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Abstract1

Plant-insect interactions are ubiquitous, and have been studied intensely because of their2

relevance to damage and pollination in agricultural plants, and to the ecology and evolu-3

tion of biodiversity. Variation within species can affect the outcome of these interactions,4

such as whether an insect successfully develops on a plant species. Whereas specific genes5

and chemicals that mediate these interactions have been identified, studies of genome- or6

metabolome-wide intraspecific variation might be necessary to better explain patterns of7

host-plant use and adaptation often observed in the wild. Here, we present such a study.8

Specifically, we assess the consequences of genome-wide genetic variation in the model plant9

Medicago truncatula for Lycaeides melissa caterpillar growth and survival (i.e., larval perfor-10

mance). Using a rearing experiment and a whole-genome SNP data set (>5 million SNPs),11

we show that polygenic variation in M. truncatula explains 9–41% of the observed varia-12

tion in caterpillar growth and survival. We detect genetic correlations among caterpillar13

performance and other plant traits, such as structural defenses and some anonymous chemi-14

cal features; these genetic correlations demonstrate that multiple M. truncatula alleles have15

pleiotropic effects on plant traits and caterpillar growth or survival (or that there is sub-16

stantial linkage disequilibrium among loci affecting these traits). We further show that a17

moderate proportion of the genetic effect of M. truncatula alleles on L. melissa performance18

can be explained by the effect of these alleles on the plant traits we measured, especially19

leaf toughness. Taken together, our results show that intraspecific genetic variation in M.20

truncatula has a substantial effect on the successful development of L. melissa caterpillars21

(i.e., on a plant-insect interaction), and further point toward traits mediating this genetic22

effect.23

Keywords: plant-insect interactions, herbivory, genomic prediction, quantitative24

genetics, attenuated total reflectance infrared (ATR-IR) spectroscopy, structural25

defense26
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Introduction27

Organisms interact with members of other species in myriad ways, including competition28

for resources, predation, parasitism, herbivory, mutualism and pollination. Phenotypic and29

genetic variation within species can affect the outcome of these interspecific interactions30

(Bolnick et al., 2002; Crutsinger et al., 2006; Farkas et al., 2013; Thompson, 2013; Hendry,31

2016). For example, a genetic polymorphism for cryptic color pattern affects the probability32

that Timema cristinae stick insects are predated by birds (Nosil, 2004; Nosil et al., 2018), and33

allelic variation in Daphnia magna and its bacterial microparasite, Pasteuria ramosa, alters34

infection rates (Carius et al., 2001; Luijckx et al., 2011, 2013). Intraspecific variation can35

also affect the establishment and evolution (or co-evolution) of new interactions, including36

those that form following species introductions (e.g., Cox, 2004; Strauss et al., 2006; Lankau,37

2012; Mandeville et al., 2017).38

Interactions between plants and herbivorous insects have received considerable scien-39

tific attention due to their ubiquity (Forister et al., 2015), their agricultural relevance (Via,40

1990; Schoonhoven et al., 2010), and their hypothesized contribution to the extreme bio-41

diversity of these taxonomic groups (via co-evolutionary diversification; Ehrlich & Raven,42

1964; Mitter et al., 1988; Fordyce, 2010; Edger et al., 2015; Braga et al., 2018). These43

interactions are often affected by genetic variation within species, including variation in44

plant resistance to insects, and for insect acceptance of and performance on potential host45

plants (e.g., Rausher & Simms, 1989; Via, 1990; Berenbaum & Zangerl, 1998; Stowe, 1998;46

Dambroski et al., 2005; Ordas et al., 2009; Schoonhoven et al., 2010; Gompert et al., 2015;47

Mitchell et al., 2016; Nouhaud et al., 2018). Progress in explaining this variation has been48

made by identifying specific phytochemicals responsible for resistance to insects (e.g., fura-49

nocoumarins and glucosinolates), as well as the insect genes and pathways that detoxify these50

compounds (e.g., cytochrome P450 enzymes, nitrile specifier protein, etc.; Li et al., 2003;51

Wen et al., 2006; Wheat et al., 2007; Schoonhoven et al., 2010). Genomic and metabolomic52
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approaches have begun to provide a more complete view of how within-species variation53

affects plant-insect interactions (e.g., Harrison et al., 2018; Nallu et al., 2018). As an ex-54

ample, a recent study of intraspecific variation across 770 traits (including 753 chemical55

features) in alfalfa showed that among-plant variation in insect herbivore communities was56

best explained by non-linear interactions among suites of plant traits (Harrison et al., 2018).57

Such findings highlight the need for quantitative, genome-, phenome- and metabolome-scale58

analyses of the ecological and evolutionary consequences of intraspecific variation in plant-59

insect systems. In fact, these approaches may be necessary to explain the geographic mosaic60

of host-plant use and plant-insect co-evolution found in nature (but see, e.g., Berenbaum61

& Zangerl, 1998), in other words, to address questions such as: (i) Why are certain plant62

species fed on by a species of insect in some places but not others?, and (ii) To what extent63

do different host-plant populations represent distinct adaptive landscapes?.64

Here, we take an initial step towards this larger aim by quantifying the effect of65

genome-wide plant genetic variation on caterpillar performance (weight and survival) in66

the Melissa blue butterfly, Lycaeides melissa (Lepidoptera: Lycaenidae). Lycaeides melissa67

butterflies are found throughout western North America where they feed on various legume68

hosts, particularly from the genera Astragalus and Lupinus (Scott, 1986). Medicago sativa69

(alfalfa) is a legume native to Eurasia that was introduced to North America ∼250 years ago70

as a forage crop (Michaud et al., 1988). Since then, L. melissa has repeatedly colonized M.71

sativa, and numerous L. melissa populations now use this plant as their primary host, espe-72

cially where M. sativa has escaped from cultivation along roadsides and trails (Chaturvedi73

et al., 2018). Lycaeides melissa populations that use M. sativa show evidence of adapta-74

tion to this host, such as increased oviposition preference and larval performance (Forister75

et al., 2012; Gompert et al., 2015). However, M. sativa remains an inferior host in terms76

of laraval performance relative to other common hosts, and many M. sativa populations are77

not used by L. melissa within L. melissa’s range (Forister et al., 2009). Thus, host use in78

L. melissa comprises a mosaic of occupied and unoccupied patches of M. sativa and native79
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legume hosts. Previous experiments documented genetic variation within L. melissa popu-80

lations for larval performance on M. sativa (Gompert et al., 2015), and also showed that M.81

sativa populations vary in their suitability for L. melissa caterpillars (Harrison et al., 2016).82

However, past experiments were not designed to parse genetic versus environmental contribu-83

tions to host-plant suitability (this distinction is critical for co-evolutionary dynamics), nor84

to identify specific plant traits (or plant genes) affecting L. melissa caterpillar performance.85

Our ultimate goal is to explain variation in the (relatively recently established) inter-86

action between M. sativa and L. melissa across the landscape. This includes determining to87

what extent genetic differences among M. sativa plants affect whether a M. sativa population88

is colonized by L. melissa, and to what extent genetic differences among plant populations89

affect subsequent ecological and evolutionary dynamics and outcomes (e.g., L. melissa de-90

mographics, the degree of host adaptation, etc.). Despite its role in agriculture, genomic91

resources for M. sativa are limited. Consequently, in the present study we use the model92

plant Medicago truncatula as a proxy for M. sativa. Medicago truncatula is a close relative93

of M. sativa that occurs throughout the Mediterranean basin in Europe and is cultivated94

in Australia (Choi et al., 2004a,b). Because of its modest genome size (∼500 million base95

pairs), simple diploid genetics, and short generation time (∼10 weeks), M. truncatula has96

been developed as the model species for legumes (Young & Udvardi, 2009; Young et al.,97

2011). Resources for this species include a high-quality reference genome and hundreds of98

fully sequenced, inbred lines derived from natural accessions (Young et al., 2011; Stanton-99

Geddes et al., 2013). Unlike M. sativa, M. truncatula is not found in North America and100

thus is not available as a host for L. melissa (i.e., it is not part of L. melissa’s realized101

niche). However, both Medicago species could be used by other Lycaeides in Eurasia where102

most of the biodiversity in this genus is found (North American Lycaeides are descended103

from Eurasian ancestors that came across the Bering land bridge about two million years104

ago; Gompert et al., 2008; Vila et al., 2011). Thus, while our results do not directly assess105

variation in M. sativa, they can show the potential for intraspecific plant genetic variation to106
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affect plant-insect interactions in this system; further, we hypothesize that the M. trunatula107

genes and traits affecting caterpillar performance will function similarly in M. sativa.108

