3, 74, 33]. Furthermore, many experimental

or clinical factors (e.g., stimulation parameters, age or sex of subject) can impact CFC in ways that

are difficult to characterize with existing methods [17]. These observations suggest that an accurate

measure of PAC would control for confounding variables, including the power of low frequency

oscillations.

To that end, we propose here a generalized linearmodel (GLM) framework to assess CFC between

the high-frequency amplitude and, simultaneously, the low frequency phase and amplitude. This

formal statistical inference framework builds upon previous work [40, 54, 79, 74] to address the

limitations of existing CFC measures. In what follows, we show that this framework successfully

detects CFC in simulated signals. We compare this method to the modulation index, and show

that in signals with CFC dependent on the low-frequency amplitude, the proposed method more

accurately detects PAC than the modulation index. We apply this framework to in vivo recordings
from human and rodent cortex and show examples of how accounting for AAC reveals changes

in PAC over the course of seizure, and how to incorporate new covariates directly into the model

framework.

Methods
Estimation of the phase and amplitude envelope
To study CFC we estimate three quantities: the phase of the low frequency signal, �low; the amplitude

envelope of the high frequency signal, Ahigh; and the amplitude envelope of the low frequency signal,

Alow. To do so, we first bandpass filter the data into low frequency (4-7 Hz) and high frequency

(100-140 Hz) signals, Vlow and Vhigh, respectively, using a least-squares linear-phase FIR filter of order

375 for the high frequency signal, and order 50 for the low frequency signal. Here we choose

specific high and low frequency ranges of interest, motivated by previous in vivo observations
[11, 72, 63]. However, we note that this method is flexible and not dependent on this choice, and

that we select a wide high frequency band consistent with recommendations from the literature [3]

and the mechanistic explanation that extracellular spikes produce this broadband high frequency
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Figure 1. The gamma distribution provides a good fit to example human data. Three examples of 20s
duration recorded from a single electrode during a human seizure. In each case, the gamma fit (red curve)

provides an acceptable fit to the empirical distributions of the high frequency amplitude.

activity [63]. We use the Hilbert transform to compute the analytic signals of Vlow and Vhigh, and

from these compute the phase and amplitude of the low frequency signal (A
low
and �

low
) and the

amplitude of the high frequency signal (A
high

).

Modeling framework to assess CFC
Generalized linear models (GLMs) provide a principled framework to assess CFC [54, 40, 74]. Here,

we present three models to analyze different types of CFC. The fundamental logic behind this

approach is to model the distribution of Ahigh as a function of different predictors. In existing

measures of PAC, the distribution of Ahigh versus �low is assessed using a variety of different metrics

(e.g., [70]). Here, we estimate statistical models to fit Ahigh as a function of �low, Alow, and their

combinations. If these models fit the data sufficiently well, then we estimate distances between the

modeled surfaces to measure the impact of each predictor.

The �low model

The �low model relates Ahigh, the response variable, to a linear combination of �low, the predictor

variable, expressed in a spline basis:

A
high

|�
low

∼ Gamma[�, �] (1)

log� =
n
∑

k=1
�kfk(�low),

where the conditional distribution of Ahigh given �low is modeled as a Gamma random variable with

mean parameter � and shape parameter �, and �k are undetermined coefficients, which we refer
to collectively as ��low

. We choose this distribution as it guarantees real, positive amplitude values;

we note that this distribution provides an acceptable fit to the example human data analyzed here

(Figure 1). The functions {f1,⋯ , fn} correspond to spline basis functions, with n control points
equally spaced between 0 and 2�, used to approximate �

low
. We use a tension parameter of 0.5,

which controls the smoothness of the splines. We note that, because the link function of the

conditional mean of the response variable (Ahigh) varies linearly with the model coefficients �k the
model is a GLM. Here, we fix n = 10, which is a reasonable choice for smooth PAC with one or
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Figure 2. Distribution of the number of control points (n) that minimize the AIC. Values of n between 7
and 12 minimize the AIC in a simulation with phase-amplitude coupling and amplitude-amplitude coupling.

two broad peaks [40]. To support this choice, we apply an AIC-based selection procedure to 1000

simulated instances of signals of duration 20 s with phase-amplitude coupling and amplitude-

amplitude coupling (see Methods: Synthetic Time Series with PAC and Synthetic Time Series with AAC,
below, for simulation details). For each simulation, we fit Model 1 to these data for 27 different

values of n from n = 4 to n = 30. For each simulated signal, we record the value of n such that we
minimize the AIC, defined as

AIC = Δ + 2n,

where Δ is the deviance from Model 1. The values of n that minimize the AIC tend to lie between
n = 7 and n = 12 (Figure 2). These simulations support the choice of n = 10 as a sufficient number of
splines.

For a more detailed discussion and simulation examples of the PAC model, see [40]. We note

that the choices of distribution and link function differ from those in [54, 74], where the normal

distribution and identity link are used instead.

The Alow model

The Alow model relates the high frequency amplitude to the low frequency amplitude:
A
high

|A
low

∼ Gamma[�, �] (2)

log� = �1 + �2Alow,

where the conditional distribution of Ahigh given Alow is modeled as a Gamma random variable

with mean parameter � and shape parameter �. The predictor consists of a single variable and a
constant, and the length of the coefficient vector �Alow

= {�1, �2} is 2.

The Alow, �low model

The Alow, �low model extends the �low model in Equation 1 by including three additional predictors

in the GLM: Alow, the low frequency amplitude; and interaction terms between the low frequency

amplitude and the low frequency phase: Alow sin(�low), and Alow cos(�low). These new terms allow
assessment of phase-amplitude coupling while accounting for linear amplitude-amplitude depen-

dence and more complicated phase-dependent relationships on the low frequency amplitude

without introducing many more parameters. Compared to the original �low model in Equation

1, including these new terms increases the number of variables to n + 3, and the length of the
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Figure 3. Example model surfaces used to determine RPAC and RAAC. (A,B,C) Three example surfaces (A)
SAlow , (B) S�low , and (C) SAlow ,�low

in the three-dimensional space (Alow, �low, Ahigh). (D) The maximal distance
between the surfaces SAlow

(red) and SAlow ,�low
(yellow) is used to compute RPAC. (E) The maximal distance

between the surfaces S�low
(blue) and SAlow ,�low

(yellow) is used to compute RAAC.

coefficient vector �Alow ,�low
to n + 3. These changes result in the following model:

A
high

|�
low
, A
low

∼ Gamma[�, �], (3)

log� =
n
∑

k=1
�kfk(�low) + �n+1Alow + �n+2Alow sin(�low) + �n+3Alow cos(�low).

