
P a g e  | 1 

 

Spontaneously emerging cortical representations of visual objects and features 

in human visual cortex 

DoHyun Kim1, Tomer Livne2, Nicholas V. Metcalf 3, Maurizio Corbetta3,4,5,6, Gordon L. 

Shulman3,4 

Departments of 1Biomedical Engineering, 3Neurology, 4Radiology, and 5Anatomy & 

Neurobiology at Washington University School of Medicine, St. Louis, MO 63110, USA  

Department of 2Neurobiology, Weizmann Institution of Science, Rehovot 76100, Israel. 

Department of 6Neuroscience and 7Padova Neuroscience Center (PNC), University of 

Padova, Padova, 35122, Italy 

 

Correspondence: Gordon L. Shulman 

Washington University Medical School, St. Louis, MO 63110, USA 

Department of Neurology, Campus Box 8225            

4525 Scott Avenue, Rm 2121     

St. Louis, MO. 63110 

Phone: (314) 362-7666 

Fax: (314) 362-6911 

E-mail: gshulman@wustl.edu 

 

 

 

Keywords: BOLD, fMRI, Spontaneous activity, multivariate pattern analysis (MVPA), 

Resting-state, functional connectivity. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 10, 2019. ; https://doi.org/10.1101/518712doi: bioRxiv preprint 

mailto:gshulman@wustl.edu
https://doi.org/10.1101/518712


P a g e  | 2 

 

Abstract  

 The function of spontaneous brain activity is unknown. Here we test the novel 

hypothesis that patterns of spontaneous activity reflect not only synaptic homeostasis or 

synchronization of neuronal populations, but code representational patterns evoked by 

stimuli and tasks. We compared in visual cortex the spatial patterns of spontaneous 

activity to the patterns evoked by ecological visual stimuli (faces, bodies, scenes) and 

low-level visual features (e.g. phase-scrambled faces).  We identified regions that 

preferred particular stimulus categories during localizer scans, measured multivariate 

spatial patterns for each category during task scans, and then spatially correlated these 

stimulus-evoked patterns to the pattern measured in each frame of resting-state scans. 

The mean correlation coefficient was essentially zero for all regions/stimulus categories, 

indicating that resting activity patterns were not biased toward particular stimulus 

categories.  However, the spread of correlation coefficients, i.e. both positive and 

negative, was significantly greater for a stimulus category over the ROIs preferring that 

category (e.g. the body category in body-preferring ROIs).  Therefore, the putative 

representational content of spontaneous activity was related to stimulus-evoked spatial 

activity patterns.  This content also governed the temporal correlation or functional 

connectivity of spatial patterns of spontaneous activity between individual regions. 

Resting spatial activity patterns related to an object category (e.g. bodies) fluctuated 

preferentially between ROIs preferring the same category. Moreover, activity patterns 

related to different categories fluctuated independently within their respective preferred 

ROIs. These results support the general proposal that spontaneous multi-voxel activity 

patterns are linked to stimulus-evoked patterns, consistent with a representational 

function for spontaneous activity.  
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Significance Statement  

 Neurons throughout the brain are spontaneously active. Although this activity 

was once thought to reflect only noise, the remarkable spatiotemporal regularities of 

spontaneous activity have motivated functional explanations.  Here we address the 

hypothesis that spontaneous activity codes the representational structure evoked by 

stimuli.  We show that the spatial pattern of stimulus-evoked activity across high-level 

areas of visual cortex that prefer visual categories such as bodies or scenes is related 

to the spatial pattern of spontaneous activity across the same areas. This spatial 

structure partly governs the spontaneous spatiotemporal interactions between regions 

known as functional connectivity, resulting in correlated fluctuations of spatial activity 

patterns that are specific to particular stimulus representations. These results support a 

representational framework for understanding spontaneous activity. 
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Introduction 

Spontaneous neural activity is observed throughout the brain, yet its function 

remains mysterious.  An important clue, however, comes from work that has uncovered 

striking similarities between spontaneous activity and the activity evoked by a task (1-

12). For example, the temporal correlation of spontaneous activity between brain 

regions (functional connectivity, FC) closely resembles the spatial topography of task-

evoked activity (13-18), links distributed brain regions into functional networks, and can 

be used to predict task activation (5, 6). 

The remarkable spatiotemporal regularities of spontaneous activity and 

widespread findings that abnormalities in inter-regional correlations of spontaneous 

activity in humans are associated with neurological and psychiatric disorders (e.g. (19, 

20)) have motivated a search for functional explanations. One hypothesis is that 

spontaneous activity has a role in the synaptic homeostasis of structural connections 

(21). Another idea is that fluctuations of spontaneous activity between regions constitute 

a spatiotemporal prior that facilitates the recruitment of task circuitries during behavior 

(22, 23). Both hypotheses have been mainly concerned with explaining the FC between 

regions. 

A novel hypothesis is that spontaneous activity and inter-regional FC has a role 

in representing behaviorally relevant information. Genetically determined circuitries 

generate spontaneous activity that is shaped in the course of development by 

experience through Hebbian statistical learning (1). Conversely, spatial and temporal 

patterns of spontaneous activity constrain task-evoked patterns As a result of this cyclic 

process, both spontaneous and task-evoked activity code similar representations of 

internal and external states (24, 25). The same process determines the spontaneous 

interactions between regions, which reflect connectivity patterns that are coded as 

synaptic efficacies in cortical networks (25, 26). Figure 1 illustrates schematically the 

representation hypothesis of spontaneous brain activity. 

