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Summary 13 
Biotic invasions threaten global biodiversity and ecosystem function, and present challenges to 14 
agriculture where invasive pest species require major economic investment in control and can cause 15 
significant production losses. Pest Risk Analysis (PRA) is key to prioritizing agricultural biosecurity 16 
efforts, but is hampered by incomplete knowledge of current crop pest and pathogen distributions. Here 17 
we develop predictive models of current pest distributions and test these models using new observations 18 
at sub-national resolution. We apply generalized linear models (GLM) to estimate presence 19 
probabilities for 1901 crop pests in the CABI pest distribution database. We test model predictions for 20 
100 unobserved pests in the People’s Republic of China (PRC), against observations of these pests 21 
abstracted from the Chinese literature which has hitherto been omitted from databases on global pest 22 
distributions. Finally, we predict occurrences of all unobserved pests globally. Presence probability 23 
increases with host presence, presence in neighbouring regions, and global prevalence, and decreases 24 
with mean distance from coast, per capita GDP, and host number. The models are good predictors of 25 
pest presence in Provinces of the PRC, with AUC values of 0.76 – 0.80. Large numbers of currently 26 
unobserved, but probably present pests, are predicted in China, India, southern Brazil and some 27 
countries of the former USSR. GLMs can predict presences of pseudo-absent pests at sub-national 28 
resolution. Controlling for countries’ scientific capacity improves model fit. The Chinese scientific 29 
literature has been largely inaccessible to Western academia but contains important information that 30 
can support PRA. Prior studies have often assumed that unreported pests in a global distribution 31 
database is a true absence. Our analysis provides a method for quantifying pseudo-absences to enable 32 
improved PRA and species distribution modelling. 33 
 34 
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Introduction 39 
The spread of invasive species is homogenizing the biosphere, with wide-ranging implications for 40 
natural ecosystems (Baiser et al., 2012; Santini et al., 2013) and agriculture (Fisher et al., 2012; Bebber 41 
et al., 2014a; Bebber, 2015). The number of first observations of crop pests and pathogens (CPPs) has 42 
accelerated in recent years, driven primarily by global trade (Ding et al., 2008; Bacon et al., 2013), but 43 
also potentially by climate change and our improving ability to monitor and identify threats (Bebber et 44 
al., 2014a; Bebber, 2015). Emerging CPPs can be extremely damaging to agricultural production and 45 
the economy, through both pre-harvest and post-harvest losses (Bebber & Gurr, 2015; Paini et al., 2016; 46 
Savary et al., 2017). Recently, for example, sub-Saharan Africa has suffered from the virulent Ug99 47 
strain of the wheat stem rust fungus (Puccinia graminis tritici) (Patpour et al., 2015), the newly-evolved 48 
Maize Lethal Necrosis viral syndrome (Wangai et al., 2012), and the appearance of Tropical Race 4 of 49 
Fusarium oxysporum f. sp. cubense attacking Cavendish bananas (Ordonez et al., 2015). Central 50 
America, Europe, East Africa and Australia have been identified as hotspots of new CPP invasions, 51 
with maize, bananas, citrus and potato as the crops most likely to be affected (Bebber, 2015). Outbreaks 52 
of resident pests due to weather, virulence evolution, or management factors, add to the burden on 53 
farmers. For example, a major outbreak of coffee leaf rust (Hemileia vastatrix) in Latin America, likely 54 
to have been triggered by a failure in disease management, is reported to have caused large-scale 55 
unemployment and social upheaval in recent years (Avelino et al., 2015). 56 
 57 
Despite the expanding ranges of many CPPs, complete occupation of their potential ranges has not yet 58 
occurred (Bebber et al., 2014a) and so there remains a strong impetus for biosecurity measures at 59 
international borders (Fears et al., 2014; Flood & Day, 2016; MacLeod et al., 2016). Control of spread 60 
within countries is extremely difficult because of largely unhindered transport of plants and soils (Ward, 61 
2016), and biosecurity measures focus largely on quarantine and inspections at borders (MacLeod et 62 
al., 2016). A key component of international phytosanitary action is Pest Risk Analysis (PRA), a suite 63 
of methods that allow countries to prioritize protective measures against those pests most likely to arrive 64 
and cause serious economic damage (Robinet et al., 2012; Baker et al., 2014). PRA involves assessment 65 