Here, the conditional distribution of Ahigh given �low and Alow is modeled as a Gamma random

variable with mean parameter � and shape parameter �, and �k are undetermined coefficients. We
note that we only consider two interaction terms, rather than the spline basis function of phase, to

reduce the number of parameters in the model.

The statistics RPAC and RAAC
We compute two measures of CFC, RPAC and RAAC which use the three models defined in the

previous section. We evaluate each model in the three-dimensional space (�low, Alow, Ahigh) and

calculate the statistics RPAC and RAAC. We use the MATLAB function fitglm to estimate the models;
we note that this procedure estimates the dispersion directly for the gamma distribution. In what

follows, we first discuss the three model surfaces estimated from the data, and then how we use

these surfaces to compute the statistics RPAC and RAAC.

To create the surface SAlow ,�low
, which fits the Alow, �low model in the three-dimensional (Alow, �low,

Ahigh) space, we first compute estimates of the parameters �Alow ,�low
in Equation 3. We then estimate

Ahigh by fixing Alow at one of 640 evenly spaced values between the 5th and 95th quantiles of Alow

observed; we choose these quantiles to avoid extremely small or large values of Alow. Finally, at

the fixed Alow, we compute the high frequency amplitude values from the Alow, �low model over 100

evenly spaced values of �low between −� and �. This results in a two-dimensional curve CAlow ,�low
in

the two-dimensional (�low, Ahigh) space with fixed Alow. We repeat this procedure for all 640 values of

Alow to create a surface SAlow ,�low
in the three-dimensional space (Alow, �low, Ahigh) (Figure 3C).

To create the surface SAlow
, which fits the Alow model in the three-dimensional (Alow, �low, Ahigh)

space, we estimate the coefficient vector �Alow
for the model in Equation 2. We then estimate the

high frequency amplitude over 640 evenly spaced values between the 5th and 95th quantiles of

5 of 25

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 11, 2019. ; https://doi.org/10.1101/519470doi: bioRxiv preprint 

https://doi.org/10.1101/519470
http://creativecommons.org/licenses/by-nc-nd/4.0/


Manuscript submitted to eLife

Alow observed, again to avoid extremely small or large values of Alow. This creates a mean response

function which appears as a curve CAlow
in the two-dimensional (Alow, Ahigh) space. We extend this

two-dimensional curve to a three-dimensional surface SAlow
, in the (�low, Ahigh) space, which extends

CAlow
along the �low dimension (Figure 3A).

To create the surface S�low
, which fits the �low model in the three-dimensional (Alow, �low, Ahigh)

space, we first estimate the coefficients ��low
for the model in Equation 1. From this, we then

compute estimates for the high frequency amplitude using the �low model with 100 evenly spaced

values of �low between −� and �. Evaluating the �low model in this way results in a mean response

function C�low
. We extend this curve C�low

in the Alow dimension to create a surface S�low
in the

three-dimensional (Alow, �low, Ahigh) space. The surface S�low
has the same structure as the curve

C�low
in the (�low, Ahigh) space, and remains constant along the dimension Alow (Figure 3B).

The statistic RPAC measures the effect of low frequency phase on high frequency amplitude,

while accounting for fluctuations in the low frequency amplitude. To compute this statistic, we

note that the model in Equation 3 measures the combined effect of Alow and �low on Ahigh, while the

model in Equation 2 measures only the effect of Alow on Ahigh. Hence, to isolate the effect of �low on

Ahigh, while accounting for Alow, we compare the difference in fits between the models in Equations

2 and 3. We fit the mean response functions of the models in Equations 2 and 3, and calculate RPAC

as the maximum absolute fractional difference between the resulting surfaces SAlow ,�low
and SAlow

(Figure 3D):

R
PAC

= max [abs[1 − SAlow
∕SAlow ,�low

]]. (4)

We expect fluctuations in SAlow ,�low
not present in SAlow

to be the result of �low, i.e. PAC. In the absence

of PAC, we expect the surfaces SAlow ,�low
and SAlow

to be very close, resulting in a small value of RPAC.

However, in the presence of PAC, we expect SAlow ,�low
to deviate from SAlow

, resulting in a large value

of RPAC. We note that this measure, unlike R
2 metrics for linear regression, is not meant to measure

the goodness-of-fit of these models to the data, but rather the differences in fits between the two

models. We also note that RPAC is an unbounded measure, as it equals the maximum absolute

fractional difference between distributions, which may exceed 1.

To compute the statistic RAAC, which measures the effect of low frequency amplitude on high

frequency amplitude while accounting for fluctuations in the low frequency phase, we compare

the difference in fits of the model in Equation 3 from the model in Equation 1. We note that the

model in Equation 3 predicts Ahigh as a function of Alow and �low, while the model in Equation 1

predicts Ahigh as a function of �low only. Therefore we expect a difference in fits between the models

in Equations 1 and 3 results from the effects of Alow on Ahigh. We fit the mean response functions of

the models in Equations 1 and 3 in the three-dimensional (�low, Alow, Ahigh) space, and calculate RAAC

as the maximum absolute fractional difference between the resulting surfaces SAlow ,�low
and S�low

(Figure 3E):

R
AAC

= max [abs[1 − S�low
∕SAlow ,�low

]]. (5)

We expect fluctuations in SAlow ,�low
not present in S�low

to be the result of Alow, i.e. AAC. In the absence

of AAC, we expect the surfaces SAlow ,�low
and S�low

to be very close, resulting in a small value for RAAC.

Alternatively, in the presence of AAC, we expect SAlow ,�low
to deviate from S�low

, resulting in a large

value of RAAC.

Estimating 95% confidence intervals for RPAC and RAAC
We compute 95% confidence intervals for R

PAC
and R

AAC
via a parametric bootstrap method [40].

Given a vector of estimated coefficients �x for x = {Alow, �low, or Alow, �low}, we use its estimated
covariance and estimated mean to generate 10,000 normally distributed coefficient sample vectors

�jx , j ∈ {0,… , 10000}. For each �jx , we then compute the high frequency amplitude values from the
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Alow, �low, or Alow, �low model, Sj
x . Finally, we compute the statistics RjPAC and RjAAC for each j as,

RjPAC = max [abs[1 − Sj
Alow

∕Sj
Alow ,�low

]] , (6)

RjAAC = max [abs[1 − Sj
�low
∕Sj

Alow ,�low
]]. (7)

The 95% confidence intervals for the statistics are the values of Rj
PAC
and Rj

AAC
at the 0.025 and 0.975

quantiles [40].