The ‘representation hypothesis’ is supported by human and animal work. In 

animals, imaging of neural activity at a scale that extends across many cortical columns 
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has shown that the macro-scale spatial pattern of spontaneous neural activity within a 

sensory area in an anesthetized animal mirrors the pattern of activity evoked by 

stimulation of a specific visual feature (7, 8).  In humans, fMRI studies of early visual 

cortex have shown that FC between individual voxels respects the stimulus-evoked 

selectivity of voxels for polar angle, eccentricity, and low-level stimulus features (9-12). 

Recent work has also shown that voxel-wise resting FC in visual cortex is better 

approximated by the FC evoked by movies than by more artificial stimuli such as 

rotating checkerboards or static pictures of stimuli (26, 27).  

However, these studies have not considered the spatial patterns of activity within 

a region, or the temporal correlation of these spatial patterns across cortical regions. 

Yet to-date, the best evidence in humans that evoked activity in cortex codes for 

behaviorally relevant information such as stimulus categories, retrieved memories, or 

cognitive processes (e.g. attention) has come from multivariate spatial pattern analyses 

of fMRI signals in visual and associative cortex (28-35). Critical tests of the 

‘representation’ hypothesis of spontaneous interactions therefore include predictions 

about the spatial pattern of activity within a region and the interaction of that spatial 

pattern with the patterns from other regions.  

First, if spontaneous activity carries information about stimulus categories such 

as faces, bodies, or scenes, then spontaneous spatial activity patterns, i.e. patterns of 

activity observed at rest in the absence of any stimulation, in functionally specialized 

occipital regions such as the extrastriate body area (EBA, (36)) should be more related 

to the spatial patterns of activity evoked by the preferred stimulus category (e.g. bodies) 

than by other categories. This predicted relationship between spontaneous and task-

evoked spatial activity patterns putatively reflects the entrainment of task patterns into 

spontaneous activity in the course of development and experience. Second, if the FC 

between regions at least partly reflects correlated fluctuations of the spontaneous 

representational content of those regions, then the resting inter-regional temporal 

correlation of patterns of spatial activity should systematically depend not only on 

whether the regions prefer the same visual stimulus category, but also on whether the 

correlated spatial activity patterns code the preferred visual category.   
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Results 

The first goal of the experiment was to compare multi-vertex activity patterns 

measured in the resting state with fMRI to stimulus-evoked activity patterns reflecting a 

variety of stimulus categories, including those that are more or less ecological (e.g. 

photographs of faces, tools, and scenes vs. phase-scrambled images of those stimuli). 

This comparison was conducted in regions of higher-order visual cortex that activated 

more strongly to stimuli from a particular category (e.g. bodies) relative to other 

categories (e.g. chairs and tools), and was also conducted in early visual cortical 

regions (37).   To measure spontaneous activity, we ran a set of resting-state scans in 

which human observers fixated a central point on a blank screen. This activity was 

measured first to prevent possible learning effects from the other conditions (Fig. S1). 

 

Localization of regions with visual category preferences 

To identify category-specific visual regions, we ran a set of localizer scans in 

which multiple stimuli belonging to one of five stimulus categories (faces, bodies, 

scenes, man-made objects (chairs and tools), and phase-scrambled versions of these 

stimuli) were presented in a blocked design (Figs. S1 and S2). We used standard 

contrasts (as in (38)) to identify category-preferring regions. For instance, activity 

evoked by body stimuli was subtracted from activity evoked by man-made objects (tools 

and chairs) to localize body-preferring regions such as EBA (see Figs. S3A and S3B, 

and Table S1 for all category-preferring regions). Separate contrasts identified regions 

more active for whole-objects (face+scene+bodies+(tools+chairs)) than for low-level 

visual features (phase-scrambled objects). Phase-scrambled objects activated more 

strongly in regions of early visual cortex (V1-V3 based on the maps of (37)), while whole 

objects activated more strongly lateral and ventral occipital cortex, including some 

category-preferring regions (Figs. S4B and S4B, Table S1).  

Representational similarity analysis of task-evoked patterns 
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During task scans (Fig. S1), we randomly presented individual stimuli belonging 

to each category to extract the stimulus-evoked spatial pattern in a particular ROI for 

each stimulus and corresponding category. Two general linear models (GLMs) were 

conducted to estimate the stimulus-evoked patterns. One model used stimulus-specific 

β weights to estimate the spatial activity pattern evoked by each individual stimulus, and 

the other used category-specific β weights to estimate the stimulus-evoked spatial 

activity pattern associated with each category. 

To show that our stimuli and procedure generated spatial patterns that were 

consistent with the literature, we conducted a representational similarity analysis (RSA). 

Importantly, the representational similarity analysis was conducted using the task scans, 

which were completely independent of the localizer scans used to determine category-

preferring ROIs. Figure 2A shows the spatial similarity of multi-vertex patterns evoked 

by individual stimuli within several classical category-preferring ROIs. In left EBA the 

highest representational similarity was found between human bodies, and the next 

highest between pictures of mammals, which included their bodies. In the right fusiform 

face area (FFA (39)), faces and other animate stimuli (bodies, mammals) generated 

more similar patterns than stimuli from the inanimate categories chair, tool, and scene, 

with the most consistent representational similarity found between face exemplars (32, 

40). In the scene-preferring region right parahippocampal place area (PPA (41)), the 

activity patterns evoked by different scenes were well correlated, with low correlations 

between and within all other categories.  