of the likelihood of CPP arrival, the likelihood of establishment, the potential economic impact if 66 
uncontrolled, and the likelihood of successful control or eradication (Baker et al., 2014). To date, PRA 67 
has largely been based upon expert opinion regarding the likelihood of arrival and potential impact of 68 
individual pests. For example, the UK’s recently-established Plant Health Risk Register (PHRR) (Baker 69 
et al., 2014) employs simple climate-matching (based on known pest distributions) and host availability 70 
to assign qualitative risks of invasion and impact, but not quantitative predictive models. Examples of 71 
registered CPPs include the Oleander aphid Aphis nerii which has been assigned very low likelihoods 72 
of arrival and establishment, and would cause negligible damage if it did, whereas the zebra chip 73 
phytoplasma Candidatus Liberibacter solanacearum is thought moderately likely to arrive but would 74 
have a very serious impact if it did (DEFRA, 2018) 75 
 76 
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The rarity of quantitative PRA modelling in international phytosanitary legislation and practice 77 
contrasts with the long and vibrant history of research in predictive species distribution modelling 78 
(SDM) for CPPs (Elith & Leathwick, 2009; Sutherst, 2014). The geographic distributions of species 79 
are non-random, determined by their biotic environment (e.g. hosts or prey), the abiotic environment 80 
(e.g. climate, edaphic factors), and migration (dispersal to suitable habitat) (Soberón & Peterson, 2005; 81 
Soberón, 2007; Soberón & Nakamura, 2009). Thus, pest invasion risk is, in theory, quantifiable. 82 
Numerous modelling approaches are now available to predict the likely distributions and impacts of 83 
CPPs (Elith & Leathwick, 2009; Venette et al., 2010; Robinet et al., 2012), ranging from process-based, 84 
or mechanistic models, to statistical, or correlative approaches (Dormann et al., 2012). Regional and 85 
global databases on known pest distributions are commonly used to parameterize these models, either 86 
providing direct estimates of pests’ ecological niches (Venette et al., 2010; Kriticos, 2012), or indirectly 87 
via shared geographic ranges (Paini et al., 2010, 2016; Eschen et al., 2014). 88 
 89 
One seldom-acknowledged issue with pest distribution data in global databases is geographic bias in 90 
the likelihood that a pest will be detected, correctly identified, reported and recorded (Pyšek et al., 91 
2008). Analysis of the CABI pest distribution database (CABI, 2017), one of the most commonly used 92 
global pest distribution databases, suggests that hundreds of pests already present in many developing 93 
countries have not been reported (Bebber et al., 2014b). The total number of observed CPPs in an 94 
administrative area (country, or administrative division for larger countries) can be largely explained 95 
by scientific capacity and agricultural production. Under a scenario of globally high scientific and 96 
technical capacity (i.e. where all countries have US-level per capita GDP and research expenditure), 97 
analysis predicts that many countries across the developing world would report hundreds more pests. 98 
This suggests that a large fraction of the current agricultural pest burden is unreported and unknown, 99 
and that even the best global databases suffer from severe observational bias, with potentially serious 100 
consequences for both plant biosecurity activities and for research based upon these databases. This 101 
observational bias may have implications for SDM methods that infer environmental tolerances from 102 
observed distributions. Scientific capacity, economic development, and the ability to detect, identify 103 
and report pests, are strongly correlated with latitude, as is climate (Bebber et al., 2014b). Under-104 
reporting of pests at low latitudes will therefore bias estimation of climate tolerances, as occurrence is 105 
underreported in warmer regions. Reducing this observational bias by strengthening pest identification 106 
efforts in the developing world is therefore critical in improving scientific understanding of pest 107 
distributions, and in PRA. 108 
 109 
The People’s Republic of China (henceforth referred to as China) has been predicted to harbour the 110 
largest number of CPPs (Bebber et al., 2014b). China produces the largest quantity of crops, and has 111 
the greatest diversity of production –  both factors are strong determinants of recorded pest numbers 112 
(Bebber et al., 2014b). Yet, the actual recorded number of pests in China is much smaller than expected 113 