In this study, we combine statistical genomic methods with a caterpillar rearing ex-109

periment to assess the effect of M. truncatula phenotypic and genetic variation on L. melissa110

caterpillar performance. We address the following specific questions: (i) How much of the111

variation in L. melissa growth and survival can be explained by genetic variation in M.112

truncatula?, (ii) Do genetic loci that affect a set of measured plant traits (some putatively113

associated with plant vigor or defense) have pleiotropic effects on caterpillar performance?,114

and (iii) How well do the effects of M. truncatula alleles on the measured plant traits explain115

their effects on caterpillar performance. Thus, we quantify the direct effect of M. truncatula116

genetic variation on caterpillar performance, and its effect through a set of plant traits. We117

think that this combination of approaches has the potential to (a) provide a more mechanis-118

tic understanding of this plant-insect interaction by connecting genetic patterns with plant119

traits, and (b) discover previously unhypothesized sources of variation in caterpillar perfor-120

mance by identifying alleles associated with caterpillar performance that are not associated121

with any of the plant traits we measured. Moreover, the methods and approaches we use122

allow us to generate statistical and functional information about the genetic basis of this123

interaction even if it is polygenic (see Methods and Results for details).124

Methods125

Plant propagation and trait measurements126

We obtained seeds from 100 M. truncatula lines, which are part of the Medicago HapMap127

project (http://www.medicagohapmap.org). Seeds (i.e., germplasm) were obtained from128

INRA-Montpellier (Montpellier, France), and from the USDA Agricultural Research Station129

at Washington State University (Pullman, WA, USA; Table S1). Each line was derived from a130
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natural accession, but has since been inbred to near complete homozygosity. Whole genome131

sequences are available for each line (Branca et al., 2011; Stanton-Geddes et al., 2013),132

and the lines have been used in other genome-wide association mapping studies (GWAS),133

including GWAS on biomass, drought-related traits, plant defenses, flowering time, and134

nodulation (e.g., Stanton-Geddes et al., 2013; Kang et al., 2015).135

We planted five replicate pots with seeds from each of the 100 M. truncatula lines136

on May 4th and 5th, 2017 (see “Planting and tending Medicago truncatula” in the online137

supplemental material [OSM] for additional details). Medicago truncatula plants were grown138

in a greenhouse under ambient light (∼14–15 hours of daylight) at approximately 18–27◦C139

(with variable humidity), and were watered daily or every other day as needed. We thinned140

the M. truncatula seedlings on May 26th (i.e., after germination was complete) to ensure141

that no pots had more than two plants. This was done to minimize competition among142

plants, while still providing sufficient plant biomass for the caterpillar rearing experiments.143

A few plant lines had low germination rates and were dropped from the experiment leaving144

us with 94 lines, each with five replicate pots.145

We measured a series of morphological traits potentially associated with plant vigor146

or resistance to insects (e.g., putative structural plant defenses; Table 1; Levin, 1973; Hanley147

et al., 2007; Malishev & Sanson, 2015). First, 20 days after planting, we measured leaf size148

(length, width and area), leaf shape (length/width), trichome density, dry leaf weight149

and specific leaf area (SLA) for each plant line and replicate (pot) (we haphazardly selected150

one of the two plants in each pot for taking measurements). We chose the second true leaf151

for these measurements (that is leaf 1 from branch B0, see Figs. 1 & 2 from Moreau, 2006).152

We measured the width (at the widest point) and length (along the midvein) of the middle153

leaflet with calipers (each leaf comprises three leaflets; measurements were taken to the154

nearest 1 mm). Next, we calculated leaf area (length × width) and shape (length/width)155

from these measurements. We then counted the number of trichomes in a 2.5 mm diameter156

circle directly adjacent to the midvein under a stereoscope (35× magnification). The three157
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leaflets from each plant were then placed in a coin envelope in a bin with desiccant. The158

dry weight of the middle leaflet from each of these leaves was measured on a Mettler Toledo159

XPE105 analytical microbalance (Mettler Toledo) to the nearest 0.01 mg. Leaf area and dry160

weight were used to calculate SLA (SLA is the ratio of leaf area to dry mass and is often161

correlated with leaf mechanical properties, such as work to tear, shear or punch; Hanley162

et al., 2007).163

We measured plant height, from the cotyledons to the tip of the longest branch, 31164

days after planting (again, we haphazardly selected one of the two plants in each pot for165

taking this measurement). Leaf toughness was measured 33 days after planting using a166

penetrometer. We selected the main leaf from the second primary branch for this assay. The167

force required to penetrate each of the three leaflets along the midvein was recorded. We168

took the mean of these three measures as a metric of leaf toughness.169

Plant chemistry was quantified with attenuated total reflectance infrared (ATR-170

IR) spectroscopy. ATR-IR spectroscopy constitutes a quick, cost-effective method to analyze171

a range of organic chemical compounds in plant and animal tissues. Although the absorbance172

is directly related to the concentration of specific chemical signatures, there is not a simple173

one-to-one relationship between IR spectral patterns and specific chemical compounds of in-174

terest. Moreover, spectral features are the summation of similar overlapping IR transitions,175

representative of various compounds within a tissue. Consequently, IR data are often com-176

bined with more specific compositional analyses (e.g., HPLC-MS). The combined data can177

be used to construct a multivariate model linking IR spectral data to chemical compounds178

(e.g., Foley et al., 1998; Ramirez et al., 2015; Costa et al., 2018). This was not our goal here.179

We instead used IR spectral features as anonymous chemical markers (akin to AFLPs for180

genetic analyses) which could be connected to the presence of specific molecules in future181

work using compositional methods such as liquid chromatography–mass spectrometry.182

Infrared spectra were collected using a Thermo Nicolet 6700 FTIR (a high-resolution183

instrument with a diamond crystal ATR), which was used to scan 4000-600 cm−1 of the184
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infrared spectrum. Leaves were placed in direct contact with the diamond crystal, and the185

average of 32 scans was recorded for each leaf surface with 4 cm−1 resolution. A Norris-186

Williams second derivative spectrum was calculated for each transmittance measurement187

using 5-point smoothing and a gap size of 5 segments (absorbance is directly proportional to188

concentration [Beer’s Law], and absorbance = -log(transmittance)). We focused on the sub-189

set of IR features between ∼750 and 1100 cm−1 and with >10% of the phenotypic variation190

partitioned among plant lines (see Fig. S1).191

Caterpillar husbandry and performance assays192

We obtained neonate L. melissa caterpillars for larval performance assays on the M. truncat-193

ula accessions. First, 26 female L. melissa butterflies were collected on June 5th (2017) from194

a site along the Bonneville shoreline trail in northern Utah, USA (41.725◦N, 111.794◦W,195

1513 m elevation). As in past work (e.g., Forister et al., 2013; Gompert et al., 2015), these196

butterflies were caged individually in plastic oviposition chambers along with a few sprigs of197

their host plant (Medicago sativa). After 48 hours, L. melissa eggs were collected from the198

host-plant material and placed in unvented Petri dishes in a Percival incubator (model no.199

136VL; 27◦C; 14 hrs. light:10 hrs. dark) until they hatched.200

Caterpillars began to emerge on June 9th, and were then placed in individual unvented201

Petri dishes with a leaf from one of the 94 M. truncatula accessions (i.e., on one of the 94202

plant lines). We inspected caterpillars daily, adding new leaf material from the same plant203

line as needed (as in Gompert et al., 2015). We rotated the replicate/pot used for each204

plant line each day. Thus, caterpillars only ate leaves from a single plant line (genotype),205

but fed on all five replicate pots. Caterpillars were maintained in a Percival incubator at206

27◦C with 14 hour days (10 hours of dark). We reared 486 caterpillars total (∼5 per plant207

line). We checked all caterpillars daily for survival and recorded survival to pupation and208

survival to eclosion as adults. As an additional metric of performance, we measured 8-209

and 16-day caterpillar weight (L. melissa caterpillars generally spend 20 to 30 days as210
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larvae) on a Mettler Toledo XPE105 analytical microbalance (Mettler Toledo; weights were211

recorded to the nearest 0.01 mg). Weight and lifetime fecundity are highly correlated in L.212

melissa (Forister et al., 2009).213

Variance partitioning214

Our analyses focus on the 9 plant morphological traits (leaf length, leaf width, leaf area,215

leaf shape, leaf dry weight, SLA, trichome density, leaf toughness and plant height), 19 IR216

traits (i.e., anonymous chemical features), and four caterpillar performance traits (weight at217

8 days, weight at 16 days, survival to pupation, and survival to eclosion; survival is a binary218

trait; Table 1). Prior to genetic mapping and genomic prediction, we first quantified the219

proportion of trait variation found among plant lines (i.e., genotypes) for each of these 32220

traits. As we are working with replicated, inbred lines, these are estimates of the broad-sense221

heritability for each of the traits (with respect to plant not caterpillar genotypes; because222

caterpillars fed across plants of a genotype, these estimates are upper bounds for the broad-223

sense heritabilities of the caterpillar performance traits).224

We estimated the among-line variance for each trait by fitting linear mixed-effect225

models via restricted maximum likelihood (REML). This was done with the lmer function226

in lme4 R package (package version 1.1.19, R version 3.4.4; Bates et al., 2015). We then tested227

the null hypothesis that the among-line variance was 0 using an exact restricted likelihood228

ratio test, which was based on 10,000 simulated values to approximate the null distribution229

(Crainiceanu & Ruppert, 2004; Greven et al., 2008). This was done with the exactRLRT230

function in the RLRsim package in R (version 3.1.3; Scheipl et al., 2008).231

Medicago truncatula genomic data232

Whole-genome SNP data for the M. truncatula accessions were obtained from the M. truncat-233

ula HapMap project (http://www.medicagohapmap.org/; version Mt4.01; Stanton-Geddes234
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et al., 2013). These data comprised 40 million SNPs, which were mapped to the M. truncat-235

ula reference genome v4.0 (we used the quality-filtered SNP bcf files; Young et al., 2011).236