We conducted a second representational similarity analysis using the pattern 

evoked by a stimulus category, as estimated by the category regressor in a GLM, rather 

than using the patterns evoked by individual stimuli. Instead of conducting this analysis 

separately within each localizer-defined ROI, we grouped each set of category-

preferential ROIs for an individual into a single joint-ROI. For instance, the body joint-

ROI included left and right EBA, left and right fusiform body area (FBA), and so forth, 

and the scene joint-ROI included constituent regions such as PPA, the transverse 

occipital sulcus (TOS), and retrosplenial cortex (RSC) (see Table S1 for a complete 

listing). The results of this analysis (Fig. 2B) were consistent with the literature. Both in 
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body and face joint-ROIs, the highest representational similarity was found between 

animate categories (face, bodies, mammals) as compared to other categories (32, 40). 

For instance, the similarity of body- and face-evoked spatial activity patterns in the face 

joint-ROI was ρ=0.73, while the similarity of face- and scene-evoked patterns in the face 

joint-ROI was ρ=0.41. Table S2 indicates the representational similarity between the 

task-evoked spatial patterns corresponding to the face, body, and scene categories 

within each joint-ROI. 

 

Task-rest pattern similarity analysis in category-preferring regions 

We next tested the first prediction of the representation hypothesis, namely that 

spatial patterns of spontaneous activity at rest in category-preferring regions should be 

more related to the task-evoked spatial pattern for preferred than non-preferred 

categories. For each category, the category-evoked spatial pattern was spatially 

correlated on each resting frame with the spatial activity pattern in a joint-ROI to 

determine a resting timeseries of correlation coefficients and a corresponding frequency 

distribution of coefficient values. The upper 90% value (U90 value) of the distribution 

was used as a summary measure of the relationship between the stimulus-evoked and 

resting spatial activity patterns.  

Figure 3A illustrates this procedure in a single subject using a region that prefers 

scenes (PPA) and the corresponding category-evoked spatial pattern for scenes. The 

scene-evoked pattern in PPA is a multi-vertex set of normalized activation values (Fig. 

3A, left). This evoked pattern is spatially correlated (ρ) with the spontaneous patterns of 

activity on each frame of the resting state scans. A timeseries of ρ-values is generated 

(Fig. 3A, middle), as well as a corresponding frequency distribution of ρ-values (Fig. 3A, 

the histogram in blue). A U90 value for the joint-ROI and category is then determined 

from the distribution. The insets in the middle panel show resting frames in which the 

spontaneous activity (real data) was not correlated (ρ=0.003, outlined in green), 

positively correlated (ρ=0.81, outlined in magenta), or negatively correlated (ρ=-0.74, 

outlined in cyan) with the scene-evoked spatial activity pattern. The same procedure 
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was used to generate a U90 value for each of eight categories (faces, bodies, mammals, 

chairs, tools, scenes, grid-scrambled, phase-scrambled) in each joint-ROI (body, face, 

scene). 

Figure 3B shows the distributions of correlation coefficients across all subjects 

for each preferred category within its corresponding joint ROI (green hue). For example, 

the leftmost graph shows the distribution using the body-evoked activity pattern within 

the body joint-ROI.  A second distribution, generated using the spatial activity pattern 

evoked by phase-scrambled objects within the same body joint-ROI, has been 

superimposed (black hue). Theoretically, the two distributions might differ in the mean, 

variance, skewness, or some other parameter. For each joint-ROI, the distribution of 

correlation coefficients for both the preferred stimulus category and the phase-

scrambled category were symmetric and centered on zero. However, the spread of the 

distribution was higher for the preferred category-evoked spatial activity pattern, 

meaning that larger correlation coefficients, both positive and negative, were observed 

for the preferred than phase-scrambled category (red arrows in Fig. 3B). Therefore, a 

larger U90 value indicates the presence of larger positive matches and negative 

matches of the resting spatial pattern to the category-evoked spatial pattern. Similar 

findings were obtained for face (middle panel) and scene activity patterns (rightmost 

panel) in the corresponding joint-ROIs, as compared to phase-scrambled patterns. 

The categorical specificity of spontaneous activity patterns in each joint-ROI was 

tested by comparing U90 values for different categories. Figure 3C shows mean U90 

values for a joint-ROI’s preferred category, defined from its localizer contrast (green 

symbol; e.g. body in the Body joint-ROI), “non-preferred” categories (red symbols), grid-

scrambled category (blue symbol) and phase-scrambled category (black symbol) 

averaged across subjects. We first conducted an overall repeated measures analysis of 

variance ANOVA on U90 values with joint-ROI (body, face, and scene) and Category (8 

levels) as factors.  The main effects of joint-ROI (F(2, 30)=50.4, p<.0001) and Category 

(F(7, 105)=3.46, p=.002), and the interaction of joint-ROI by Category (F(14, 210)=4.37, 

p<.0001) were all significant. The interaction indicated that the variation of U90 values 

across categories depended on the joint-ROI.  Separate repeated measures ANOVAs 
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for each joint-ROI with Category (8 levels) as a factor indicated a highly significant main 

effect of Category in each joint-ROI (Body: F(7,105)=7.25, p<.0001; Face: 

F(7,105)=3.25, p=.004; Scene: F(7,105)=3.93, p=.0008). Therefore, for each joint-ROI, 

the spread of stimulus-evoked-to-rest spatial similarity values significantly depended on 

the category of the stimulus-evoked spatial pattern. 

To compare the U90 value for the joint-ROI’s preferred category vs. each other 

category, we conducted paired t-tests with a Holm-Bonferroni correction for multiple 

comparisons. Significant, multiple-corrected comparisons are indicated in the figure by 

plus signs.  In the Body joint-ROI, the U90 value for bodies was significantly larger than 

for chairs, scenes, and phase-scrambled stimuli. In the Face joint-ROI, the U90 value 

for faces was significantly larger than for scenes. Conversely, in the Scene joint-ROI, 

the U90 value for scenes was significantly larger than all other categories. 