(Bebber et al., 2014b). For many countries, under-reporting of agricultural pests is likely to be purely a 114 
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function of the lack of institutional capacity to detect, identify, and report incidences in the scientific 115 
and ‘grey’ literature used by CABI to populate the distribution database. For China, there is potentially 116 
an interesting alternative. The Chinese literature was, until the reforms of 1978, largely inaccessible to 117 
Western academia. Even post-reform and the opening of China instigated by Deng Xiaoping, Chinese-118 
language publications are not commonly accessed by English-speaking researchers. A famous of 119 
translation of the Chinese literature is the reporting of the anti-malarial compound artemisinin 120 
(Klayman, 1985). The Chinese research literature, having developed largely independently of the 121 
Western literature, therefore provides a largely independent data source for testing models of pest 122 
distributions. Here, we test statistical models of pest presence using a global database of known pest 123 
occurrence and confront the predictions of pest presence in China’s Provinces with observations from 124 
the Chinese literature. In addition, we develop models where observational bias  125 
 126 
Materials and Methods 127 
We obtained pest distribution data from CABI distribution database in January 2014 with permission. 128 
Briefly, the database comprised 91,030 records of the observed distributions of 1901 agricultural pests 129 
by administrative division of each country, e.g. US States, Chinese Provinces. These pests comprise 130 
419 species and pathovars of Fungi, 219 Coleoptera, 252 Lepidoptera, 236 Hemiptera, 230 viruses, 126 131 
Bacteria, 110 Diptera, 104 Nematoda, 59 Oomycota, and smaller numbers of Acari, Gastropoda, and 132 
various other insect and microbial taxa.  133 
 134 
We developed a statistical model for the presence of pests in global administrative regions (countries, 135 
and sub-national divisions for Brazil, Canada, China, India, Russia and the USA). We constructed 136 
Generalized Linear Models, using the glm function (MASS package) for R v.3.4.0 (R Development Core 137 
Team, 2017), for the presence or (pseudo-) absence of each pest in each administrative region. 138 
Predictors were log-transformed per capita GDP for the country as a whole in 2016 (World Bank data, 139 
http://data.worldbank.org/), log-transformed total number of known hosts for the pest (CABI, obtained 140 
with permission), log-transformed area of neighbouring regions which have reported the pest as present 141 
(set to zero if no neighbours have reported the pest), and log-transformed total fraction of regions 142 
globally that have reported the pest. Host crop spatial distributions were obtained from the EarthStat 143 
database (http://www.earthstat.org/; Monfreda et al., 2008), and used to estimate mean distance of host 144 
areas to coastline. Briefly, the rationale for these predictors was that GDP is a proxy for historical trade 145 
(Pyšek et al., 2010) and observational capacity (Bebber et al., 2014b), host number indicates the degree 146 
of biotic generalism of the CPP, neighbouring-region presence indicates the potential for spread across 147 
a border, fraction of regions reporting presence indicates global ubiquity and environmental generalism, 148 
and distance to coast indicates proximity to international shipping ports (Chapman et al., 2017). 149 
 150 
We developed two pest distribution models. The ‘unweighted’ model included geographical and 151 
bioclimatic predictors and treated all unobserved pests as absent from a region. The ‘weighted’ model 152 
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treated unobserved pests as potentially pseudo-absent, using a function of the scientific and technical 153 
capacity of each country (Bebber et al., 2014b). Presences were taken as being correct and 154 
unambiguous, and given a weighting of unity. Absences were weighted by the logarithm of the 155 
agricultural and biological sciences publication output of each country from 1996 – 2016 (Scimago 156 
Lab, 2017), normalized to the logarithm of the output of the USA (the world’s most scientifically 157 
productive country), such that the absence weight w0 = log(s)/log(sUSA). Thus, pests unreported from 158 
scientifically advanced nations were assumed not to be present (or, present at undetectable population 159 
density), while pests unreported from developing nations were less informative of absence. China, with 160 
the second largest research output, had w0 = 0.93, suggesting that non-reporting of a pest should be 161 