We applied additional quality filters to these data with vcftools (version 0.1.15; Danecek237

et al., 2011) such that we only retained bi-allelic SNPs with minor allele frequencies ≥ 0.01,238

and with a minimum sequencing depth of 2× per individual, no more than 20% missing data239

(across the 94 lines analyzed in this study), and a phred-scaled quality score of ≥ 30. We240

only considered SNPs mapped to the eight M. truncatula chromosomes. Approximately 13241

million SNPs passed these filters. We then used plink (version 1.09; Purcell et al., 2007) to242

remove redundant SNPs, that is SNPs that were in very high linkage disequilibrium (LD)243

with each other. Specifically, using the indep-pairwise command, one of each pair of high-244

LD SNPs, defined as r2 ≥ 0.8 in a 10 kilobase (kb) window, was pruned. After this step, we245

retained 5,648,722 SNPs for downstream analyses.246

The M. truncatula HapMap data set included SNP genotype calls and relative geno-247

type likelihoods generated by GATK (McKenna et al., 2010). Rather than use the raw248

genotype calls (which ignore uncertainty in genotypes and information from population249

allele frequencies), we used an empirical Bayesian approach to obtain estimates of geno-250

types based on the genotype likelihoods and a prior defined by the allele frequencies at251

each locus. As in past work (e.g., Gompert et al., 2015), we first used an expectation-252

maximization algorithm to obtain maximum likelihood estimates of the allele frequencies253

for each SNP. This was done with the computer program estpEM (in Dryad repository,254

doi:https://doi.org/10.5061/dryad.nq67q; Soria-Carrasco et al., 2014; Riesch et al.,255

2017). This program implements the EM algorithm from Li et al. (2009) and provides256

allele frequency estimates that account for genotype uncertainty. Prior probabilities for257

each genotype were then specified based on the allele frequencies, such that Pr(gij|pi) ∼258

binomial(pi, n = 2), where gij denotes the genotype at locus i for individual j, and pi de-259

notes the non-reference allele frequency. Next, we computed the posterior probability of each260

genotype according to Bayes theorem, and obtained point estimates (posterior means) for261
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genotypes ḡij =
∑

k∈0,1,2 kL(gij = k)Pr(gij = k|pi), where L(gij = k) is the relative geno-262

type likelihood based on the sequence data and associated quality scores. These genotype263

estimates take on values between 0 (reference-allele homozygote) and 2 (non-reference-allele264

homozygote), but are not constrained to be integer values.265

Genome-wide association mapping and genomic prediction266

We fit Bayesian sparse linear mixed models (BSLMMs; Zhou et al., 2013) with gemma (ver-267

sion 0.94.1) to quantify the contribution of M. truncatula (i.e., plant) genetic variation to268

phenotypic variation in the plant traits and L. melissa caterpillar performance. Unlike tra-269

ditional genome-wide association mapping methods, BSLMMs fit a single model with all270

SNPs simultaneously and thus mostly avoid issues related to testing large numbers of null271

hypotheses. In particular, trait values are modeled as a function of a polygenic term and a272

vector of the (possible) measurable effects (associations) of each SNP on the trait (β; Zhou273

et al., 2013). Variable selection is used to estimate the SNP effects; SNPs can be assigned an274

effect of 0 (not in the model) or a non-zero effect (in the model) (Guan & Stephens, 2011).275

A Markov chain Monte Carlo (MCMC) algorithm is used to infer the posterior inclusion276

probability (PIP) for each SNP, that is, the probability that each SNP has a non-zero effect.277

The polygenic term defines an individual’s expected deviation from the grand phenotypic278

mean based on all of the SNPs. It accounts for phenotypic covariances among individuals279

caused by their relatedness or overall genetic similarity (i.e., observed kinship; Zhou et al.,280

2013). The kinship matrix also serves to control for population structure and relatedness281

when estimating the effects of individual SNPs (β) along with their PIPs. Likewise, SNPs282

in LD with the same causal variant effectively account for each other, such that only one or283

the other is needed in the model, and this is captured by the PIPs.284

The hierarchical structure of the model provides a way to estimate additional param-285

eters that describe aspects of a trait’s genetic architecture (Guan & Stephens, 2011; Zhou286

et al., 2013; Lucas et al., 2018). These include the proportion of the phenotypic variance287
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explained (PVE) by additive genetic effects (this includes β and the polygenic term, and288

should approach the narrow-sense heritability), the proportion of the PVE due to SNPs with289

measurable effects or associations (this is called PGE and is based only on β), and the num-290

ber of SNPs with measurable associations (n-γ). All of these metrics integrate (via MCMC)291

over uncertainty in the effects of individual SNPs, including whether these are non-zero.292

Likewise, BSLMMs can be used to obtain genomic estimated breeding values (GEBVs), that293

is, the expected trait value for an individual from the additive effects of their genes as cap-294

tured by both β and the polygenic term (Lucas et al., 2018). Most other genomic prediction295

methods provide GEBVs based solely on a polygenic term (e.g., Meuwissen et al., 2001;296

Hayes et al., 2009; Ober et al., 2012).297

We fit BSLMMs for each of 32 traits using gemma (version 0.94.1; Zhou et al., 2013)298

with 15 MCMC chains each with a 500,000 iteration burn-in followed by 2 million sampling299

iterations with a thinning interval of 20. GEBVs were obtained using the -predict 1 option,300

with predictions averaged over the 15 MCMC chains. GEBVs were used to estimate genetic301

correlations among traits (i.e., a standardized G-matrix). As a guard against statistical302

artifacts, we fit BSLMMs to 12 pseudo (randomized)-data sets derived from the caterpillar303

data (while these methods have been assessed in detail elsewhere, e.g., Zhou et al., 2013;304

Gompert et al., 2017, we were particularly concerned that the low number of survivors and305

binary data for survival could lead to spurious association; for details, see “BSLMMs fit to306

randomized data” in the OSM).307

Connecting plant trait genetics with caterpillar performance308

Genetic covariances (correlations) among plant and caterpillar traits (as captured by the309

G-matrix) can provide evidence of a shared genetic basis for these traits. However, these310

treat pairs of traits independently and do not formally quantify the total contribution of311

alleles affecting the measured plant traits to the alleles affecting caterpillar performance.312

Thus, we next assessed the extent to which we could explain variation in the caterpillar313

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 13, 2019. ; https://doi.org/10.1101/518951doi: bioRxiv preprint 

https://doi.org/10.1101/518951
http://creativecommons.org/licenses/by-nc/4.0/


14

performance GEBVs based on the GEBVs for the plant morphology and chemistry traits, as314

well as which plant trait GEBVs were most important for this. In other words, we wanted315

to know how well we could explain (or predict) the caterpillar performance GEBVs (that is,316

the expected performance trait values based on plant genetics) from the subset of genetic317

variants associated with phenotyped plant traits (as captured by the plant trait GEBVs,318

and thus weighted by their effects on the plant traits). High explanatory (or predictive)319

power would imply that most of the M. truncatula genetic variants affecting caterpillar320

performance either had pleiotropic effects on some of the plant traits we measured or were321

tightly linked to genetic variants that affected these traits. This should also allow us to322

identify specific plant traits that share a common genetic basis with (and thus potential323

causal link to) caterpillar performance. We used two complementary approaches to answer324

this question: (i) multiple regression with Bayesian model averaging, and (ii) random forest325

regression. A key distinction between these methods is whether they assume linear (multiple326

regression) or non-linear (random forest regression) relationships between predictors and327

response variables. Note that for each plant and caterpillar trait, there was a single GEBV328

estimate per plant line, and thus the sample size for these analyses was N = 94 plant lines.329

We used multiple regression with Bayesian model averaging to identify the subset of330

predictors (plant GEBVs) that best explained variation in caterpillar performance GEBVs,331

while accounting for uncertainty in the effects of each covariate including which covariates332

have non-zero effects. The multiple regression models were fit with the BMS R package333

(package version 0.3.4, R version 3.4.2; Zeugner & Feldkircher, 2015). Zellner’s g-prior was334

used for the regression coefficients with g = N , where N is the number of observations (N =335

94; Zellner, 1986), and a uniform prior was used for the different models (i.e., sets of covariates336

with non-zero effects; Zeugner & Feldkircher, 2015). Parameter estimates were obtained337

using MCMC with a 5000 iteration burnin-in and 100,000 sampling iterations, and using338

the birth-death sampler for exploring model space. We then used 10-fold cross-validation339

to assess the predictive power of these models (that is, the power of the model to explain340
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observations not used in fitting the model). Predictive power necessarily averages over341

uncertainty in covariate effects (including which covariates have non-zero effects), and was342

measured as the Pearson correlation (and squared Pearson correlation) between the observed343

and predicted caterpillar performance GEBVs. As a simpler metric of explanatory power (not344

predictive power), we estimated the coefficient of determination (r2) from a standard linear345

model that included only the subset of predictors (i.e., plant trait GEBVs) with posterior346

inclusions probabilities (PIPs) greater than 0.5 in the Bayesian model averaging analysis347