Therefore, the ‘animate’ Body and Face joint-ROIs and the ‘inanimate’ Scene 

joint-ROI showed a significant double dissociation involving the corresponding 

categories, with U90 values in the Face and Body joint-ROIs significantly greater for the 

face and body categories, respectively, than for scene categories, and the U90 value in 

the inanimate Scene joint-ROI significantly greater for scenes than for either faces or 

bodies. The U90 values for face and body categories within each joint ROI were similar, 

reflecting the fact that both are animate categories and have greater cross-category 

representational similarity with each other than with scenes (Table S2).  These results 

provide some support for the first prediction of the representation hypothesis, namely 

that spontaneous activity patterns in category-preferring regions are more related to the 

patterns for some categories than for others. However, ‘more related’ means a greater 

spread of extreme similarity values, both positive and negative, rather than a shift in the 

mean to more positive similarity values. 

 

Task-rest pattern similarity analysis in regions preferring whole vs. phase-

scrambled objects 
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The above results showed that the spatial pattern of spontaneous activity in 

regions of high-level visual cortex that respond preferentially to ecological visual 

categories was more related to the spatial pattern evoked by one category than another 

(e.g. bodies vs. scenes).  We next asked whether a similar result would be found in 

regions that show stimulus preferences for low-level features as compared to more 

ecological categories such as face or body. This result would support a general 

conclusion that the stimulus preferences of a region largely drive the spatial pattern of 

spontaneous activity. We used the localizer scans to identify ROIs in which stimulus-

evoked responses were stronger or weaker for phase-scrambled objects than for the 

union of the whole-object categories (face, body, mammal, chair, tool, and scene). The 

resulting ‘Phase-scrambled objects’ joint-ROI was located in medial posterior visual 

regions in early visual cortex (V1-V3 according to the Wang template (37) while the 

‘Whole-objects’ joint-ROI was located in lateral and ventral visual cortex, in association 

visual cortex (Fig. S4B).  

A representational similarity analysis in the Phase-scrambled objects joint-ROI 

showed high similarity between phase-scrambled, grid-scrambled, and scene stimuli, 

while the Whole-objects joint-ROI showed low similarity between those categories (Fig 

4A).  Figure 4B shows the results of a task-rest pattern similarity analysis based on 

U90 values in each joint-ROI, which support the general conclusion that task-rest 

pattern similarities are not necessarily stronger for more ecological stimuli. Instead, 

task-rest correspondences reflect stimulus preferences, which are different in high- and 

low-level visual cortical regions (Fig. 4B). An ANOVA with ROI-type (Whole-objects, 

Phase-scrambled objects) and Stimulus-type (whole-objects, grid-scrambled, phase-

scrambled objects) as factors indicated that the critical interaction of ROI-type by 

Category (F(2,30)=14.2, p<.0001) was significant.  A significant interaction was also 

found for a 2 x 2 sub-ANOVA restricted to the categories whole objects and phase-

scrambled objects (F(1,15)=23.5, p<.0001). 

Within each joint-ROI, we compared the U90 value for the preferred category vs. 

the two “non-preferred” categories using paired t-tests with a Holm-Bonferroni correction 

for the four comparisons over the two joint-ROIs. In the Phase-scrambled joint-ROI, U90 
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values were significantly higher for both scrambled stimulus categories than for the 

whole-objects category, and in the Whole-objects joint-ROI, the U90 value for the 

whole-object category was significantly greater than for the phase-scrambled object 

category.  The grid-scrambled pattern, which contains both high-level and low-level 

features (e.g. a high density of contour terminators), showed U90 values both in early 

visual and higher-order visual cortex that were not distinguishable from the regions’ 

preferred stimulus category. 

These results demonstrate a second double dissociation relating the dependence 

of U90 values on both the category-evoked spatial activity pattern and the joint-ROI in 

which similarity of the evoked pattern to spontaneous patterns was evaluated. They are 

consistent with the interpretation that spontaneous activity patterns in visual cortex are 

strongly affected by the stimulus preferences of the region, irrespective of whether 

those preferences favor more or less ecological categories. 

  

U90 values correlate with activation strength 

Another prediction of the representation hypothesis is that task-evoked patterns 

will entrain spontaneous activity patterns in the course of development and experience. 

Therefore, one expects a positive relationship between the magnitude of the stimulus 

specific response and the strength of the relationship between category specific 

patterns and spontaneous activity patterns (U90 values). Figure 5 shows the correlation 

across category between task activation magnitude and U90 values of task-rest pattern 

similarity for each joint-ROI. Figure S5 shows the mean activation strengths for different 

categories during the Task scans. The magnitude of the stimulus-evoked response in a 

joint-ROI was generally strongest for the preferred category (Fig. S5). Since joint-ROIs 

were defined from localizer scans that were independent of the task scans, this result 

indicates the stability of the ROI assignments. 

There was a positive and significant correlation between task activation values 

and U90 values in each joint-ROI (Fig. 5). The greater the activation strength of a 

category, the greater the U90 value, a relationship that held for joint-ROIs irrespective of 
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their stimulus preferences. This relationship also was significant when the correlation 

coefficient between activation strength and U90 value was computed separately for 

each participant, and a group 1-sample t-test was conducted. Correlation coefficients 

were highly significant in all joint-ROIs (Body, p=.0004, Face, p=.0047, Scene, p=.0014; 

Whole-object, p=.0002; Phase-scrambled, p<.0001). 