relatively strong evidence of its physical absence. However, we hypothesized that non-reporting in the 162 
CABI databases could be due to lack of translation from the Chinese literature, therefore we set w0 to 163 
zero for China, effectively omitting these pseudo-absences from the analysis. The models were 164 
compared with a null model assuming constant presence probability using Likelihood Ratio Tests. 165 
 166 
To validate the models we predicted the probability of presence for a random sample of 100 as-yet 167 
unobserved pests in all Chinese Provinces, but excluding Taiwan. The Chinese literature was searched 168 
for observations of these unobserved pests in China. We used the text mining methodology designed 169 
by CABI for their Plantwise Knowledge Bank. The following rules were followed to locate pest records 170 
in the Chinese literature: 171 

- Include only papers that are primarily about distribution data, not those where distribution is 172 
mentioned, but something else is the primary focus. If this is unclear do not process the paper. 173 

- Mine only the primary literature (including Masters and Doctoral theses), not meta-analyses, 174 
reviews, or non-peer reviewed (“grey”) literature. 175 

- Pest and host names must be preferred scientific names, following the CAB Thesaurus 176 
(www.cabi.org/cabthesaurus/) and the Plant List (http://www.theplantlist.org/). 177 

- Record country and location information given in the paper, including latitude/longitude. CABI 178 
uses five levels for location, from the largest scale (i.e., provincial) to the smallest (i.e., 179 
village/town). 180 

- Record date of observation/collection (entering each year separately) and date of publication. 181 
Can be left blank if not given, or use the date of receipt in the diagnostic laboratory as a 182 
surrogate for date of collection. 183 

- Record pest status – present/not found. Only record absence if pest absence is specifically stated 184 
in the paper.  185 

- Record pest status using only the status terms defined by CABI, and only if used in the paper 186 
e.g. “widespread”, “restricted” “soil only” “greenhouse only” (see CABI guidelines for 187 
complete list). 188 

- Record if the paper was a first record of that pest or not and details of this (e.g. “first record in 189 
<country/location>”, “first record on <host species name>”) 190 
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- Only enter data where the pest/pathogen has been clearly identified, not just symptoms seen. 191 
- Record only natural infections, not artificial inoculants. 192 

 193 
Combinations of pests and locations were submitted to several search engines. The priority of search 194 
engines was: Baidu (www.baidu.com), China National Knowledge Infrastructure (CNKI, 195 
http://www.cnki.net), Chongqing VIP Information Company (CQVIP, http://lib.cqvip.com/), and 196 
Wangfang Data (http://www.wanfangdata.com.cn). Baidu is the most popular Chinese internet search 197 
engine. CNKI is led by Tsinghua University, and supported by ministries of the Chinese Government. 198 
CQVIP, formerly known as Database Research Center under the Chongqing Branch of the Institute of 199 
Scientific & Technical Information of China (CB-ISTIC), was China's first Chinese journal database 200 
research institution. Wanfang Data is an affiliate of the Chinese Ministry of Science & Technology, and 201 
provides access to a wide range of database resources. 202 
 203 
Publication titles were searched first, then full text. The first 50 search results were scanned before 204 
dismissing a search term. The first search term combination was pest name and location (Province). If 205 
this yielded no result, then pest name and various distribution terms were tried. These distribution terms 206 
were: "catalogues" OR "checklists" OR "distribution" OR "inventories" OR "new records" OR 207 
"surveys" OR "geographical distribution" OR "new geographic records" OR "new host records". 208 
Searches included local names in Chinese where these were known or could be identified from the 209 
literature, preferred scientific names, and non-preferred scientific names from CAB Thesaurus 210 
(https://www.cabi.org/cabthesaurus/). 211 
 212 
Searches continued until one piece of literature was found for that pest in that region, that fitted all of 213 
the requirements for CABI text mining.  If a pest was not found from any of these searches, it was 214 
assumed to be absent from the literature. We then compared our probability of presence predictions 215 
with the observed presence-absence data for our Chinese sample data using logistic regressions (glm 216 
function for R) and ROC curves (pROC library for R). The logistic regression coefficients c and m 217 