(importantly, here the same data were used to fit the model and assess its explanatory348

power). This was done with the lm function in R.349

The random forest regression algorithm was similarly used to determine the influence350

of the plant trait GEBVs on the caterpillar performance GEBVs, while allowing for non-linear351

interactions among variables (Breiman, 2001). Random forest creates multiple regression352

trees and then outputs the importance of each predictor. The number of trees created was353

left at the default of 500, after determining that changing the number of trees from this354

number did not significantly reduce error. The number of variables randomly sampled at355

each split (mtry) and the number of terminal nodes (nodesize) were chosen to minimize356

OOB error by manually varying these parameters from one to 20 (all possible combinations357

were considered). To determine variable importance, the predictor of interest was varied and358

the percent change mean-squared error (%MSE) in predicting the out-of-bag (OOB) data359

was determined for each. Those with the greatest effect on %MSE are the most important360

predictor variables. Random Forest was run using randomForest package (version 4.6-12)361

in R (Liaw & Wiener, 2002). Random forest regression was run separately with each of the362

caterpillar performance GEBVs as the response and the GEBVs for plant traits as predictors.363
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Results364

Variation in plant traits and caterpillar performance365

We documented substantial phenotypic variation for all 32 traits assayed (e.g., Fig. 1a,c).366

Phenotypic correlations among traits were evident, particularly among leaf morphology traits367

(some of which are functions of each other; Fig. 1b) and among some IR chemical traits368

(Fig. S2). Caterpillar survival rates were initially high, with only nine of the 486 caterpillars369

(1.9%) dying within the first eight days; the mean survival time was 22.3 days (excluding370

caterpillars that pupated; Fig. 1d). But most caterpillars failed to pupate (448, or 92.2%),371

such that high mortality rates were observed between 20 and 30 days of larval development.372

Of the 38 caterpillars that did pupate, 11 eclosed as adults (29%) (several of the adults were373

deformed). Mean caterpillar weight at 8 and 16 days were 5.1 mg (s.d. = 2.5 mg, min. =374

0.04 mg, max. = 12.9 mg) and 17.7 mg (s.d. = 7.7 mg, min. = 3.02 mg, max. = 82.7 mg),375

respectively.376

The 32 traits exhibited significant among-line variation, with the possible exception377

of survival to eclosion as adults (Table 2). The proportion of variation among lines ranged378

from 0.15 (SLA) to 0.59 (plant height) for the plant morphology traits, from 0.09 to 0.36379

for the plant IR traits, and from 0.05 (survival to eclosion) to 0.41 (16 day weight) for the380

caterpillar performance traits (Fig. S3). With the exception of survival to eclosion (restricted381

likelihood ratio test [RLRT], P = 0.059), the null model of no among-line variance could be382

confidently rejected for all traits (RLRT, all P < 0.05, most P < 0.001; Table 2).383

Genetic architecture of plant and caterpillar traits384

The M. truncatula SNP data explained a modest to substantial proportion of trait variation385

(Table S2, Fig. 2). On average, M. truncatula genetic variation accounted for a greater386

proportion of the variation in plant morphology traits (mean PVE = 0.40) than in IR traits387
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(mean PVE = 0.17) or caterpillar performance (mean PVE = 0.24; recall that PVE is similar388

to narrow-sense heritability). However, M. truncatula genetics explained a particularly large389

amount of the variation in L. melissa caterpillar 16-day weight (PVE = 0.41, 90% equal-tail390

probability intervals [ETPIs] = 0.34–0.49; this trait also exhibited high among-line variance,391

Table 2). Estimates of PVE were generally precise, such that the average width of the 90%392

ETPIs for these parameters (mean across traits) was 0.13 (range = 0.11–0.15). In contrast,393

our estimates of the number of genetic loci with measurable effects on each trait (n-γ), and of394

the proportion of the PVE explained by those loci (PGE) were less certain; in particular, the395

average width of the 90% ETPIs for n-γ and PGE (a proportion) were 153.7 loci and 0.82,396

respectively (Table S2). Thus, uncertainty in these parameter estimates blurs differences in397

genetic architectures among traits suggested by the differences in parameter point estimates398

(compare Fig. 2 with Table S2). Genetic architecture parameter estimates for permuted399

(randomized) caterpillar performance data differed markedly from those for the actual data,400

most notably in terms of PVE. Whereas permutations of the survival to eclosion data did401

sometimes give modest estimates of PVE (the maximum was 0.12, 90% ETPIs = 0.06–0.19),402

these were still lower than the PVE estimate for the least heritable trait, namely survival to403

eclosion (PVE = 0.15, 90% ETPIs = 0.09–0.22), and most PVE estimates from permuted404

data were less than 0.05 (Fig. S4).405

Consistent with the high (but uncertain) estimates of n-γ for most traits, many406

SNPs had small but non-zero posterior inclusion probabilities (PIPs) in the BSLMMs (Fig.407

S5). In other words, we were better able to detect than confidently isolate and localize408

the effects of individual genetic loci on the traits. There were a few exceptions to this409

pattern, most notably plant height and survival to eclosion. For plant height, one SNP410

each on chromosomes 5 and 7 had very high PIPs, ∼ 1.0 (Fig. S6). Two nearby SNPs on411

chromosome 6 were confidently associated with survival to eclosion, but given the unbalanced412

design (most caterpillars did not survive to eclosion) and the modest difference between PGE413

(and to a lesser extent PVE) estimates for this trait and permutations of this trait, we do414
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not interpret or discuss these associations with survival further. We next summarized the415

genomic distribution of genetic variants affecting each trait by estimating the number of416

QTL (or QTN) for each trait on each of the eight M. truncatula chromosomes (as in Santure417

et al., 2015; Lucas et al., 2018). This was done by summing the PIPs across all SNPs on418

each chromosome, and thus is analogous to the parameter n-γ, except that it is refers to419

specific chromosomes rather than the whole genome (Guan & Stephens, 2011; Riesch et al.,420

2017; Lucas et al., 2018). As these chromosomes vary little in size (∼35 to 55 megabases),421

the number of QTL per chromosome should be similar across chromosomes if the traits422

are highly polygenic. Consistent with this prediction, evidence of putative QTL for most423

traits was not restricted to specific chromosomes but distributed relatively evenly among424

chromosomes (Figs. 3, S7).425

Relationship between plant trait genetics and caterpillar perfor-426

mance427

Trait genetic covariances and correlations were high for some pairs or sets of traits (high428

genetic correlations imply pleiotropy or tight linkage of causal variants; Fig. 4). For example,429

genetic correlations among leaf length, width, area and dry weight were all r ≥0.8. High,430

positive genetic correlations were also observed among the caterpillar performance traits,431

particularly 16-day weight, survival to pupation and survival to eclosion (r = 0.47 to 0.60).432

Caterpillar performance traits also exhibited non-trivial genetic correlations with several433

plant traits, most notably with leaf toughness where genetic correlations ranged from −0.25434

for 8 day weight (95% confidence intervals [CIs] = −0.43 to −0.05, P = 0.016) to −0.39 for435

16 day weight (95% CIs = −0.55 to −0.21, P < 0.001; Fig. 4). Weaker, but still consistently436

negative genetic correlations were observed between caterpillar performance traits and both437

trichome density and plant height (Fig. S8). More generally, hierarchical clustering revealed438

sets or modules of traits with high (positive or negative) genetic correlations, particularly439
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for suites of IR spectra traits (Fig. S9).440

Multiple regression models with Bayesian model averaging had some (albeit modest)441

predictive power, with correlations between observed and predicted caterpillar performance442

GEBVs ranging from r = 0.12 for survival to pupation (i.e., r2 = 1.4% of the variation in443

observed GEBVs explained by predictions) to r = 0.42 for 8-day weight (r2 = 17.6% of the444

variation in the observed GEBVs explained by predictions; Fig. 5). The most important445

predictor for 8-day caterpillar weight was IR 892.38, followed by IR 1072.19 (IR traits are446

labeled by their wavelength in cm−1; Figs. 5, S10). In contrast, leaf toughness was the best447

predictor of the GEBVs for 16-day weight, survival to pupation and survival to eclosion;448

higher GEBVs for leaf toughness consistently and credibly predicted lower GEBVs for cater-449

pillar performance metrics. Leaf toughness was the only credible predictor of caterpillar450

survival (all other traits had PIPs < 0.5), whereas leaf toughness and several IR traits (or451

more precisely the GEBVs for these traits) had credible effects on 16 day weight GEBVS452

(i.e., IR 998.34, IR 1104.64 and IR 892.38; Figs. 5, S10). Standard multiple regression models453

that included the most credible covariates (those with PIP > 0.5; Fig. S10) explained 40.4%454

(8-day weight; covariates = IR 892.38 and IR 1072.19), 34.9% (16-day weight; covariates =455

leaf toughness, IR 998.34, IR 1004.64 and IR 892.38), 8.5% (survival to pupation; covariate =456

leaf toughness) and 12.1% (survival to eclosion; covariate = leaf toughness) of the variation457

in caterpillar performance GEBVs, with all included covariates having significant effects (all458

P < 0.01). Thus, models with the most important covariates explained a moderate amount459

of the variation in caterpillar performance GEBVs, but still less than 50% in all cases.460

For 8-day caterpillar weight GEBVs, predictions from random forest regression ac-461

counted for 31.9% of out-of-bag (OOB) variance (OOB variance measures predictive perfor-462

mance) (mtry = 18, nodesize = 2). The most important predictor variables were IR 892.38,463