 

Pattern-based functional connectivity at rest 

FC analyses typically evaluate the correlation between the timeseries of activity 

for single voxels or between voxel-averaged timeseries. However, recent task-based 

studies have also measured the inter-regional temporal correlation of spatial activity 

patterns (42-44). We used a similar approach to determine whether resting fluctuations 

of the multi-vertex spatial pattern for a category in each constituent ROI of a joint-ROI 

fluctuated synchronously or independently across the constituent ROIs. For instance, 

we determined whether spatial patterns for scenes in regions such as PPA, TOS, and 

RSC, which were previously combined to form the Scene joint-ROI (Table S1), 

fluctuated synchronously at rest. Synchronous fluctuations would indicate temporal 

variations of an inter-regional brain state specific for a particular category.  We 

computed the temporal correlation of spatial activity patterns across the constituent 

ROIs of the Body and Scene joint-ROIs. The Face joint-ROI was not included in these 

analyses, since that ROI only included two regions and one of them overlapped with a 

constituent body ROI. In contrast, the Scene and Body joint-ROIs contained multiple 

ROIs that were all disjoint.  

For each body- and scene-preferring constituent ROI, separate body and scene 

“pattern-to-rest” correlation timeseries were computed based, respectively, on the 

spatial correlation of the activity pattern on each resting frame with the body-evoked 

activity pattern and the scene-evoked activity pattern. This procedure is illustrated in 

Figure S6 using data from segments of resting scans in one subject. Pattern-to-rest-

correlation timeseries are shown for two scene-preferring regions (right PPA and right 

TOS) and two body-preferring regions (right EBA and right FBA). Each pattern-to-rest-
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correlation timeseries shows the similarity values over time of resting spatial patterns to 

a category-evoked pattern in a single ROI.  For example, the left lower dark blue 

timeseries in Figure S6 shows the similarity of the resting pattern on each frame to the 

body-evoked pattern in the body constituent region EBA. The left lower graph shows 

that the pattern-to-rest correlation timeseries for body-preferring regions (right EBA and 

right FBA) that were computed using body-evoked activity patterns are positively 

correlated. In contrast, the left upper graph shows that the pattern-to-rest correlation 

timeseries for scene-preferring regions (right PPA and right TOS) that were computed 

using body-evoked activity patterns are uncorrelated. Conversely, when pattern-to-rest 

correlation timeseries were computed using the scene-evoked activity pattern, the 

opposite results are found. Now the pattern-to-rest correlation timeseries for scene-

preferring regions show positively correlated fluctuations (right upper graph), while the 

timeseries for body-preferring regions are weakly correlated (right lower graph). 

The data from all resting scans of all subjects were analyzed and the results are 

summarized in Figures 6A and 6B. Figure 6A shows three resting ‘pattern-based FC’ 

matrices. A pattern-based ‘body’ FC matrix (leftmost matrix) was constructed by 

computing all pairwise inter-regional correlations between the pattern-to-rest correlation 

timeseries computed from body-evoked spatial patterns. Similarly, a pattern-based 

‘scene’ FC matrix (middle matrix) was computed using the pattern-to-rest correlation 

timeseries computed using scene-evoked patterns. Qualitatively, body-preferring ROIs 

showed stronger positively correlated spontaneous fluctuations for body-evoked than 

scene-evoked patterns, and scene-preferring ROIs showed stronger positively 

correlated spontaneous fluctuations for scene-evoked than body-evoked patterns.  

The graphs in Figure 6B summarize the pattern-based Body and Scene FC 

matrices by averaging the inter-regional correlations for body-preferring regions (the 

lower left block of each matrix in Fig. 6A outlined in blue) and scene-preferring regions 

(the upper right block of each matrix outlined in red). The left and middle graphs show 

respectively the results when pattern-to-rest timeseries were computed using body-

evoked and scene-evoked spatial patterns. A 2-factor ANOVA on the mean pairwise 

pattern-based FC values with ROI-type (body, scene) and Category-evoked-pattern 
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(body, scene) as factors yielded a main effect of ROI-type (F(1,15)=5.41, p=.035), 

reflecting the larger FC values in body-preferring regions and, critically, a significant 

interaction of ROI-type by Category-evoked pattern (F(1,15)=8.96, p=.009).  This effect 

was further supported by paired t-tests of specific contrasts. When pattern-to-rest 

timeseries were computed using a body-evoked spatial pattern, inter-regional 

correlations were significantly higher in body- than scene-preferring ROIs. Conversely, 

when pattern-to-rest timeseries were computed using a scene-evoked spatial pattern, 

inter-regional correlations were significantly higher in scene- than body-preferring ROIs.  

Therefore, spontaneous fluctuations of spatial patterns of activity were more 

strongly correlated for the spatial patterns corresponding to the regions’ more preferred 

stimulus. This result indicates that resting-state FC is modulated by the representational 

content of spontaneous activity. In addition, a paired t-test indicated that in the pattern-

based Body FC matrix, the average FC was less in the scene-body block than in the 

body-body block of the matrix (p<.001; Fig. 6A, leftmost matrix, orange vs blue outlined 

blocks). Similarly, in the pattern-based Scene FC matrix, the average FC was less in the 

scene-body block than in the scene-scene block of the matrix (p=.035; Fig. 6A, middle 

matrix, gray vs red outlined blocks). Therefore, pattern-based FC was greater between 

regions preferring the same category than between regions preferring different 

categories.  

A related question was whether putative body and scene representations 

fluctuated independently at rest. The rightmost matrix in Figure 6A shows a Preferred-

Category pattern-based FC matrix in which the pattern-to-rest correlation timeseries in 

body-preferring regions were computed using body-evoked spatial patterns and the 

pattern-to-rest correlation timeseries in scene-preferring regions were computed using 

scene-evoked spatial patterns. Accordingly, the lower left and upper right blocks of the 

Preferred-Category matrix match, respectively, the lower left block of the Body pattern-

based FC matrix and the upper right block of the Scene pattern-based FC matrix.  