determined the probability of pest presence P(present) = e(c+mx) / (1+ e(c+mx)). 218 
 219 
Results 220 
Globally, the probability of pest presence within a geographical area increased significantly with 221 
presence in neighbouring regions, the area of host crops, and the global prevalence of the pest, in both 222 
models (Tables 1). Presence probability declined with mean distance from the coast, per capita GDP, 223 
and known host species number per pest. Presence probability increased with GDP in the unweighted 224 
model but declined with GDP in the weighted model. The weighted model explained a larger fraction 225 
of the deviance than the unweighted model (Table 1), while both models had very similar ROC curves 226 
with AUC around 84 per cent (Figure 1). Predicted probabilities were always higher for the weighted 227 
model, because absences were down-weighted (i.e. fewer true zeros). The models indicated greater 228 
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overall presence probabilities for viruses and Hemiptera, and lower probabilities for nematodes, 229 
compared with other CPP groupings. Presence probabilities for both models, for all CPPs and all 230 
regions, are provided in Supplementary Online Material. 231 
 232 
Table 1. GLMs for global pest presence. The unweighted model treated unobserved pests as true 233 
absences. The weighted model weighted pseudo-absences as a function of country scientific capacity. 234 
The unweighted model had AIC = 268448, Nagelkerke R2 = 0.26, McFadden R2 = 0.34. The weighted 235 
model had AIC = 220886, Nagelkerke R2 = 0.49, McFadden R2 = 0.39. 236 

 Unweighted model Weighted model 

 
Mean SE Z Pr(>|Z|) Mean SE Z Pr(>|Z|) 

Acari (Intercept) -1.56 0.056 -27.7 0.000 1.309 0.061 21.5 0.000 
+ Coleoptera 0.061 0.033 1.8 0.068 0.061 0.036 1.7 0.089 
+ Diptera 0.077 0.037 2.1 0.038 0.070 0.040 1.7 0.082 
+ Hemiptera 0.147 0.031 4.7 0.000 0.118 0.034 3.5 0.001 
+ Lepidoptera 0.096 0.032 3.0 0.003 0.058 0.035 1.7 0.098 
+ Bacteria -0.045 0.035 -1.3 0.187 -0.036 0.038 -0.9 0.343 
+ Fungi 0.074 0.031 2.4 0.016 0.074 0.034 2.2 0.028 
+ Nematoda -0.155 0.035 -4.5 0.000 -0.163 0.038 -4.3 0.000 
+ Oomycota 0.056 0.038 1.5 0.137 0.076 0.041 1.8 0.064 
+ Virus 0.128 0.033 3.8 0.000 0.143 0.036 3.9 0.000 
log(coastdist + 1) -0.097 0.004 -25.5 0.000 -0.190 0.004 -45.3 0.000 
log(GDP + 1) 0.135 0.004 34.3 0.000 -0.065 0.004 -15.4 0.000 
log(hosts + 1) -0.124 0.005 -28.3 0.000 -0.114 0.005 -23.9 0.000 
log(hostarea + 1) 0.064 0.001 50.8 0.000 0.056 0.001 42.1 0.000 
log(nbarea + 1) 0.125 0.001 147.4 0.000 0.130 0.001 141.1 0.000 
log(prev) 0.882 0.008 115.5 0.000 0.904 0.008 111.8 0.000 

 237 
We defined a ‘probably present pest’ (PPP) as one unreported from a region, but with high (> 0.75) 238 
predicted presence probability (using the weighted model). Overall, only 1.0 per cent of all unreported 239 
CPP-region combinations were highly likely. The number of PPPs per CPP category was greatest for 240 
Fungi (2.2 per cent) and Hemiptera (1.6 per cent), with fewer than 1.0 per cent of unreported CPP-241 
region combinations being highly likely (> 0.75 predicted presence probability) for other taxonomic 242 
groups. Overall, 80 per cent of unreported CPP-region combinations were predicted to be highly 243 
unlikely (presence probability < 0.25). China, India and Eastern Europe had the largest numbers of 244 
predicted PPPs, along with other parts of East Asia and Southern Brazil (Figure 2). The top ten PPPs 245 
by number of global regions were Cochliobolus heterostrophus (Ascomycota: Pleosporales, a pathogen 246 
of maize), Rhopalosiphum maidis (Arthropoda: Hemiptera, pest of maize and other crops), 247 
Cochliobolus sativus (cereal pathogen), Aphis spiraecola, Nezara viridula (Arthropoda: Hemiptera, 248 
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legume pest), Setosphaeria turcica (Ascomycota: Pleosporales, maize pathogen), Schizaphis graminum 249 
(Arthropoda: Hemiptera, pest of Poaceae cereals), Delia platura (Arthropoda: Diptera, pest of 250 
legumes), Rhopalosiphum padi (Arthropoda: Hemiptera, cereal pest), and Gibberella fujikuroi 251 
(Ascomycota: Hypocreales, rice pathogen). 252 
 253 

 254 
Figure 1. Total number of pests recorded in the CABI pest distribution database by China Province 255 
(excluding Taiwan). Hatched region is Gansu (804 recorded pests), see text for details. 256 
 257 
Total numbers of recorded pests in China’s Provinces and municipalities increased from northern and 258 
central regions to southern and coast regions (Figure 1), except for the central province of Gansu which 259 
had 804 reported pests. There is no obvious reason why numbers would be so large in Gansu. For 260 