Assessing significance of AAC and PAC with bootstrap p-values
To assess whether evidence exists for significant PAC or AAC, we implement a bootstrap procedure

to compute p-values as follows. Given two signals V
low
and V

high
, and the resulting estimated

statistics R
PAC
and R

AAC
we apply the Amplitude Adjusted Fourier Transform (AAFT) algorithm [69] on

V
high
to generate a surrogate signal V i

high
. In the AAFT algorithm, we first reorder the values of V

high

by creating a random Gaussian signalW and ordering the values of Vhigh to matchW . For example,
if the highest value ofW occurs at index j, then the highest value of Vhigh will be reordered to occur

at index j. Next, we apply the Fourier Transform (FT) to the reordered Vhigh and randomize the phase

of the frequency domain signal. This signal is then inverse Fourier transformed and rescaled to

have the same amplitude distribution as the original signal V
high
. In this way, the algorithm produces

a permutation V i
high
of V

high
such that the power spectrum and amplitude distribution of the original

signal are preserved.

We create 1000 such surrogate signals V i
high
, and calculate Ri

PAC
and Ri

AAC
between V

low
and each

V i
high
. We define the p-values p

PAC
and p

AAC
as the proportion of values in {Ri

PAC
}1000i=1 and {RiAAC}1000i=1

greater than the estimated statistics R
PAC
and R

AAC
, respectively. If the proportion is zero, we set

p = 0.0005.
We calculate p-values for themodulation index in the sameway. Themodulation index calculates

the distribution of high frequency amplitudes versus low frequency phases and measures the

distance from this distribution to a uniform distribution of amplitudes. Given the signals V
low
and

V
high
, and the resulting modulation index MI between them, we calculate the modulation index

between V
low
and 1000 surrogate permutations of V

high
using the AAFT algorithm. We set p

MI
to

be the proportion of these resulting values greater than theMI value estimated from the original
signals.

Synthetic Time Series with PAC
We construct synthetic time series to examine the performance of the proposed method as follows.

First, we simulate 20 s of pink noise data such that the power spectrum scales as 1∕f . We then
filter these data into low (4-7 Hz) and high (100-140 Hz) frequency bands, as described in Methods:
Estimation of the phase and amplitude envelope, creating signals V

low
and V

high
. Next, we couple the

amplitude of the high frequency signal to the phase of the low frequency signal. To do so, we first

locate the peaks of V
low
and determine the times tk, k = {1, 2, 3,… , K}, of theK relative extrema. We

note that these times correspond approximately to �
low

= 0. We then create a smooth modulation
signal M which consists of a 42 ms Hanning window of height 1 + IPAC centered at each tk, and
a value of 1 at all other times (Figure 4A). The intensity parameter IPAC in the modulation signal

corresponds to the strength of PAC. IPAC = 0.0 corresponds to no PAC, while IPAC = 1.0 results in a
100% increase in the high frequency amplitude at each tk, creating strong PAC. We create a new
signal V ′

high
with the same phase as V

high
, but with amplitude dependent on the phase of V

low
by

setting,

V ′
high =MVhigh .

We create the final voltage trace V as

V = V
low
+ V ′

high
+ c ∗ V

pink
,
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Figure 4. (A) Example simulation of Vlow (blue) and modulation signalM (red). When the phase of Vlow is 0

radians,M increases. (B) Example simulation of PAC. When the phase of Vlow is approximately 0 radians, the

high frequency amplitude (yellow) increases. (C) Example simulations of AAC. When the amplitude of Vlow is

large, so is the amplitude of the high frequency signal (purple).

where V
pink
is a new instance of pink noise multiplied by a small constant c = 0.01. In the signal

V , brief increases of the high frequency activity occur at a specific phase (0 radians) of the low
frequency signal (Figure 4B).

Synthetic Time Series with AAC
To generate synthetic time series with dependence on the low frequency amplitude, we follow the

procedure in the preceding section to generate V
low
, V
high
, and A

low
. We then induce amplitude-

amplitude coupling between the low and high frequency components by creating a new signal V ∗
high

such that

V ∗
high

= Vhigh

(

1 + IAAC
Alow

max (Alow)

)

,

where IAAC is the intensity parameter corresponding to the strength of amplitude-amplitude cou-

pling. We define the final voltage trace V as

V = V
low
+ V ∗

high
+ c ∗ V

pink

where V
pink
is a new instance of pink noise multiplied by a small constant c = 0.01 (Figure 4C).

Human Subject Data
A patient (male, age 32 years) with medically intractable focal epilepsy underwent clinically indicated

intracranial cortical recordings for epilepsy monitoring. In addition to clinical electrode implantation,

the patient was also implanted with a 10×10 (4 mm × 4 mm) NeuroPort microelectrode array (MEA;
Blackrock Microsystems, Utah) in a neocortical area expected to be resected with high probability,

in the temporal gyrus. The MEA consist of 96 platinum-tipped silicon probes, with a length of either

1-mm or 1.5-mm, corresponding to neocortical layer III as confirmed by histology after resection.

Signals from the MEA were acquired continuously at 30 kHz per channel. Seizure onset times were

determined by an experienced encephalographer (S.S.C.) through inspection of the macroelectrode

recordings, referral to the clinical report, and clinical manifestations recorded on video. For a

detailed clinical summary, see patient P2 of [81]. For these data, we analyze the 100-140 Hz

frequency band to illustrate the proposed method; a more rigorous study of CFC in these data

may require a more principled choice of high frequency band. This research was approved by local

Institutional Review Boards at Massachusetts General Hospital and Brigham Women’s Hospitals

(Partners Human Research Committee), and at Boston University according to National Institutes of

Health guidelines.
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Code Availability
The code to perform this analysis is available for reuse and further development at

https://github.com/Eden-Kramer-Lab/GLM-CFC .

Results
We first examine the performance of the CFC measure through simulation examples. In doing

so, we show that the statistics R
PAC
and R

AAC
accurately detect different types of cross-frequency

coupling, increase with the intensity of coupling, and detect weak PAC coupled to the low frequency

amplitude. We show that the proposed method is less sensitive to changes in low frequency power,

and outperforms an existing PAC measure that lacks dependence on the low frequency amplitude.