IR 985.1, and plant height (Fig. 6a). For 16-day caterpillar weight GEBVs, random forest464

explained 14.4% of the OOB variance (mtry = 12, nodesize = 9). The most important465

predictor variables in this case were leaf toughness, IR 1104.64, and IR 830.13 (Fig. 6b).466
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Only 5.3% of the OOB variance was explained for survival to eclosion, with leaf toughness467

and IR 830.13 being the most important traits (Fig. 6c). Graphical analyses of the random468

forest regression results suggested non-linear relationships between GEBVs for many of the469

top plant and caterpillar traits (Figs. 6d-f, S11 and S12). For example, the effects of IR470

892.38 and IR 985.1 on 8-day weight exhibited a strong interaction (a similar pattern held471

for many of the IR chemical features). In contrast, the effect of leaf toughness on 16-day472

weight was negative and nearly linear (tougher leaves were associated with lower weights),473

although there was evidence of an asymptote at higher values of leaf toughness. We failed to474

explain a non-zero proportion of the OOB variance in caterpillar survival to pupation with475

random forest regression, and thus results for this trait are not shown.476

Discussion477

Because the world is full of newly-formed host-parasite interactions (including plant-insect478

interactions involving consumputive herbvory; Nylin et al., 2018), and because most novel479

host plants are relatively sub-optimal hosts (Yoon & Read, 2016), the results reported here480

are of interest not only as a step towards understanding the interaction between L. melissa481

and M. sativa (discussed further below), but also as a more general model for the formation482

of host-parasite interactions. In addition, genetic dissections of plant-insect interactions are483

important not only for understanding the complexity underlying the formation and persis-484

tence of new associations, but also for understanding the evolution of plant defensive traits485

and phytochemical diversity in terrestrial ecosytems. In our study, genetic variation within486

M. truncatula explained a non-trivial proportion of the variation in L. melissa caterpillar487

performance traits, especially 16-day weight (PVE = 0.41) and survival to pupation (PVE488

= 0.31). Estimates of the variance in plant and caterpillar traits explained (PVE) by plant489

genetic variation were similar, meaning the two sets of traits were (on average) similarly490

heritable with respect to M. truncatula (this suggests these caterpillar performance traits491
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can meaningfully be viewed as extended phenotypes of M. truncatula, sensu Dawkins, 1982;492

see also, e.g., Whitham et al., 2006).493

Genomic estimated breeding values (GEBVs) for caterpillar performance traits were494

most consistently and strongly associated with GEBVs for leaf toughness, with more mod-495

est or idiosyncratic correlations with several IR chemical features (e.g., IR 892.38 and IR496

1104.64), trichome density, and plant height. These genetic correlations suggest either that497

caterpillar performance and several of these plant traits are affected by some of the same498

segregating genetic variants (i.e., pleiotropy), or that modest to high LD exists among ge-499

netic variants affecting the plant traits and caterpillar performance. Such high LD would500

imply tight linkage among many genetic variants, or some alternative process or mechanism501

for suppressed recombination among genotypes (this could include low rates of gene flow502

among the natural source populations from which these lines were derived). However, LD503

is modest and decays with a few kbs to background levels in this mapping population (i.e.,504

mean LD, measured by r2 drops below 0.2 within 20 kbs; Branca et al., 2011). Interest-505

ingly, the additive effects of alleles on the measured plant traits (as captured by the trait506

GEBVs) were able to explain or account for the additive effects of M. truncatula alleles on507

caterpillar performance, at least to a modest extent (as expected, explanatory power was508

lower for cross-validation than in simple linear models). Nonetheless, much of the variation509

in caterpillar performance GEBVs was not accounted for by the plant trait GEBVs. This510

implies additional plant traits (and underlying genes) likely contribute to the total variation511

in caterpillar performance explained by plant genetics. We discuss these results in more512

detail below.513
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The genetic architecture of traits associated with a plant-insect514

interaction515

Our results were consistent with standing genetic variation at many loci in M. truncatula516

for L. melissa caterpillar performance on M. truncatula. Specifically, estimates of PVE517

from the BSLMMs and REML estimates of the among plant-line genetic variances provide518

direct evidence of standing polygenic variation in M. truncatula for L. melissa caterpillar519

performance. Furthermore, results from the BSLMMs suggest multiple QTL for caterpillar520

performance are dispersed across the eight M. truncatula chromosomes rather than localized521

in one or a few regions of the genome. A polygenic basis for caterpillar performance (as a522

plant trait) was also detected in a recent genomic study of Pieris rapae caterpillars reared523

on Arabidopsis thaliana (Nallu et al., 2018). In this study, Nallu et al. (2018) identified 12524

A. thaliana genes associated with variation in P. rapae performance (weight gain over 72525

hours), which included CYP79B2, a cytochrome P450 gene known to affect plant resistance526

to insects. A genome-wide transcriptomic response to herbivory (and even to oviposition)527

was detected as well.528

More generally, genetic variation for resistance to insects has been documented in529

numerous other plant species, especially crops (Via, 1990; Schoonhoven et al., 2010), although530

mostly without genome-scale data and without explicit links to plant traits. Still, these531

studies show that intraspecific variation in plant resistance to insects is often highly heritable,532

and that it can involve one or many genes (reviewed in Schoonhoven et al., 2010). The533

same plant species can even exhibit polygenic resistance variation with respect to one insect534

species and monogenic resistance variation with respect to another (Kennedy & Barbour,535

1992). Thus, while our finding of a polygenic architecture is not unexpected given the536

complex, multifaceted nature of caterpillar performance (Allen et al., 2010; Rockman, 2012),537

additional genomic studies are needed for a more robust assessment of the prevalence and538

consistency of this pattern (especially in natural systems).539

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 13, 2019. ; https://doi.org/10.1101/518951doi: bioRxiv preprint 

https://doi.org/10.1101/518951
http://creativecommons.org/licenses/by-nc/4.0/


23

The full set of plant and caterpillar traits we measured exhibited a range of heritabil-540

ities, yet, with the possible exception of plant height, we found little evidence of major effect541

loci. Instead the traits appeared to be controlled by many loci. Genome-wide association542

mapping methods (and to a lesser extent genomic prediction methods) are known to suffer543

from a failure to detect many small effect variants (Eichler et al., 2010; Yang et al., 2010),544

and from overestimating the effects of large effect variants (i.e., the Beavis effect; Beavis,545

1998). However, major-effect loci are less likely to be missed. This is true in general as546

such loci are easier to detect even with small sample sizes, but especially true here given547

the high-density genome-wide SNP data set we used (>five million SNPs, or about one per548

100 bps) and thus the high likelihood of LD between at least one of our SNPs and most549

causal variants. Moreover, two of the plant traits we analyzed, plant height and trichome550

density, were independently mapped and analyzed in an earlier study of the M. truncat-551

ula HapMap mapping population (albeit with a different subset of lines) (Stanton-Geddes552

et al., 2013). Results from Stanton-Geddes et al. (2013) and our results were remarkably553

consistent, with, for example, 58% versus 59% (plant height) and 45% versus 49% (trichome554

density) of the trait variation partitioned among lines in Stanton-Geddes et al. (2013) ver-555

sus our study, respectively. This is reassuring, particularly given the variability frequently556

observed in genetic mapping and quantitative genetic results among mapping populations557

and environments (e.g., Weinig et al., 2002, 2003; Weiss, 2008). However, the use of inbred558

lines sampled from many localities necessarily distorts the frequencies and possibly average559

effects of genetic variants on traits, thus our results do not rule out major-effect loci for these560

traits in natural populations.561
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Evidence of pleiotropic effects across species, and of variance left562

unexplained563

The estimated genetic correlations are consistent with either pleiotropic effects of M. trun-564

catula alleles on plant traits and caterpillar performance, or with LD among variants that565

independently affect subsets of these traits (parsing these two possibilities is very difficult,566

and at the extreme, very tight linkage can be functionally equivalent to pleiotropy). Leaf567

toughness, and to a lesser extent, trichome density and plant height, exhibited some of the568

greatest and most consistent negative genetic correlations with L. melissa performance. Leaf569

toughness and trichome density constitute structural (physical) plant defenses (Levin, 1973;570

Schoonhoven et al., 2010), and our results thus support recent calls for greater attention to571

structural (as opposed to chemical) plant defenses (Hanley et al., 2007; Carmona et al., 2011;572

Malishev & Sanson, 2015). However, some IR chemical features exhibited high genetic corre-573

lations with some or many of the caterpillar performance traits. This is consistent with a role574

for intraspecific variation in phytochemical defenses in M. truncatula as well, although the575

IR chemical features could also reflect variation in plant nutritional composition rather than576

chemical defenses per se. Future work should identify the molecules underlying variation at577

the leading IR chemical features (e.g., IR 892.38 and IR 1104.64).578

Plant trait GEBVs accounted for a moderate amount of the variation in caterpillar579

weight GEBVs, but relatively little of the variation in caterpillar survival GEBVs. In other580

words, our results suggest that the alleles affecting the measured plant traits accounted for581

a greater proportion of the heritable variation in M. truncatula for caterpillar weight than582

caterpillar survival. Nonetheless, in no cases did the variance explained or predictive power of583

these models approach 100%. In fact, the highest percent variance explained was 40.8%, and584

predictive power never exceeded 17.6% for the Bayesian multiple regression or 31.9% for the585

random forest regression. This means that the effects of M. truncatula alleles on caterpillar586

performance are not fully accounted for by the effects of these alleles on the measured plant587
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traits. Additional heritable plant traits not measured in this study must affect L. melissa588

performance, and additional work will be required to identify these. Obvious candidates589

include defensive phytochemicals or plant nutrients that were not captured by the IR assays.590