example, agricultural production is moderate, and there are no particular academic centres which could 261 
account for observational bias. Hence, the Gansu values appear to be an artefact of the CABI database. 262 
The smallest numbers of recorded pests were in the mountainous province of Qinghai (0), in the central 263 
provinces of Shanxi (0) and Ningxia (46), and the municipalities of Chongqing (24), Tianjin (4) and 264 
Shanghai (48). Total numbers were largest in the coastal provinces of Guangdong (292), Zeijiang (286), 265 
Jiangsu (277), Fujian (266), and also in the southern provinces of Yunnan (275) and Sichuan (256).  266 
 267 
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 268 
Figure 2. Model prediction tests. Observed presence/absence of 100 pest x Province combinations vs. 269 
predicted presence probability from a) unweighted model, b) weighted model. Curves show mean 95% 270 
CI for logistic regression fits. c) ROC curves for unweighted (blue), and weighted (red) models. AUC 271 
was 0.76 (0.66 – 0.86, 95% CI) for the unweighted model and 0.75 (0.65 – 0.85) for the weighted model. 272 
 273 
We validated our models using published CPP observations from the Chinese literature. Both models 274 
were significant predictors of pest presence/absence for 100 randomly-sampled CPP-Province 275 
combinations, of which 25 were found to be present (Figure 2, Table S1). For the unweighted model, 276 
the coefficients of the logistic function were c = -1.73 ± 0.34 and m = 3.52  ± 1.25 (likelihood ratio test 277 
vs null model, p = 0.004). For the weighted model, the coefficients were -1.90 ± 0.38 and 3.10 ± 1.03 278 
(p = 0.002). The predictive power of the models was also tested using ROC curves, demonstrating 279 
significant discriminant ability with AUC of 0.76 (95 per cent Confidence Interval 0.66 – 0.86) for the 280 
unweighted model, and AUC 0.75 (0.67 – 0.85) for the weighted model (Figure 2d). Our analysis 281 
revealed gaps in the CABI database, which is commonly used for analyses of global pest distributions. 282 
Taking one important potato pest, Phytophthora infestans (Oomycota), as an example, very high 283 
presence probabilities (> 0.80) were predicted for Guangdong, Hainan, Shandong, and Zheijiang, and 284 
Jiangxi, while a search of the Chinese literature found references to P. infestans in all of these but 285 
Guangdong. However, this pathogen has been reported present throughout the potato-growing regions 286 
of China, including Guangdong (Guo et al., 2010). 287 
 288 
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 289 
Figure 3. Total number of probably present pests (PPP) in China Provinces (excluding Taiwan). We 290 
defined a PPP as one unreported from a region, but with high (> 0.75) predicted presence probability 291 
using the weighted model. 292 
 293 
The total number of PPPs (including all those in the CABI database), was greatest in the North Western 294 
provinces of Jilin (64), Heilongjiang (51), and Inner Mongolia (42), as well as the ports of Shanghai 295 
(85) and Tianjin (51), while Central provinces had the lowest numbers (Figure 3). Fungi (282) and 296 
Hemiptera (176) were the most commonly reported PPPs for China. The top ten most-common PPPs 297 
in China were (in decreasing order) Gibberella fujikuroi (Ascomycota: Hypocreales, rice pathogen), 298 
Aphis spiraecola (Arthropoda: Hemiptera, generalist), Delia platura (Arthropoda: Diptera, pest of 299 
legumes), Rhopalosiphum maidis (Arthropoda: Hemiptera, pest of maize and other crops), Athelia 300 
rolfsii (Basidiomycota: Atheliales, generalist facultative pathogen), Rhopalosiphum padi (Arthropoda: 301 
Hemiptera, cereal pest), Agrotis ipsilon (Arthropoda: Lepidoptera, generalist pest), Cochliobolus 302 
lunatus (Ascomycota: Pleosporales, pathogen of rice and sorghum), Sitobion avenae (Arthropoda: 303 
Hemiptera, cereal pest), and Lasiodiplodia theobromae (Ascomycota: Botryosphaeriales, generalist 304 
pathogen). 305 
 306 
Extending the analysis globally, the regions with the largest numbers of PPPs were China, India, and 307 
Eastern Europe, along with other parts of East Asia and Southern Brazil (Figure 4). The top ten PPPs 308 
by number of global regions were Cochliobolus heterostrophus (maize pathogen), Rhopalosiphum 309 
maidis, Cochliobolus sativus (cereal pathogen), Aphis spiraecola, Nezara viridula (Arthropoda: 310 
Hemiptera, legume pest), Setosphaeria turcica (Ascomycota: Pleosporales, maize pathogen), 311 
Schizaphis graminum (Arthropoda: Hemiptera, pest of Poaceae cereals), Delia platura, Rhopalosiphum 312 
padi, and Gibberella fujikuroi. Hence, many of the global PPPs were also likely to be present, but 313 