We conclude with example applications to human and rodent in vivo recordings, and propose that
the new measure identifies cross-frequency coupling not detected in an existing PAC measure.

The absence of CFC produces no significant detections of coupling
We first consider simulated signals without CFC. To create these signals, we follow the procedure

in Methods: Synthetic Time Series with PAC with the modulation intensity set to zero (IPAC = 0). In
the resulting signals, A

high
is approximately constant and does not depend on �

low
or A

low
(Figure

5A). We estimate the �low model, the Alow model, and the Alow, �low model from these data; we

show example fits of the model surfaces in Figure 5B. We observe that the models exhibit small

modulations in the estimated high frequency amplitude envelope as a function of the low frequency

phase and amplitude.

To assess the distribution of significant R values in the case of no cross-frequency coupling, we
simulate 1000 instances of the pink noise signals (each of 20 s) and apply the Rmeasures to each
instance, plotting significant R values in Figure 5C. We find that for all 1000 instances, p

PAC
and p

AAC

are less than 0.05 in only 0.6% and 0.2% of the simulations, respectively, indicating no significant

evidence of PAC or AAC, as expected.

The proposed method accurately detects PAC
We next consider signals that possess phase-amplitude coupling, but lack amplitude-amplitude

coupling. To do so, we simulate a 20 s signal with A
high
modulated by �

low
(Figure 5D); more

specifically, A
high
increases when �

low
is near 0 radians (see Methods, IPAC = 1). We then estimate the

�low model, the Alow model, and the Alow, �low model from these data; we show example fits in Figure

5E. We find that the �low model is higher when �low is close to 0 radians, and the Alow, �low model

follows this trend. We note that, because the data do not depend on the low frequency amplitude

(A
low
), the �low and Alow, �low models have very similar shapes in the (�low, Alow, Ahigh) space, and the

Alow model is nearly flat.

Simulating 1000 instances of these 20 s signals with induced phase-amplitude coupling, we

find p
AAC

< 0.05 for only 0.6% of the simulations, while p
PAC

< 0.05 for 96.5% of the simulations. We
find that the significant values of R

PAC
lie well above 0 (Figure 5F), and that as the intensity of the

simulated phase-amplitude coupling increases, so does the statistic R
PAC
(Figure 5G). We conclude

that the proposed method accurately detects the presence of phase-amplitude coupling in these

simulated data.

The proposed method accurately detects AAC
We next consider signals with amplitude-amplitude coupling, but without phase-amplitude coupling.

We simulate a 20 s signal such that A
high
is modulated by A

low
(see Methods, IAAC = 1); when Alow

is large, so is Ahigh (Figure 5H). We then estimate the �low model, the Alow model, and the Alow, �low

model (example fits in Figure 5I). We find that the Alow model increases along the Alow axis, and that
the Alow, �low model closely follows this trend, while the �low model remains mostly flat, as expected.

Simulating 1000 instances of these signals we find that p
AAC

< 0.05 for 97.9% of simulations,
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Figure 5. The statistical modeling framework successfully detects different types of cross-frequency coupling. (A-C) Simulations with no
CFC. (A) When no CFC occurs, the low frequency signal (blue) and high frequency signal (orange) evolve independently. (B) The surfaces SAlow , S�low ,
and SAlow ,�low suggest no dependence of Ahigh on �low or Alow. (C) Significant (p<0.05) values of RPAC and RAAC from 1000 simulations. Very few

significant values for the statistics R are detected. (D-G) Simulations with PAC only. (D) When the phase of the low frequency signal is near 0
radians (red tick marks), the amplitude of the high frequency signal increases. (E) The surfaces SAlow , S�low , and SAlow ,�low suggest dependence of
Ahigh on �low. (F) In 1000 simulations, significant values of RPAC frequently appear, while significant values of RAAC rarely appear. (G) As the

intensity of PAC increases, so do the significant values of RPAC (black), while any significant values of RAAC remain small. (H-K) Simulations with AAC
only. (H) The amplitudes of the high frequency signal and low frequency signal are positively correlated. (I) The surfaces SAlow , S�low , and SAlow ,�low
suggest dependence of Ahigh on Alow. ( J) In 1000 simulations, significant values of RAAC frequently appear. (K) As the intensity of AAC increases, so
do the significant values of RAAC (blue), while any significant values of RPAC remain small. (L-O) Simulations with PAC and AAC. (L) The amplitude of
the high frequency signal increases when the phase of the low frequency signal is near 0 radians and the amplitude of the low frequency signal is

large. (M) The surfaces SAlow , S�low , and SAlow ,�low suggest dependence of Ahigh on �low and Alow. (N) In 1000 simulations, significant values of RPAC
and RAAC frequently appear. (O) As the intensity of PAC and AAC increase, so do the significant values of RPAC and RAAC. In (G,K,O), circles indicate
the median, and x’s the 5th and 95th quantiles.
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Figure 6. The two measures of PAC increase with intensities near zero. The mean (circles) and 5th to 95th

quantiles (x’s) of (A) RPAC and (B) MI for intensity values between 0 and 0.5. Both measures increase with the
intensity.

while p
PAC

< 0.05 for 0.3% of simulations. The significant values of R
AAC
lie above 0 (Figure 5J),

and increases in the intensity of AAC produce increases in R
AAC
(Figure 5K). We conclude that the

proposed method accurately detects the presence of amplitude-amplitude coupling.

The proposed method accurately detects the simultaneous occurrence of PAC and
AAC
We now consider signals that possess both phase-amplitude coupling and amplitude-amplitude

coupling. To do so, we simulate time series data with both AAC and PAC (Figure 5L). In this case, A
high

increases when �low is near 0 radians and when Alow is large (seeMethods, IPAC = 1 and IAAC = 1). We
then estimate the �low model, the Alow model, and the Alow, �low model from the data and visualize

the results (Figure 5M). We find that the �low model increases near �low = 0, and that the Alow model

increases linearly with A
low
. The Alow, �low model exhibits both of these behaviors, increasing at

�
low

= 0 and as A
low
increases.