Still, even the modest predictive power of these models allows us to conclude, for example,591

that the genetic quality of a plant in terms of caterpillar performance can be predicted in592

part from the additive effects of plant alleles on leaf toughness.593

As expected, the plant traits most important in these predictive models tended to594

be the ones with the largest genetic correlations with caterpillar performance. However,595

there were a few exceptions that arose because of correlations among the plant trait GEBVs,596

which rendered a subset of these traits (e.g., trichome density) unimportant in the predictive597

models. Moreover, the relative ranks of plant traits in terms of their importance (i.e.,598

Bayesian model-averaged effect estimates or percent reduction in MSE) differed between the599

Bayesian multiple regression models and random forest regression. We think these differences600

were most evident in cases where random forest regression identified extreme interactions601

among plant trait GEBVs or non-linear relationships between GEBVs for the plant traits602

and caterpillar performance (e.g., IR 985.1 on 8-day caterpillar weight), as these would not603

be captured by the Bayesian multiple regression models.604

Conclusions and future directions605

We have shown that plant genetic variation can have a substantial effect on the outcome606

of a plant-insect interaction, specifically on whether L. melissa caterpillars can develop607

successfully on M. truncatula. Genetic variation among M. truncatula plants explained608

about as much of the variance in caterpillar performance in the current study (9-41%) as609

genetic variation among L. melissa caterpillars did in an earlier rearing experiment on M.610

sativa (7-57%) (Gompert et al., 2015). This suggests that caterpillar and plant genetic611

variation combined could explain a large proportion (i.e., over half) of the variation in612

larval performance, which is necessarily a key aspect of the interaction between plants and613
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herbivorous insects. However, M. truncatula and M. sativa are not identical, and it remains614

to be seen whether similar levels of genetic variation for performance exist in this actual615

(rather than potential) L. melissa host plant. Moreover, gene by gene epistatic interactions616

between L. melissa alleles and M. sativa (or M. truncatula) alleles could modulate the617

total variance in performance explained for the pair of species (in other words, the trait618

heritabilities with respect to plant and insect genes are not necessarily additive).619

Ultimately, we want to accurately predict the mosaic patterns of host use and host620

adaption in L. melissa from a mechanistic understanding of the factors affecting host use. We621

have reasons to be both optimistic and pessimistic about this aim. Past work on L. melissa622

has shown that genetic variants associated with performance in the lab covary significantly623

with host use in nature (Gompert et al., 2015; Chaturvedi et al., 2018). Thus, genetic vari-624

ants affecting performance in the lab appear to also be associated with host-plant adaptation625

in nature. On the other hand, the lab environment is necessarily simplified and lacks inter-626

actions with predators, competitors and mutualists that could be important determinants of627

host use in the wild. For example, survival of L. melissa caterpillars on M. sativa in a field628

experiment depended on the presence of ants that defend the caterpillars from predators629

(this is a facultative relationship where the ants receive a sugar reward from the caterpillars;630

Forister et al., 2011). Even ignoring such complexities, the relevance of genetic and trait631

variation in M. truncatula for understanding genetic and trait variation in M. sativa is not632

certain. Leaf toughness, which was most strongly associated with performance in the current633

experiment, exhibits a similar range of variation in M. sativa and M. truncatula (albeit with634

somewhat tougher leaves in M. sativa on average; Harrison et al., 2018). This suggests vari-635

ation in leaf toughness in M. sativa could have a similar affect on caterpillar performance.636

In the end, we may fail to generate reliable predictions about host use in nature from simple637

lab experiments, but nonetheless might advance scientific understanding of the importance638

of intraspecific variation for the evolution and ecology of plant-insect interactions by gaining639

a better understanding of how and why these predictions fail.640
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Tables and Figures885

Table 1: Plant traits along with our predictions about their primary functional roles and
relationships with caterpillar performance. We are presenting simplified predictions to guide
interpretation, but are aware that the traits potentially have multifaceted relationships to
growth and defense. ↗ denotes a positive correlation with caterpillar performance, whereas
↘ denotes a negative relationship with caterpillar performance. Our classification of SLA
is based on its general association with mechanical properties of leaves, including work to
shear, tear and penetrate (reviewed in Hanley et al., 2007). All 19 IR chemical features are
treated together here, and thus we predict that they include a mixture of features associated
with vigor (↗) and defense (↘). Leaf shape is not included in the table, as its putative
function and effects are not known.

Predicted relationship with
Traits Primary putative function caterpillar performance
Leaf length Growth ↗
Leaf width Growth ↗
Leaf area Growth ↗
Leaf weight Growth ↗
SLA Defense ↘
Trichome den. Defense ↘
Leaf tough. Defense ↘
Plant height Growth ↗
IR features Growth or defense ↗ or ↘
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Table 2: REML estimates for each trait of the proportion of phenotypic variation found
among M. truncatula lines (‘Prop. var.’). Test statistics (LR = likelihood ratios) and P -
values from the null hypothesis test of no line effect are reported.

Traits Prop. var. LR P
Leaf length 0.43 115.87 <0.001
Leaf width 0.49 144.78 <0.001
Leaf area 0.49 147.90 <0.001
Leaf shape 0.21 32.23 <0.001
Leaf weight 0.41 102.49 <0.001
SLA 0.15 17.12 <0.001
Trichome den. 0.49 151.82 <0.001
Leaf tough. 0.34 69.95 <0.001
Plant height 0.59 218.92 <0.001
IR 1104.64 0.13 12.79 <0.001
IR 1085.1 0.15 16.20 <0.001
IR 1072.19 0.10 7.01 0.004
IR 1039.74 0.16 17.46 <0.001
IR 1024.17 0.10 8.48 0.001
IR 1010.93 0.17 20.27 <0.001
IR 998.34 0.29 54.85 <0.001
IR 985.1 0.12 10.78 <0.001
IR 944.37 0.10 7.46 0.003
IR 937.09 0.23 35.98 <0.001
IR 929.14 0.15 16.76 <0.001
IR 918.54 0.12 11.63 <0.001
IR 892.38 0.13 11.99 <0.001
IR 855.96 0.13 13.19 <0.001
IR 840.07 0.23 36.36 <0.001
IR 830.13 0.36 80.73 <0.001
IR 818.21 0.24 40.84 <0.001
IR 793.71 0.14 15.10 <0.001
IR 757.28 0.09 6.05 0.007
Wgt. 8 days 0.07 3.99 0.019
Wgt. 16 days 0.41 93.69 <0.001
Surv. pupation 0.24 40.33 <0.001
Surv. eclosion 0.05 2.39 0.059
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Figure 1: Plant (M. truncatula) and caterpillar (L. melissa) phenotypic data. Panel (a)
provides the coefficient of variation (CV) for each of the nine plant growth/defense traits.
Panel (b) presents pairwise phenotypic correlations for the same nine traits (roman numerals
denote the trait numbers ordered as in panel a). Pearson correlations are shown in the
upper triangle of the correlation matrix, and depicted graphically in the lower triangle of
the correlation matrix, with darker shading denoting higher correlations. Panel (c) shows
the infrared (IR) absorbance spectra for each plant (one line per plant) (see Fig. S2 for
phenotypic correlations for the IR traits). Panel (d) gives the number of caterpillars, pupa,
and adults (and thus the total number of L. melissa) alive at 0 to 35 days of age.
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Figure 2: Graphical summary of plant (M. truncatula) and caterpillar (L. melissa) trait
variation explained by M. truncatula genetics. Bars denote the posterior median for the
proportion of trait variation explained by plant genetics (PVE); vertical lines denote the
90% equal-tail probability intervals (ETPIs). Darker shaded regions of the bars provide
point estimates (posterior median) for the subset of the PVE attributed to genetic variants
with measurable effects (as opposed to infinitesimal effects). Numbers along the top of the
plot give point estimates (posterior median) for the number of causal variants affecting each
trait (i.e., total number of distinct QTL). See Table S2 for detailed quantitative summaries
of these parameter estimates, including measures of uncertainty in each parameter.
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Figure 3: Heatmap image showing the proportion of QTL estimated for each trait on each of
the eight M. truncatula chromosomes. The number of QTL per chromosome was estimated
as the sum of the posterior inclusions probabilities across all SNPs on each chromosome.
This was then divided by the total (sum) across chromosomes to obtain the proportions.
For most traits, the genetic signal (i.e., QTL) were spread uniformly across chromosomes
(also see Fig. S5), but for a few traits, especially plant height and survival to eclosion, QTL
were clustered on one or a few chromosomes (also see Fig. S6). Note that chromosome 3 is
slightly larger than the other chromosomes and thus harbors a slight excess of QTL for most
traits. See Fig. S7 for numbers of QTL on each chromosome.
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Figure 4: Heat map of (additive) genetic (upper triangle) and mean phenotype (lower trian-
gle) Pearson correlation coefficients for pairs of plant and caterpillar traits. Genetic correla-
tions were computed from genomic estimated breeding values (GEBVs) and mean phenotype
correlations were computed using the phenotypic means of each trait for each plant line. Ge-
netic and mean phenotype correlations were highly correlated with one another (r = 0.98).
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(b) Wgt. 16 days, r = 0.4
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Figure 5: Barplots showing the effect of the genetic component of plant traits on the genetic
component of caterpillar performance, specifically (a) weight at 8 days, (b) weight at 16
days, (c) survival to pupation, and (d) survival to eclosion. Bars denote Bayesian model-
averaged estimates (posterior means) of standardized regression coefficients for the effect
of the genomic estimated breeding values (GEBVs) for each plant trait on the GEBVs for
the caterpillar performance traits. Traits are sorted by the absolute magnitude of these
estimates. Vertical bars denote ± one standard deviation of the posterior (analogous to a
standard error). Colors distinguish between plant growth and defense traits (green) and IR
traits (pink). Pearson correlations between the caterpillar performance GEBVs and estimates
of these from 10-fold cross-validation are given in the panel headers (see the main text for
corresponding r2 values). See Fig. S10 for covariate posterior inclusion probabilities.
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Figure 6: Summary of random forest analysis for predicting caterpillar GEBVs from plant
trait GEBVs. Panels (a-c) show the importance of each covariate (plant trait GEBV), and
panels (d-f) depict the relationships between the two most important covariates and GEBVs
for caterpillar weight at 8 (d) or 16 (e) days and survival to eclosion (f). Plots in d-f were
completed with plotmo (Milborrow, 2018) and illustrate interactions between the top two
predictor variables. See Figs. S11 and S12 for additional interactions.
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Supplemental Methods and Results1