The ‘scene-body’ block of the Preferred Category matrix outlined in green is of 

primary interest. The correlation between scene and body regions was uniformly low 

under conditions in which the inter-regional correlation involved timeseries from scene 
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and body regions that respectively indicated the fluctuations of scene- and body-evoked 

spatial patterns (see rightmost graph, Fig. 6B, for average correlation values for scene-

body blocks. Therefore, periods in which a body-evoked pattern was maximally present 

in body-preferring ROIs were largely independent of periods in which a scene-evoked 

pattern was maximally present in scene-preferring ROIs. Paired t-tests indicated that 

correlations in scene-body blocks from the Preferred-Category matrix were significantly 

lower than the correlations from scene-scene (p=.009) and body-body region blocks (p 

< .0001).  

Finally, a standard FC matrix (Fig. S7, left panel) was constructed by computing 

vertex-averaged resting timeseries for each region, followed by pairwise correlation of 

the regional timeseries. As in previous work (45-48), vertex-averaged FC was category 

specific, with stronger FC between body-preferring regions and between scene-

preferring regions, than between body- and scene-preferring regions. Pattern-based FC 

matrices were moderately-to-strongly correlated with the vertex-averaged FC matrix. 

The largest correlation was with the preferred-category matrix rather than the matrices 

generated using a single category (body-evoked pattern, r=0.57; scene-evoked pattern, 

r=0.48; preferred-category, r=0.65). 

 

Category selectivity of U90 values in constituent ROIs 

 Supplementary Figure 8 shows the category selectivity of U90 values for the 

individual constituent ROIs within a joint-ROI. For each joint-ROI, we conducted a two-

factor ANOVA with Category and Constituent-ROI as factors and U90 value as the 

dependent measure.  A main effect of Category with no interaction between Category 

and Constituent-ROI was observed for both the body joint-ROI (F(7,63)=2.45, p=.028) 

and the scene joint-ROI (F(7,63)=2.41, p=.03), indicating a consistent profile of U90 

values over categories across the constituent ROIs of each joint-ROI.  Nevertheless, 

variability in the category profiles over the constituent ROIs is evident. Since there were 

many fewer vertices in each constituent ROI than in the associated joint-ROI, some 

variability in category selectivity over constituent ROIs is expected due to noise. 
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Additionally, we argue in the discussion that the category selectivity of U90 values for a 

joint-ROI is aided by the category selectivity of the pattern-based FC between its 

constituent ROIs. 

Discussion 

The goal of the experiment was to test representational theories of spontaneous 

activity by determining whether in regions of human visual cortex there is a link between 

spatial patterns of spontaneous activity, measured using resting-state fMRI, and the 

spatial patterns evoked by more or less ecological visual stimuli such as bodies or 

phase-scrambled bodies.   

We obtained two main results. First, resting spatial activity patterns in regions of 

visual cortex were more closely related to the activity patterns evoked by the regions’ 

more preferred stimulus categories. This relationship did not reflect a greater average 

similarity of resting patterns to the patterns for more preferred categories, but instead a 

greater spread of resting similarity values for more preferred categories, i.e. both larger 

positive and larger negative similarity values. This result was demonstrated statistically 

by two significant double dissociations. Body- and face-preferring regions showed larger 

U90 values, indexing the spread of similarity values, for faces and bodies than for 

scenes, while scene-preferring regions showed larger U90 values for scenes than for 

faces and bodies (Fig. 3). Regions preferring whole objects vs. phase-scrambled 

objects showed a similar significant double dissociation (Fig. 4). This result was further 

strengthened by the positive correlation between U90 values and stimulus specific 

activation magnitudes. The more strongly a stimulus activated a region, the higher the 

spread of spatial similarity values between the stimulus-evoked spatial pattern and the 

spontaneous activity pattern (Fig.5). The latter result is consistent with the notion that 

task-evoked patterns entrain spontaneous activity patterns in the course of development 

and experience, and therefore serve as a prior for task activation (Fig. 1)  

The second main result was that spatial activity patterns coding for a category 

fluctuated more synchronously at rest between cortical regions preferring that category. 

For example, in the resting-state the spatial pattern evoked by bodies was more 
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positively correlated between body-preferring ROIs than between scene-preferring ROIs. 

The spatial pattern coding for scenes showed the opposite result (Fig. 6). Finally, the 

spatial patterns coding for scenes and bodies fluctuated largely independently within the 

preferred regions for those categories.   

To our knowledge, this is the first demonstration that spatial patterns of 

spontaneous activity within regions of human cortex, and fluctuations of those patterns 

between regions, code for stimulus and category specific information. In this respect, 

our work is more related to seminal work conducted in cats (7) and monkeys (8, 49) 

than to previous work in humans, which has focused on measurements of voxelwise 

functional connectivity (26, 27, 45, 46, 50-52). 

 

Spontaneous activity patterns for objects and features in visual cortex 

 Spontaneous activity patterns were not more similar on average to preferred 

stimulus evoked-patterns, but showed the greatest variation with respect to those 

patterns (Fig. 3). Interestingly, animal studies thus far have found the same result with 

some caveats.  For instance, Kenet et al. (7) recorded voltage sensitive dye imaging in 

anesthetized cat visual cortex and found a significant spatial correlation (r=0.6) between 

spontaneous activity patterns and orientation selective stimulus evoked patterns. 