unreported, in China. 314 
 315 
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 316 
Figure 4. Total number of probably present pests (PPP) in all countries and sub-national regions. 317 
 318 
Discussion 319 
The Chinese literature provided strong and significant support for the predictions of pest distribution 320 
models based upon host distribution, pest prevalence, and other socioeconomic factors. China’s 321 
growing economy is expected to lead to large influxes of invasive species, including CPPs, in coming 322 
years (Ding et al., 2008). Analysis of temporal trends in CABI CPP observations show a relatively 323 
smooth increase in pests from 1950-2000, but the pattern for China is more complex, with a slow 324 
increase from 1950 until the late 1970s, a step increase, and then a more rapid growth in pest numbers 325 
from 1980 onwards (Bebber et al., 2014a). One potential determinant of this sudden acceleration is the 326 
strong support for science and technology given by Deng Xiaoping in 1978, which lead to an increase 327 
in funding and academic freedom following the anti-intellectualism of the Cultural Revolution. China 328 
now ranks second only to the USA in annual R&D expenditure (IMF, 2013) and scientific output 329 
(Scimago Lab, 2017).  330 
 331 
We identified a number of CPPs that were very likely to be present, and the majority of these PPPs 332 
were globally distributed and had wide host ranges. Their distributions commonly spanned wide 333 
latitudinal ranges, indicating broad climatic tolerances. C. heterostrophus, or Southern Leaf Spot, is 334 
primarily known as a pathogen of maize but has a wide host range. It has a wide geographic distribution 335 
both latitudinally and across continents, resulting in a high likelihood of occurrence in other regions 336 
where hosts are present. For example, C. heterostrophus is currently recorded only in eastern regions 337 
of North America, where most maize is grown. The lack of reported observations in the western regions 338 
of North America may be due to the fact that maize, the major host, is uncommon, and hence the disease 339 
currently has little impact. C. sativus, causing root and foot rot, also has a very wide geographic 340 
distribution, but an even wider host range. It is reported from Texas, Oklahoma, Mississippi, Illinois 341 
and Tennessee, but not from neighbouring Arkansas or Missouri. Hence, the high presence probability 342 
in these States. A similar pattern is seen for the maize pathogen S. turcica. R. maidis, the green corn 343 
aphid, is another global pest species. It is reported across Europe and in Russia, but, like many other 344 
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pests, not from the former Soviet states of Ukraine, Belarus, Lithuania, Latvia and Estonia. It is 345 
plausible that reporting from these nations was less likely when they were part of the USSR. This lack 346 
of observations in former USSR border states is also seen in Gibberella fujikuroi, cause of bakanae 347 
disease of rice. 348 
 349 
Predictors like host distribution, presence in neighbouring territories and global prevalence were 350 
expected to have positive relations with presence probability. The negative relation with distance from 351 
coast is likely to be related to import via shipping ports (Huang et al., 2012; Liebhold et al., 2013), and 352 
supports the observation that islands report more pests than countries with land borders (Bebber et al., 353 
2014b). Inclusion of climatic factors as predictors did not markedly improve model performance, which 354 
was unsurprising as we only modelled overall climatic suitability, rather than for individual pests. 355 
Detailed modelling of individual pest climate responses (Bregaglio et al., 2012; Kriticos et al., 2013) 356 
for such a large number of pests was beyond the scope of this study. Implicitly, we can assume that the 357 
presence of the host crop indicates that the climate is suitable for the pest, though we acknowledge that 358 
this is not necessarily the case (Berzitis et al., 2014). For the practical purposes of PRA, our models 359 
provide reliable probability estimates for the presence of unreported pests at subnational resolution, and 360 
we have provided a global list of the unreported pests whose presence is most likely (Table S2). 361 
 362 
We addressed the issue of pseudo-absences in the CABI data by statistically weighting missing pest 363 
observations in proportion to the scientific output of the reporting nation, since scientific output had 364 
been confirmed as a strong determinant of total reported pest numbers (Bebber et al., 2014b). Often, 365 