Planting and tending Medicago truncatula2

Our methods for planting and growing Medicago truncatula were developed based on https:3

//www.noble.org/globalassets/docs/medicago-handbook/growing-medicago-truncatula.4

pdp and https://www.noble.org/globalassets/docs/medicago-handbook/vernalization.5

pdf. As described in the main text, we first mechanically scarified the seeds with sandpa-6

per, and then placed five seeds from each plant line in 4in × 4in × 3.5in pots with a 4:17

mixture of Sunshine Mix #4 soil and Perlite. Seeds were placed on top of wet soil in a slight8

divot, and then covered with ∼10mm mixture of a dry soil and Perlite. We then misted the9

pots and covered them with humidity domes until germination. 10 pots were placed under10

each humidity dome, and the placement of pots (within and among domes amnd trays) was11

randomized within each replicate (i.e., block). Plants were thinned on May 26th (i.e., after12

germination was complete) to ensure that no pots had more than two plants. This was done13

to minimize competition among plants, while still providing sufficient plant biomass for our14

caterpillar rearing experiments. Ladybugs were introduced into the greenhouse on July 8th15

and 9th for biological control of aphids and other pests.16

BSLMMs fit to randomized data17

Past work has shown that BSLMMs provide a robust method for genome-wide association18

mapping and genomic prediction (e.g., Zhou et al., 2013; Gompert et al., 2017), even when19

modeling binary traits (Guan & Stephens, 2011). However, we were concerned that the20

models might perform poorly when presented with binary data where most individuals had21

either 0s or 1s, as is the case for our survival data (particularly survival to eclosion). To22

assess this possibility, and specifically to verify that our results would not be expected for23

random phenotypic data, we analyzed 12 pseudo-data sets. We obtained these 12 data sets24

by randomizing the trait data for each of the four caterpillar performance traits three times25

(generating 12 randomized data sets total). Thus, half of these data sets were based on the26

binary survival data, and half on more standard quantitative data. We then fit BSLMMs27

for each of the 12 pseudo-data sets using gemma (version 0.94.1; Zhou et al., 2013) with 1528

MCMC runs each with a 500,000 iteration burn-in followed by 2 million sampling steps with29

a thinning interval of 20. As with the actual data sets, we only considered SNPs with a30

minor allele frequency greater than 0.01. Results from these analyses are shown in Fig. S431

and presented in the main text of this manuscript.32
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Supplemental Tables and Figures33
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4

ID Population Country Source
HM001 SA22322 Syria INRA-Montpellier
HM003 ESP105-L Spain INRA-Montpellier
HM004 DZA045-6 Algeria INRA-Montpellier
HM008 DZA012-J Algeria INRA-Montpellier
HM009 GRC020-B Greece INRA-Montpellier
HM010 SA24714 Italy INRA-Montpellier
HM011 DZA327-7 Algeria INRA-Montpellier
HM012 SA26063 Morocco INRA-Montpellier
HM027 F83005-9 France INRA-Montpellier
HM032 F11005-E France INRA-Montpellier
HM035 F66017 France INRA-Montpellier
HM039 SA03116 Israel INRA-Montpellier
HM040 SA03780 Italy INRA-Montpellier
HM041 SA09048 Libya INRA-Montpellier
HM044 SA14161 Jordan INRA-Montpellier
HM046 SA27882 Morocco INRA-Montpellier
HM048 DZA016-F Algeria INRA-Montpellier
HM049 DZA058-5 Algeria INRA-Montpellier
HM055 DZA326 Algeria INRA-Montpellier
HM058 ESP163-E Spain INRA-Montpellier
HM060 F20015-10 France INRA-Montpellier
HM061 GRC033-B2 Greece INRA-Montpellier
HM065 PRT179-J Portugal INRA-Montpellier
HM070 SA08625 Morocco INRA-Montpellier
HM073 SA09710 Tunisia INRA-Montpellier
HM076 SA23859 Tunisia INRA-Montpellier
HM079 DZA045-4c Algeria INRA-Montpellier
HM080 DZA061-B3d Algeria INRA-Montpellier
HM081 DZA202-5 Algeria INRA-Montpellier
HM087 DZA323-1 Algeria INRA-Montpellier
HM091 ESP171-F Spain INRA-Montpellier
HM105 SA09137 Algeria INRA-Montpellier
HM106 SA09434 Tunisia INRA-Montpellier
HM108 SA09715 Tunisia INRA-Montpellier
HM111 SA27192 Italy INRA-Montpellier
HM115 Cyprus C Cyprus INRA-Montpellier
HM117 ESP031-A Spain INRA-Montpellier
HM120 ESP095-C Spain INRA-Montpellier
HM127 F20025-F France INRA-Montpellier
HM130 F20069-C France INRA-Montpellier
HM135 SA02748 Israel INRA-Montpellier
HM139 SA08623 Morocco INRA-Montpellier
HM143 SA10481 Tunisia INRA-Montpellier
HM146 SA21302 Libya INRA-Montpellier
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ID Population Country Source
HM150 SA22323 Syria INRA-Montpellier
HM163 DZA061-11 Algeria INRA-Montpellier
HM165 DZA231-1 Algeria INRA-Montpellier
HM177 ESP100-G Spain INRA-Montpellier
HM179 ESP162-A Spain INRA-Montpellier
HM180 ESP163-C Spain INRA-Montpellier
HM184 F20058-B France INRA-Montpellier
HM186 GRC024-H Greece INRA-Montpellier
HM194 SA09700 Tunisia INRA-Montpellier
HM195 SA09728 Tunisia INRA-Montpellier
HM196 SA09970 Tunisia INRA-Montpellier
HM199 SA19983 Cyprus INRA-Montpellier
HM202 SA25941 Italy INRA-Montpellier
HM205 SA28375 Portugal INRA-Montpellier
HM253 PI660496SSD France USDA-ARS
HM256 PI442895SSD Australia USDA-ARS
HM259 PI577599SSD Greece USDA-ARS
HM260 PI516934SSD Morocco USDA-ARS
HM262 PI564941SSD Morocco USDA-ARS
HM266 PI660450SSD Algeria USDA-ARS
HM267 PI660437SSD Algeria USDA-ARS
HM268 PI660438SSD Algeria USDA-ARS
HM269 PI660470SSD Unknown USDA-ARS
HM270 PI493297SSD Portugal USDA-ARS
HM271 PI384664SSD Morocco USDA-ARS
HM276 PI577627SSD Algeria USDA-ARS
HM277 PI577621SSD Algeria USDA-ARS
HM279 PI660460SSD Morocco USDA-ARS
HM287 PI577607SSD Lebanon USDA-ARS
HM288 PI577611SSD Germany USDA-ARS
HM289 PI577617SSD Greece USDA-ARS
HM290 PI577640SSD U.S. USDA-ARS
HM293 PI660411SSD Italy USDA-ARS
HM294 PI660433SSD Algeria USDA-ARS
HM295 PI660442SSD Algeria USDA-ARS
HM296 PI660444SSD Algeria USDA-ARS
HM297 PI660447SSD Algeria USDA-ARS
HM298 PI660448SSD Algeria USDA-ARS
HM299 PI660456SSD Morocco USDA-ARS
HM301 PI660494SSD Italy USDA-ARS
HM302 PI283662SSD Italy USDA-ARS
HM307 PI516927SSD Morocco USDA-ARS
HM308 PI516933SSD Morocco USDA-ARS
HM309 PI516939SSD Morocco USDA-ARS
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ID Population Country Source
HM310 PI535651SSD Tunisia USDA-ARS
HM311 PI535752SSD Morocco USDA-ARS
HM312 PI577609SSD Sweden USDA-ARS
HM314 PI660361SSD Greece USDA-ARS
HM315 PI660387SSD France USDA-ARS
HM316 PI660421SSD Australia USDA-ARS

Table S1: Hapmap IDs, population codes, coun-
tries of origin, and seed sources for the 94 Med-
icago truncatula lines used in this study. Ad-
ditional information about these inbred lines and
the M. truncatula Hapmap project is available from
http://www.medicagohapmap.org/home/view.
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Figure S1: Barplot displaying the percent variance among M. truncatula lines (i.e., geno-
types) for each infrared (IR) spectra trait. Here, the IR traits are the 2nd derivatives of the
transmittance spectra. We only considered IR traits with ≥ 10% of the variance among lines
for downstream analyses (denoted here with a horizontal dashed line).
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Table S2: Summary of trait genetic architectures for each plant and caterpillar trait based
on the posterior probability distributions from fitting Bayesian sparse linear mixed models.
Parameters shown are the proportion of the trait variation explained by M. truncatula ge-
netics (PVE), the proportion of the PVE attributable to loci with measurable effects (PGE),
and the number of loci with measurable effects (no. QTL). Posterior distributions are sum-
marized based on the median (Med.) and the lower bounds (5th %) and upper bounds (95th
%) of the 90% equal-tail probability intervals (ETPIs).