Positive and negative values of the correlation distribution were higher (as in our 

experiment), rather than the mean, as compared to a control distribution obtained by 

flipping the orientation selective map.  This finding was replicated recently in 

anesthetized monkey visual cortex (8). In auditory monkey cortex, spontaneous spatial 

covariations of gamma activity recorded with cortical grids from auditory cortex 

resemble tonotopic maps derived with auditory stimuli. Also in this case, the correlation 

involves both positive and negative high correlation values as compared to a control 

distribution obtained by shuffling the tonotopic map (49). 

In our experiment, the control distribution was not spatially shuffled because this 

control might not preserve the local structure of the vascular architecture that is the 

anatomical basis of the measured BOLD signal. Therefore, we instead compared task-
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rest correlation distributions for two different stimuli (e.g. bodies vs. scenes). Although 

the animal and human experiments differed in many ways, in all experiments the 

reported match between spontaneous and task-evoked activity was not a shift in the 

mean, but rather a higher frequency of more extreme matches/mismatches of the 

spatial patterns (e.g. Compare our Fig.6A to (8) Figs.1-2). 

 An issue for future work is whether spontaneous activity patterns more resemble 

the average pattern evoked by a category or the patterns evoked by individual 

exemplars from the category. In rat hippocampus, spontaneous replay in anesthetized 

and awake animals of sequences of activity during navigation, a phenomenon 

qualitatively similar to what reported here (e.g. (53); see also (54)), seem to reflect 

individual experiences rather than averages. Hippocampal replay sequences have been 

mainly conceptualized as reflecting a mechanism for consolidating information in long-

term memory.  

We interpret our findings on spontaneous activity as constituting a prior for task 

processing, e.g. object recognition. An important rationale for postulating a 

representational function of resting activity is that limits on the information processing 

capacity of the brain may be mitigated by the incorporation of useful prior information.  

Appropriate priors will generally depend on context and therefore will change 

dynamically. The perceptual priors appropriate to walking alone through a forest vs. 

eating a family meal at the dinner table are quite different.  These putative dynamic 

changes are thought to reflect generative models of the expected input via top-down 

pathways (55). 

Resting scans are usually conducted under conditions in which subjects lie in a 

dark tube while fixating a cross in an otherwise blank display, which would not seem a 

fertile context for a perceptual prior. However, some aspects of an appropriate prior may 

not heavily depend on context.  For example, recent work in monkey inferotemporal 

cortex indicates that individual faces can be coded by face cell assemblies whose firing 

rate is distributed along a small number of orthogonal dimensions (56). Therefore one 

possibility is that the spontaneous activity patterns found in the present work reflect 

fluctuations along canonical low dimensional configurations.  
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Synchronous fluctuations of representational content 

The results for pattern-based FC show that the putative representational content 

of spontaneous activity, as indexed by multivertex spatial patterns, fluctuates more 

synchronously for the preferred category of ROIs that are linked by a common stimulus 

preference. Pattern-based FC between body-preferring regions was significantly larger 

when computed using a body- than scene-evoked pattern, while pattern-based FC 

between scene-preferring regions was significantly larger when computed using a 

scene-evoked than body-evoked activity pattern (Fig. 6).  

An interesting, novel result from the pattern-based FC analysis was that at rest 

different putative representational states, as indexed by spatial activity patterns, 

fluctuated largely independently.  Coherent fluctuations associated with body-evoked 

patterns in body-preferring ROIs occurred independently of fluctuations associated with 

scene-evoked patterns in scene-preferring ROIs, as shown by the very low correlations 

between scene and body regions in the analysis of the Preferred Category FC matrix 

(Fig. 6). Therefore, resting activity across category-selective regions of visual cortex 

cannot be described in terms of a single representational state. To our knowledge, the 

current results on resting pattern-based FC have not previously been reported and 

provide new constraints on theories of the function of FC.  

Although the putative representational content of resting FC is often unspecified, 

an important exception comes from studies of early visual cortex, which have shown 

that resting FC respects the tuning of single voxels for polar angle, eccentricity, and low-

level stimulus features (9-12). Most task-based studies of representation in higher-order 

visual and associative regions, however, have not involved measurements of voxelwise 

tuning functions but instead have identified task-evoked representations through 

measurements of regional spatial patterns. Therefore, pattern-based FC (42-44) could 

provide insights into the putative representational FC of spontaneous activity in high-

level brain regions that are complementary to those provided by approaches based on 

the tuning properties of single voxels. 
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 We suggest two additional ways in which pattern-based FC might inform studies 

of resting-state organization. First, pattern-based FC may help fractionate existing 

resting-state networks and identify the functional factors associated with that 

fractionation. For example, pattern-based resting FC between regions that prefer a 

particular category might depend on selectivity for features within the category, such as 

gender for face-preferring regions.  

Second, pattern-based FC might uncover resting FC organizations that differ 

substantially from the normative whole-brain structure that has been described over the 

past decade (6, 15, 16, 57), although this structure does vary over individuals (58-60). 

In the current work, pattern-based FC was measured within category-preferring regions.  

Because regions that co-activate tend to show greater resting FC (61), and because 

previous studies have shown that regions preferring the same category show 

preferential FC (45, 46, 50-52), novel FC organizations were not expected. Accordingly, 

pattern-based FC matrices were moderately-to-strongly correlated with inter-regional 

vertex-averaged FC matrices.  However, divergent FC organizations may be more likely 

in studies that use task-evoked activity patterns based on frequently occurring 

processes that combine different domains: for example, activity patterns based on 

integration of voice and face information during person-to-person interactions, 

visuomotor coordination during object manipulation, or biologically significant stimulus-

reward or response-reward contingencies. Cross-domain pattern-based FC that cuts 

across standard networks might reflect synergies (62-64) or routines for implementing 

frequently occurring processes. 