Simulating 1000 instances of signals with both AAC and PAC present, we find that p
AAC

< 0.05 in
96.7% of simulations and pPAC < 0.05 in 98.1% of simulations. The distributions of significant RPAC
and R

AAC
values lie above 0, consistent with the presence of both PAC and AAC (Figure 5N), and as

the intensity of PAC and AAC increases, so do the values of R
PAC
and R

AAC
(Figure 5O). We conclude

that the model successfully detects the concurrent presence of PAC and AAC.

RPAC and modulation index are both sensitive to weak modulations
To investigate the ability of the proposed method and the modulation index to detect weak cou-

pling between the low frequency phase and high frequency amplitude, we perform the following

simulations. For each intensity value I
PAC
between 0 and 0.5 (in steps of 0.025), we simulate 1000

signals (see Methods) and compute R
PAC
and a measure of PAC in common use: the modulation

indexMI [70] (Figure 6). We find that bothMI and R
PAC
, while small, increase with IPAC; in this way,

both measures are sensitive to small values of IPAC.
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Figure 7. Increases in the amplitude of the low frequency signal, and the amplitude-amplitudecoupling (AAC), increase the modulation index more than RPAC. (A,B) Distributions of (A) RPAC and (B)MI
when Alow is small (blue) and when Alow is large (red). (C,D) Distributions of (C) RPAC and (D)MI when AAC is
small (blue) and when AAC is large (red).

The proposed method is less affected by fluctuations in low-frequency amplitude
and AAC
Increases in low frequency power can increase measures of phase-amplitude coupling, although

the underlying PAC remains unchanged [3, 17]. Characterizing the impact of this confounding effect

is important both to understand measure performance and to produce accurate interpretations

of analyzed data. To examine this phenomenon, we perform the following simulation. First, we

simulate a signal V with fixed PAC (intensity IPAC = 1, see Methods). Second, we filter V into its low
and high frequency components V

low
and V

high
, respectively. Then, we create a new signal V ∗ as

follows:

V ∗ = 2 ∗ V
low
+ V

high
+ V

noise
, (8)

where V
noise

is a pink noise term (see Methods). We note that we only alter the low frequency
component of V and do not alter the PAC. To analyze the PAC in this new signal we compute R

PAC

andMI.
We show in Figure 7 population results (1000 realizations each of the simulated signals V and

V ∗) for the R andMI values. We observe that increases in the amplitude of V
low
produce increases

in MI and R
PAC
. However, this increase is more dramatic for MI than for R

PAC
; we note that the

distributions of RPAC almost completely overlap (Figure 7A), while the distribution ofMI shifts to
larger values when the amplitude of Vlow increases (Figure 7B). We conclude that the statistic RPAC —
which includes the low frequency amplitude as a predictor in the GLM— is more robust to increases

in low frequency power than a method that only includes the low frequency phase.

We also investigate the effect of increases in amplitude-amplitude coupling (AAC) on the two

measures of PAC. As before, we simulate a signal V with fixed PAC (intensity IPAC = 1) and no AAC
(intensity IAAC = 0). We then simulate a second signal V ∗ with the same fixed PAC as V , and with
additional AAC (intensity IAAC = 10). We simulate 1000 realizations of V and V ∗ and compute the

corresponding R
PAC
andMI values. We observe that the increase in AAC produces a small increase

in the distribution of R
PAC
values (Figure 7C), but a large increase in the distribution ofMI values

(Figure 7D). We conclude that the statistic R
PAC
is more robust to increases in AAC thanMI.

These simulations show that at a fixed, non-zero PAC, the modulation index increases with

increased Alow and AAC. We now consider the scenario of increased Alow and AAC in the absence
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Figure 8. PAC events restricted to a subset of occurrences are still detectable. (A) The low frequency
signal (blue), amplitude envelope (yellow), and threshold (black dashed). (B-C) The modulation signal increases
(B) at every occurrence of �low = 0, or (C) only when Alow exceeds the threshold and �low = 0.

of PAC. To do so, we simulate 1000 signals of 200 s duration, with no PAC (intensity IPAC = 0). For
each signal, at time 100 s (i.e., the midpoint of the simulation) we increase the low frequency

amplitude by a factor of 10 (consistent with observations from an experiment in rodent cortex, as

described below), and include AAC between the low and high frequency signals (intensity IAAC = 0
for t < 100 s and intensity IAAC = 2 for t ≥ 100 s). We find that, in the absence of PAC, RPAC detects
significant PAC (p<0.05) in 0.4% of the simulated signals, whileMI detects significant PAC in 34.3%
of simulated signals. We conclude that in the presence of increased low frequency amplitude and

amplitude-amplitude coupling,MImay detect PAC where none exists, while RPAC, which accounts

for fluctuations in low frequency amplitude, does not.

Sparse PAC is detected when coupled to the low frequency amplitude
While the modulation index has been successfully applied in many contexts [12, 31], instances

may exist where this measure is not optimal. For example, because the modulation index was

not designed to account for the low frequency amplitude, it may fail to detect PAC when Ahigh

depends not only on �low, but also on Alow. For example, since the modulation index considers the

distribution of A
high
at all observed values of �

low
, it may fail to detect coupling events that occur

sparsely at only a subset of appropriate �low occurrences. RPAC, on the other hand, may detect these

sparse events if these events are coupled to A
low
, as RPAC accounts for fluctuations in low frequency

amplitude. To illustrate this, we consider a simulation scenario in which PAC occurs sparsely in time.

We create a signal V with PAC, and corresponding modulation signal M with intensity value
IPAC = 1.0 (see Methods, Figure 8A-B). We then modify this signal to reduce the number of PAC
events in a way that depends on A

low
. To do so, we preserve PAC at the peaks of V

low
(i.e., when

�
low

= 0), but now only when these peaks are large, more specifically in the top 5% of peak values.
We define a threshold value T to be the 95th quantile of the peak Vlow values, and modify the

modulation signal M as follows. When M exceeds 1 (i.e., when �
low

= 0) and the low frequency
amplitude exceeds T (i.e., A

low
≥ T ), we make no change toM. Alternatively, whenM exceeds 1 and

the low frequency amplitude lies below T (i.e., A
low

< T ), we decreaseM to 1 (Figure 8C). In this way,
we create a modified modulation signalM1 such that in the resulting signal V1, when �low = 0 and
A
low
is large enough, A

high
is increased; and when �

low
= 0 and A

low
is not large enough, there is no

change to A
high
. This signal V1 hence has fewer phase-amplitude coupling events than the number

of times �
low

= 0.
We generate 1000 realizations of the simulated signals V1, and compute RPAC andMI. We find

that whileMI detects significant PAC in only 37% of simulations, RPAC detects significant PAC in 72%

of simulations. In this case, although the PAC occurs infrequently, these occurrences are coupled to
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Figure 9. PAC with AAC is accurately detected with the proposed method, but not with the modulationindex. (A) The low frequency signal (blue), amplitude envelope (yellow), and threshold (black dashed). (B) The
modulation signal (red) increases when �low = 0 and Alow > T , and deceases when �low = 0 and Alow < T . (C)
The modulated Ahigh signal (purple) increases and decreases with the modulation signal. (D) The proportion of
significant detections (out of 1000) forMI and RPAC.