Trait PVE PGE no. QTL
Med. 5th % 95th % Med. 5th % 95th % Med. 5th % 95th %

Leaf length 0.43 0.36 0.50 0.31 0.00 0.91 35 1 257
Leaf width 0.48 0.41 0.54 0.43 0.01 0.94 28 1 204
Leaf area 0.48 0.41 0.55 0.43 0.01 0.92 18 1 174
Leaf shape 0.21 0.14 0.29 0.38 0.00 0.93 14 1 231
Leaf weight 0.40 0.33 0.47 0.24 0.00 0.88 24 0 177
SLA 0.16 0.09 0.23 0.83 0.30 0.99 4 1 14
Trichome den. 0.49 0.42 0.56 0.41 0.01 0.94 39 1 249
Leaf tough. 0.34 0.27 0.41 0.34 0.00 0.90 15 1 193
Plant height 0.57 0.51 0.63 0.76 0.62 0.93 5 2 14
IR 1104.64 0.13 0.07 0.20 0.62 0.07 0.95 4 1 133
IR 1085.1 0.14 0.08 0.21 0.63 0.21 0.96 3 1 20
IR 1072.19 0.10 0.04 0.17 0.30 0.00 0.91 10 0 129
IR 1039.74 0.15 0.08 0.23 0.41 0.00 0.93 23 1 200
IR 1024.17 0.11 0.05 0.18 0.39 0.00 0.93 10 0 147
IR 1010.93 0.17 0.10 0.24 0.35 0.00 0.92 29 0 247
IR 998.34 0.29 0.22 0.36 0.39 0.01 0.93 30 1 237
IR 985.1 0.14 0.09 0.20 0.80 0.52 0.98 2 1 6
IR 944.37 0.11 0.05 0.18 0.38 0.00 0.94 15 0 211
IR 937.09 0.23 0.17 0.31 0.32 0.00 0.91 25 0 212
IR 929.14 0.16 0.10 0.23 0.41 0.00 0.94 11 1 135
IR 918.54 0.12 0.06 0.18 0.65 0.15 0.96 3 1 123
IR 892.38 0.14 0.07 0.20 0.32 0.00 0.92 13 0 147
IR 855.96 0.14 0.07 0.20 0.28 0.00 0.90 18 0 194
IR 840.07 0.23 0.16 0.30 0.40 0.00 0.93 14 1 207
IR 830.13 0.35 0.28 0.42 0.81 0.28 0.98 7 2 267
IR 818.21 0.25 0.18 0.32 0.61 0.03 0.96 15 2 195
IR 793.71 0.15 0.09 0.22 0.37 0.00 0.93 24 1 243
IR 757.28 0.08 0.02 0.15 0.54 0.01 0.95 4 1 96
Wgt. 8 days 0.09 0.05 0.15 0.49 0.00 0.97 10 0 67
Wgt. 16 days 0.41 0.34 0.49 0.27 0.00 0.90 25 1 202
Surv. pupation 0.31 0.25 0.37 0.99 0.93 1.00 5 3 8
Surv. eclosion 0.15 0.09 0.22 0.97 0.84 1.00 2 1 6
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Figure S2: Correlogram giving pairwise phenotypic correlations for the 19 near-infrared
spectra 2nd derivative traits. Pearson correlations are shown in the upper triangle of the
correlation matrix, and depicted graphically in the lower triangle of the correlation matrix,
with darker shading denoting higher correlations. Wavelengths defining each trait are given
along the diagonal.
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(c) Survival to pupation
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(d) Survival to eclosion

Figure S3: Barplots depict caterpillar performance traits as a function of M. truncatula
inbred line. Colored bars denote the mean across replicates and vertical lines give the
standard errors.
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Figure S4: Graphical summary of permuted caterpillar (L. melissa) trait variation explained
by M. truncatula genetics. Bars denote the posterior median for the proportion of permuted
trait variation explained by plant genetics (PVE); vertical lines denote the 90% equal-tail
probability intervals (ETPIs). Darker shaded regions of the bars provide a point estimate
(posterior median) for the subset of the PVE that attributed to genetic variants with mea-
surable effects (PGE; as opposed to infinitesimal effects). Numbers along the top of the plot
give point estimates (posterior median) for the number of causal variants affecting each trait.
Results are based on three replicate, randomized data sets where caterpillar trait data for
each performance metric was permuted across M. truncatula lines (i.e., genotypes). Compare
to results based on the true (unpermuted) data shown in Fig. 2.
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Figure S5: Manhattan plots showing posterior inclusions probabilities (PIPs) from Bayesian
sparse linear mixed models relating (a) leaf toughness or (b) caterpillar weight at 16 days
with M. truncatula genetics. The y-axis has been scaled to a PIP of 0.05 to show variability in
PIPs among SNPs (no SNPs had PIPs higher than this for these traits). As with most traits
we analyzed, individual SNPs do not have high PIPs; in other words, these are polygenic
traits (compare to Fig. S6). Each point denotes a SNP, and SNPs are colored to show
boundaries between chromosomes.
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Figure S6: Manhattan plots showing posterior inclusions probabilities (PIPs) from Bayesian
sparse linear mixed models relating (a) plant height or (b) survival to eclosion with M. trun-
catula genetics. These traits stand out as having individual SNPs with high PIPs (compare
to Fig. S5). Each point denotes a SNP, and SNPs are colored to show boundaries between
chromosomes.
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Figure S7: Heat map showing the number of QTL estimated for each trait on each of the
eight M. truncatula chromosomes. The number of QTL per chromosome was estimated as
the sum of the posterior inclusions probabilities across all SNPs on each chromosome. For
most traits, the genetic signal (i.e., QTL) were spread uniformly across chromosomes (also
see Fig. S5), but for a few traits, especially plant height and survival to eclosion, QTL were
clustered on one or a few chromosomes (also see Fig. S6). Note that chromosome 3 is slightly
larger than the other chromosomes and thus harbors a slight excess of QTL for most traits.
The number of QTL per chromosome (and in general) also varies among traits. See Fig. 3
for the proportion of QTL for each trait on each chromosome.
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Figure S8: Barplots summarizing genetic correlations between plant traits and caterpillar
performance traits. Panels (a) and (b) give the mean signed (a) or absolute value (b) genetic
correlation between each plant trait and the four caterpillar performance traits. Panel (c)
gives the standard deviation in genetic correlations across the four performance traits.
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Figure S9: Heat map of genetic correlations for pairs of plant and caterpillar traits (this
matrix is symmetric). Genetic correlations were computed from genomic estimated breeding
values (GEBVs). Absolute values of correlations are shown. The dendrograms cluster traits
by their genetic correlations and were computed with the heatmap.2 function in R.
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(a) Wgt. 8 days, r = 0.42
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(b) Wgt. 16 days, r = 0.4
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(c) Surv. pupation, r = 0.12
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(d) Surv. eclosion, r = 0.25

Figure S10: Barplots showing the effect of the genetic component of plant traits on the
genetic component of caterpillar performance, specifically (a) weight at 8 days, (b) weight
at 16 days, (c) survival to pupation, and (d) survival to eclosion. Bars denote Bayesian
posterior inclusion probabilities (PIPs) for the effect of the genomic estimated breeding values
(GEBVs) for each plant trait on the GEBVs for the caterpillar performance traits. Traits
are sorted by their PIPs. Colors distinguish between plant growth/defense traits (green)
and IR traits (pink). Pearson correlations between the caterpillar performance GEBVs and
estimates of these from 10-fold cross-validation are given in the panel headers.
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Figure S11: Graphical summary of interactions between pairs of plant trait (GEBVs) that
best predict caterpillar 8-day weight GEBVs in the random forest regression analyses. Plots
were generated in plotmo (Milborrow, 2018), and show interactions and relationships for the
top traits.
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Figure S12: Graphical summary of interactions between pairs of plant trait (GEBVs) that
best predict caterpillar 16-day weight GEBVs in the random forest regression analyses. Plots
were generated in plotmo (Milborrow, 2018), and show interactions and relationships for the
top traits.
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