unreported pests are treated as true absences in pest risk analyses (Paini et al., 2016). The positive 366 
relation of GDP with presence probability in the unweighted model, but negative relation in the 367 
weighted model, supports our hypothesis that wealthy countries are more likely to detect and report 368 
pests (Bebber et al., 2014b). Once observational bias is controlled for using scientific capacity-based 369 
weighting, per capita GDP reduces presence likelihood, perhaps because wealthier countries are better 370 
able to prevent pests from arriving and establishing. Our weighted model had improved explanatory 371 
power compared with our unweighted model when considering the entire dataset, but there was no 372 
appreciable difference in model performance when tested against the Chinese literature. Nevertheless, 373 
the issue of observational biases related to country-level socioeconomic variation has been raised 374 
several times for various classes of organism (Jones et al., 2008; Pyšek et al., 2008; Westphal et al., 375 
2008; Boakes et al., 2010; Bebber et al., 2013, 2014b), and we therefore recommend the application of 376 
appropriate statistical controls when analysing datasets produced from reports of species presences (as 377 
opposed to distributional datasets derived from rigorous sampling protocols). 378 
 379 
Our SDM was statistical, fitting response functions for various predictors to the probability of pest 380 
presence. Many SDM approaches exist, from highly mechanistic models based on pest biology and 381 
ecology (Bregaglio et al., 2012; Skelsey et al., 2016) to purely statistical models that utilize only 382 
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patterns in known distributions (Paini et al., 2010). The lack of quantitative model input into PRAs is 383 
partly due to the scarcity of empirical data available on pest biology and epidemiology required to 384 
parameterize mechanistic models, and so key biological parameters are often inferred from known 385 
distributions (Robinet et al., 2012). This is particularly the case for newly emergent pathogens for which 386 
experimental investigations have not yet been conducted. Epidemiological parameters can be poorly 387 
constrained even for long-established pests. For example, coffee leaf rust fungus (Hemileia vastatrix) 388 
has affected coffee production for more than a century, but a recent infection model relied upon 389 
temperature response functions derived from the single available study published three decades 390 
previously (Bebber et al., 2016). Initiatives such as the EU-funded PRATIQUE project (2008-11) have 391 
attempted to fill this knowledge gap and enable modelling by collating available ecophysiological data 392 
for insect pests (Baker, 2012). While the advantages and disadvantages of the many different pest 393 
distribution and impact models continue to be researched and debated (Venette et al., 2010; Dormann 394 
et al., 2012; Robinet et al., 2012; Sutherst, 2014), it is clear that practical application of these methods 395 
in PRA remains limited. 396 
  397 
SDM for CPPs has direct policy implications for PRA and plant biosecurity. PRA is guided by 398 
International Standards for Phytosanitary Measures (ISPM), which are part of the International Plant 399 
Protection Convention (IPPC) (MacLeod et al., 2010). ISPMs tend to rely on expert judgement for 400 
PRA, rather than quantitative modelling to support decision making. ISPM No. 21 “Pest Risk Analysis 401 
for Regulated Non-Quarantine Pests”, endorsed in 2004, mentions use of pest and host life-cycle and 402 
epidemiological information, but not quantitative modelling (FAO, 2004). Individual PRAs similarly 403 
employ a qualitative approach. For example, the Australian Government’s PRA for Drosophila suzukii 404 
references only a single unpublished report on SDM for this species, conducted for North America. 405 
Probabilities of D. suzukii spread within Australia are qualitatively assessed by comparison with 406 
observations in other countries (Department of Agriculture, Fisheries and Forestry, 2013). The 407 
European and Mediterranean Plant Protection Organization (EPPO) PRAs occasionally include model 408 
results. For example, a climate matching for the fungal pathogen Xanthomonas axonopodis pv. allii was 409 
undertaken using the CLIMEX model, to identify areas at risk within the EPPO region (EPPO, 2008). 410 
Our results contribute to the quantification of risk within PRA by providing probabilistic estimates for 411 
the presence of hundreds of unreported CPPs around the world, thereby improving understanding of 412 
the threats to global agriculture. 413 
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