Alow, and RPAC, which accounts for changes in Alow, successfully detects these events much more

frequently. We conclude that when the PAC is dependent on A
low
, R

PAC
more accurately detects

these sparse coupling events.

The CFC model detects simultaneous PAC and AAC missed in an existing method
To further illustrate the utility of the proposed method, we consider another scenario in which Alow

impacts the occurrence of PAC. More specifically, we consider a case in which A
high
increases at a

fixed low frequency phase for high values of A
low
, and A

high
decreases at the same phase for small

values of A
low
. In this case, we expect that the modulation index may fail to detect the coupling

because the distribution of A
high
over �

low
would appear uniform when averaged over all values of

A
low
; the dependence of A

high
on �

low
would only become apparent after accounting for A

low
.

To implement this scenario, we consider the modulation signalM (seeMethods) with an intensity
value IPAC = 1. We consider all peaks of Alow and set the threshold T to be the 50th quantile (Figure

9A). We then modify the modulation signalM as follows. WhenM exceeds 1 (i.e., when �
low

= 0)
and the low frequency amplitude exceeds T (i.e., A

low
≥ T ), we make no change toM. Alternatively,

whenM exceeds 1 and the low frequency amplitude lies below T (i.e. A
low

< T ), we decreaseM to 0
(Figure 9B). In this way, we create a modified modulation signalM such that when �

low
= 0 and A

low

is large enough, A
high
is increased; and when �

low
= 0 and A

low
is small enough, A

high
is decreased

(Figure 9C).

Using this method, we simulate 1000 realizations of this signal, and calculateMI and R
PAC
for

each signal (Figure 9D). We find that RPAC detects significant PAC in nearly all (96%) of the simulations,

whileMI detects significant PAC in only 58% of the simulations. We conclude that, in this simulation,
RPAC more accurately detects PAC coupled to low frequency amplitude than the modulation index.

A simple stochastic spiking neural model illustrates the utility of the proposed
method
In the previous simulations, we created synthetic data without a biophysically principled generative

model. Here we consider an alternative simulation strategy with a more direct connection to

neural dynamics. While many biophysically motivated models of cross-frequency coupling exist

[62, 13, 67, 30, 45, 52, 25, 47, 35, 68, 88, 73], we consider here a relatively simple stochastic spiking

neuron model [2]. In this stochastic model, we generate a spike train (Vhigh) in which Vlow modulates

the probability of spiking as a function of Alow and �low. We note that high frequency activity is

thought to represent the aggregate spiking activity of local neural populations [61, 10, 59, 34]; while

here we simulate the activity of a single neuron, the spike train still produces temporally focal events
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Figure 10. RPAC, but not MI, detects phase amplitude coupling in a simple stochastic spiking neuronmodel. (A) The phase and amplitude of the low frequency signal (blue) modulate the probability of a high
frequency spike (orange). (B) The surfaces SAlow

(red) and SAlow ,�low
(yellow). The phase of maximal Ahigh

modulation depends on Alow. (C) The modulation index fails to detect this type of PAC.

of high frequency activity. In this framework, we allow the target phase (�∗low) modulating Ahigh to

change as a function of Alow: when Alow is large, the probability of spiking is highest near �low = ±�,
and when Alow is small, the probability of spiking is highest near �low = 0.More precisely, we define
�∗low as

�∗low = �(1 + Alow)

where Alow is a sinusoid oscillating between 1 and 2 with period 0.1 Hz. We define the spiking

probability, �, as

� = �0 exp−
(

1 +
s(�low − �∗low)

2

2�2
)

,

where � = 0.01, s(�) is a triangle wave, and we choose �0 so that the maximum value of � is 2. We
note that the spiking probability � is zero except near times when the phase of the low frequency
signal (�low) is near �∗low. We then define Ahigh as:

Ahigh = S + n,

where S is the binary sequence generated by the stochastic spiking neuron model, and n is Gaussian
noise with mean zero and standard deviation 0.1. In this scenario, the distribution of Ahigh over �low

appears uniform when averaged over all values of Alow. We therefore expect the modulation index

to remain small, despite the presence of PAC with maximal phase dependent on Alow. However,

we expect that RPAC, which accounts for fluctuations in low frequency amplitude, will detect this

PAC. We show an example signal from this simulation in Figure 10A. As expected, we find that RPAC

detects PAC (RPAC = 0.172, p = 0.02); we note that the (Alow, �low) surface exhibits a single peak near

�low = 0 at small values of Alow, and at �low = ±� at large value of Alow (Figure 10B). The (Alow, �low)

surface deviates significantly from the Alow surface, resulting in a large RPAC value. However, the
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non-uniform shape of the (Alow, �low) surface is lost when we fail to account for Alow. In this scenario,

the distribution of Ahigh over �low appears uniform, resulting in a lowMI value (Figure 10C).
Application to in vivo human seizure data
To evaluate the performance of the proposed method on in vivo data, we first consider an example
recording from human cortex during a seizure (see Methods: Human Subject Data). Visual inspection
of the LFP data (Figure 11A) reveals the emergence of large amplitude voltage fluctuations during

the approximately 80 s seizure. To analyze the CFC in these data, we separate this signal into 20 s

segments with 10 s overlap, and analyze each segment using the proposed model framework.

While little evidence of CFC appears before the seizure (Figure 11B), during the seizure we find

significant R
PAC
and R

AAC
values. We show an example SAlow ,�low surface, and visualizations of this

surface at small and large Alow values, in Figure 12. Repeating this analysis with the modulation

index (Figure 11C), we find qualitatively similar changes in the PAC over the duration of the recording.

However, we note that differences do occur. For example, at the segment indicated by the asterisk

in Figure 11B, we find large RAAC and an increase in RPAC relative to the prior 20 s time segment,

while increases in PAC and AAC remain undetected byMI.
To further investigate these results, we select a 20 s segment with significant and large R

PAC
and

R
AAC
values to examine (Figure 11D). Visual inspection reveals the occurrence of large amplitude, low

frequency oscillations and small amplitude, high frequency oscillations. To examine the detected

coupling in even more detail, we isolate a 2 s segment (Figure 11E), and display the signal V , the
high frequency signal V

high
, the low frequency phase �

low
, and the low frequency amplitude A

low
.

We observe that when �
low
is near � (gray bars in Figure 11E), A

high
increases, consistent with the

presence of PAC and a significant value of R
PAC
. Examining the low frequency amplitude A

low
and

high frequency amplitude A
high
over the same 20 s segment (Figure 11F), we find that A

low
and A

high

increase together, consistent the presence of AAC and a significant value of R
AAC
.

Application to in vivo rodent data
As a second example to illustrate the performance of the new method, we consider LFP recordings

from from the infralimbic cortex (IL) and basolateral amygdala (BLA) of an outbred Long-Evans

rat before and after the delivery of an experimental electrical stimulation intervention described

in [5]. Eight microwires in each region, referenced as bipolar pairs, sampled the LFP at 30 kHz,

and electrical stimulation was delivered to change inter-regional coupling (see [5] for a detailed

description of the experiment). Here we examine how cross-frequency coupling between low

frequency (5-8 Hz) IL signals and high frequency (70-110 Hz) BLA signals changes from the pre-

stimulation to the post-stimulation condition. To do so, we filter the data V into low and high
frequency signals (see Methods), and compute theMI, RPAC and RAAC between each possible BLA-IL

pairing, sixteen in total.

We find three separate BLA-IL pairings where RPAC reports no significant PAC pre- or post-

stimulation, but MI reports significant coupling post-stimulation. Investigating further, we note
that in all three cases, the amplitude of the low frequency IL signal increases from pre- to post-

stimulation, and RAAC, the measure of amplitude-amplitude coupling, increases from pre- to post-

stimulation. These observations are consistent with the simulations in Results: The proposed method
is less affected by fluctuations in low-frequency amplitude and AAC, in which we showed that increases
in the low frequency amplitude and AAC produced increases inMI, although the PAC remained fixed.
We therefore propose that, consistent with these simulation results, the increase inMI observed in
these data may result from changes in the low frequency amplitude and AAC, not in PAC.

Using the flexibility of GLMs to improve detection of phase-amplitude coupling in
vivo
One advantage of the proposed framework is its flexibility: covariates are easily added to the

generalized linear model and tested for significance. For example, we could include covariates for
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Figure 11. The CFC model detects cross-frequency coupling in an in vivo human recording. (A) Voltage
recording from one MEA electrode over the course of seizure. (B,C) RPAC and RAAC values (B), andMI values (C),
for 20 s segments of the trace. (D) Voltage trace corresponding to time segment (*) from (B). The gray-shaded
time interval is analyzed in (E). (E) A subinterval of the voltage data (blue), along with Vhigh (red), Alow (yellow),

and �low (purple). Grey shaded areas indicate increases in Vhigh when �low = 0. (F) Alow (blue) and Ahigh (red) for

the 20 s segment in (D). Ahigh increases with Alow over time.
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Figure 12. The SAlow ,�low surface shows how PAC changes with the low frequency amplitude and phaseduring an interval of human seizure. (A) The full model surface (blue) in the (�low, Alow, Ahigh) space, and

components of that surface when (B) Alow is small, and (C) Alow is large.

trial, sex, and stimulus parameters and explore their effects on PAC, AAC, or both.

Here, we illustrate this flexibility through continued analysis of the rodent data. We select a single

electrode recording from these data, and hypothesize that the condition, either pre-stimulation

or post-stimulation, affects the coupling. To incorporate this new covariate into the framework,

we consider the concatenated voltage recordings from the pre-stimulation condition Vpre and the

post-stimulation condition Vpost:

V = [Vpre, Vpost] .

From V , we obtain the corresponding high frequency signal Vhigh and low frequency signal Vlow, and

subsequently the high frequency amplitude Ahigh, low frequency phase �low, and low frequency

amplitude Alow. We use these data to generate two new models:

A
high

|A
low
, P ∼ Gamma[�, �] (9)

log� = �1 + �2Alow + P (�3 + �4Alow),

A
high

|�
low
, A
low
, P ∼ Gamma[�, �], (10)

log� =
n
∑

k=1
�kfk(�low) + �n+1Alow + �n+2Alow sin(�low) + �n+3Alow cos(�low) + P (

n
∑

j=1
�n+3+jfj(�low) + �2n+4Alow),

where P is an indicator function specifying whether the signal is in the pre-stimulation (P = 0) or
post-stimulation (P = 1) condition. The effect of the indicator function is to add new terms to the Alow

and Alow, �low models to include the effect of stimulus condition on the high frequency amplitude.

The model in Equation 9 now includes the effect of low frequency amplitude and condition on high

frequency amplitude. The model in Equation 10 now includes the effect of low frequency amplitude,

low frequency phase, and condition on high frequency amplitude.

To define RPAC, we construct a surface SAlow ,P from the model in Equation 9 and a surface

SAlow ,�low ,P from the model in Equation 10 in the (Alow, �low, Ahigh, P) space, assessing the models at
the two values of P. We compute RPAC, which now measures PAC while accounting for changes in

the low frequency amplitude and condition, as before:

R
PAC

= max [abs[1 − SAlow ,P∕SAlow ,�low ,P ]]. (11)

We find for the example rodent data an RPAC value of 0.404 (p = 0.005). This provides strong evidence
of PAC in the data, in at least one of the conditions.

This example illustrates the flexibility of the statistical modeling framework. Extending this

framework is straightforward, and new extensions allow a common principled approach to test the

impact of new predictors. Here we considered an indicator function that divides the data into two
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states (pre- and post-stimulation). More generally, an indicator function may specify a subset of

conditions, during which a particular intervention or behavior occurred, and whether significant

PAC occurs in any subset of conditions could then be tested. We note that the models are easily

extended to account for multiple discrete predictors such as gender and participation in a drug

trial, or for continuous predictors such as age and time since stimulus.

Discussion
In this paper, we proposed a new method for measuring cross-frequency coupling that accounts

for both phase-amplitude coupling and amplitude-amplitude coupling, along with a principled

statistical modeling framework to assess the significance of this coupling. We have shown that this

method effectively detects CFC, both as PAC and AAC, and is more sensitive to weak PAC obscured

by or coupled to low-frequency amplitude fluctuations. Compared to an existing method, the

modulation index [70], the newly proposed method more accurately detects scenarios in which

PAC is coupled to the low-frequency amplitude. Finally, we applied this method to in vivo data
to illustrate examples of PAC and AAC in real systems, and show how to extend the modeling

framework to include a new covariate.

One of the most important features of the new method is an increased ability to detect weak

PAC coupled to AAC. For example, when sparse PAC events occur only when the low frequency

amplitude (A
low
) is large, the proposed method detects this coupling while other methods not

accounting for A
low
miss it. While PAC often occurs in neural data, and has been associated with

numerous neurological functions [12, 31], the simultaneous occurrence of PAC and AAC is less well

studied [53]. Here, we showed examples of simultaneous PAC and AAC recorded from human

cortex during seizure, and we note that this phenomena has been simulated in other works [49].

While the exact mechanisms that support CFC are not well understood [31], the general mech-

anisms of low and high frequency rhythms have been proposed. Low frequency rhythms are

associated with the aggregate activity of large neural populations and modulations of neuronal

excitability [23, 76, 9], while high frequency rhythms provided a surrogate measure of neuronal

spiking [58, 50, 27, 56, 83, 61, 60]. These two observations provide a physical interpretation for PAC:

when a low frequency rhythm modulates the excitability of a neural population, we expect spiking

to occur (i.e., an increase in A
high
) at a particular phase of the low frequency rhythm (�

low
) when

excitation is maximal. These notions also provide a physical interpretation for AAC: increases in

A
low
produce larger modulations in neural excitability, and therefore increased intervals of neuronal

spiking (i.e., increases in A
high
). Alternatively, decreases in A

low
reduce excitability and neuronal

spiking (i.e., decreases in A
high
).

The function of concurrent PAC and AAC, both for healthy brain function and over the course of

seizure as illustrated here, is not well understood. However, we note that over the course of seizure,

particularly at termination, PAC and AAC are both present. As PAC occurs normally in healthy brain

signals, for example during working memory, neuronal computation, communication, learning and

emotion [71, 33, 12, 21, 38, 46, 37, 36, 66], these preliminary results may suggest a pathological

aspect of strong AAC occurring concurrently with PAC.

Proposed functions of PAC include multi-item encoding, long-distance communication, and

sensory parsing [31]. Each of these functions takes advantage of the low frequency phase, en-

coding different objects or pieces of information in distinct phase intervals of �
low
. PAC can be

interpreted as a type of focused attention; A
high
modulation occurring only in a particular interval of

�
low
organizes neural activity - and presumably information - into discrete packets of time. Similarly,

a proposed function of AAC is to encode the number of represented items, or the amount of

information encoded in the modulated signal [31]. A pathological increase in AAC may support

the transmission of more information than is needed, overloading the communication of relevant

information with irrelevant noise. The attention-based function of PAC, i.e. having reduced high

frequency amplitude at phases not containing the targeted information, may be lost if the amplitude

of the high frequency oscillation is increased across wide intervals of low frequency phase.
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Like all measures of CFC, the proposed method possesses specific limitations. We discuss four

limitations here. First, the choice of spline basis to represent the low frequency phase may be

inaccurate, for example if the PAC changes rapidly with �
low
. Second, the value of R

AAC
depends

on the range of A
low
observed. This is due to the linear relationship between A

low
and A

high
in

the Alow model, which causes the maximum distance between the surfaces SAlow
and SAlow ,�low

to

occur at the largest or smallest value of A
low
. To mitigate the impact of extreme A

low
values on

R
AAC
, we evaluate the surfaces SAlow

and SAlow ,�low
over the 5th to 95th quantiles of A

low
. We note

that an alternative metric of AAC could instead evaluate the slope of the SAlow
surface; to maintain

consistency of the PAC and AACmeasures, we chose not to implement this alternative measure here.

Third, the frequency bands for V
high
and V

low
must be established before R values are calculated.

Hence, if the wrong frequency bands are chosen, coupling may be missed. It is possible, though

computationally expensive, to scan over all reasonable frequency bands for both V
high
and V

low
,

calculating R values for each frequency band pair. Fourth, we note that the proposed modeling
framework assumes appropriate filtering of the data into high and low frequency bands. This

filtering step is a fundamental component of CFC analysis, and incorrect filtering may produce

spurious or misinterpreted results [3, 63, 41]. While the modeling framework proposed here does

not directly account for artifacts introduced by filtering, additional predictors (e.g., detections of

sharp changes in the unfiltered data) in the model may help mitigate these filtering effects.

The proposed method can easily be extended by inclusion of additional predictors in the GLM.

Polynomial A
low
predictors, rather than the current linear A

low
predictors, may better capture the

relationship between A
low
and A

high
. One could also include different types of covariates, for ex-

ample classes of drugs administered to a patient, or time since an administered stimulus during

an experiment. To capture more complex relationships between the predictors (Alow, �low) and

Ahigh, the GLM could be replaced by a more general form of Generalized Additive Model (GAM).

Choosing GAMs would remove the restriction that the conditional mean Ahigh must be linear in

each of the model parameters (which would allow us to estimate knot locations directly from the

data, for example), at the cost of greater computational time to estimate these parameters. The

code developed to implement the method is flexible and modular, which facilitates modifications

and extensions motivated by the particular data analysis scenario. This modular code, available at

https://github.com/Eden-Kramer-Lab/GLM-CFC, also allows the user to change latent assumptions,

such as choice of frequency bands and filtering method. The code is freely available for reuse and

further development.

Rhythms, and particularly the interactions of different frequency rhythms, are an important

component for a complete understanding of neural activity. While the mechanisms and functions

of some rhythms are well understood, how and why rhythms interact remains uncertain. A first

step in addressing these uncertainties is the application of appropriate data analysis tools. Here we

provide a new tool to measure coupling between different brain rhythms: the method utilizes a

statistical modeling framework that is flexible and captures subtle differences in cross-frequency

coupling. We hope that this method will better enable practicing neuroscientists to measure and

relate brain rhythms, and ultimately better understand brain function and interactions.
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