 

Pattern-based FC and correspondence of resting and evoked activity patterns 

We suggest that the synchronous fluctuations of representational content 

evidenced by pattern-based FC (Fig. 6) is partly responsible for the correspondence of 

stimulus-evoked activity patterns and spontaneous activity patterns that was observed 

in joint-ROIs (Figs. 3 and 4). In the spatial analysis, the largest positive or negative 

similarity values for a resting frame in a joint-ROI will occur when the similarity values in 
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the constituent ROIs on that frame are simultaneously large and have the same sign. 

Otherwise, across constituent ROIs the similarity values will tend to cancel or average 

to a lower value.  Therefore, a larger spread of similarity values in a joint-ROI is more 

likely to be observed if the similarity values in the constituent ROIs fluctuate in a 

temporally correlated or coherent fashion.  

This mechanism explains the pattern of U90 values across the different joint-

ROIs shown in Figure 3C. U90 values averaged across categories were highest in the 

face joint-ROI, intermediate for the body joint-ROI, and lowest for the scene joint-ROI, 

i.e. were inversely related to the number of constituent regions in each joint-ROI (2 for 

face, 5 for body, and 9 for scenes). The greater the number of constituent ROIs in a 

joint-ROI, the more the overall U90 value for the joint-ROI was decreased by sub-

optimal coherence. As noted in the results section, in a two-factor ANOVA on U90 

values with joint-ROI (body, face, scene) and Category (8 levels) as factors, the main 

effect of joint-ROI was significant. We additionally computed a single U90 value for each 

joint-ROI for each participant by averaging over categories.  Paired t-tests on these 

averaged U90 values, with a Bonferroni-Holm correction for multiple comparisons (3 

tests), indicated significantly larger U90 values within the Face than Body joint-ROIs 

(p<.0001), Face than Scene joint-ROIs (p<.0001), and Body than Scene joint-ROIs 

(p=.01).  

In addition, since the spatial activity patterns for a non-preferred category do not 

fluctuate as coherently across constituent ROIs as those for a preferred category (Fig. 

6), the resulting similarity values across frames in the joint-ROI for that non-preferred 

category will show less variation from zero, resulting in smaller U90 values. Therefore, 

within a joint-ROI, differences in U90 values between categories should be more 

reliable for joint-ROIs comprised of more constituent ROIs.  This suggestion is also 

consistent with the results in Figure 3C, with the fewest significant differences found for 

the face joint-ROI and the most for the scene joint-ROI. Although other factors besides 

the number of constituent ROIs are clearly important in determining the category 

selectivity of U90 values in a joint-ROI, the larger point is that the temporal coherence of 
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preferred categories increases the incidence of extreme spatial matches and 

mismatches between evoked and spontaneous patterns in a category specific fashion.  

 

Low- and high-level visual correspondences at rest 

The spread of spatial similarity values between resting activity patterns and 

stimulus-evoked patterns was determined by how well a stimulus activated the region, 

irrespective of whether the stimulus was more or less ecological.  In many higher-level 

visual ROIs, stimulus preferences favored a particular whole-stimulus category (e.g. 

bodies) over another whole-stimulus category (e.g. scenes) or over the phase-

scrambled category. Conversely, in early visual cortex, preferences favored stimuli that 

weighted low-level features, resulting in larger U90 values for scrambled than whole-

stimulus categories.  The larger U90 values for scrambled stimuli in early visual cortex 

do not contradict an overall framework in which resting activity patterns reflect the 

statistical distribution of features in the environment. Rather, this result suggests that 

resting activity patterns in regions that primarily extract low-level visual features are 

relatively independent of the patterns associated with higher-order features/statistics 

that define categories of more ecological stimuli. 

Grid-scrambled objects showed greater U90 values than whole-objects in the 

Phase-scrambled joint-ROI and equivalent U90 values to whole-objects in the Whole-

object joint-ROI (Fig. 4).  This latter equivalence may have reflected the fact that the 

union of different category-preferential regions in the Whole-object joint-ROI eliminated 

or reduced the importance of features selective for a particular ecological category. 

Instead, the U90 value reflected features common to different ecological categories that 

were also present in grid-scrambled objects.  

Therefore, the distribution of spatial matches between resting and evoked activity 

patterns can be driven by a variety of stimulus features that reflect local (e.g. contour-

related features) or global (e.g. faces) stimulus characteristics depending on the tested 

regions. 
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Limitations 

Stimuli were not controlled for low-level variables that might have differentially activated 

visual regions.  As noted, grid-scrambled stimuli may have included contour terminators 

to a greater extent than many whole-object stimuli, increasing the activation of early 

visual cortex.  However, this factor was not explicitly controlled or manipulated. Also, 

stimuli were presented in a non-naturalistic context.  Wilf et al. (27) have shown that in 

early visual cortex, resting FC patterns are better accounted for by movies than by 

standard retinotopic stimuli, while Strappini et al. (26) have shown that in higher-level 

visual cortex, resting FC patterns are better accounted for by movies than by static 

pictures of stimuli similar to those used here. Therefore, the present results may have 

underestimated the spatial correspondences between resting and evoked activity 

patterns. 

Materials and Methods 

More detailed information concerning Participants, Stimuli, Scanning Procedure, 

Imaging Parameters, fMRI pre-processing, and Definition of ROIs Is included in SI: 

Materials and Methods.  

Participants. The study included 16 healthy young adult volunteers and was 

approved by the Institutional Review Board (IRB) of Washington University in St. Louis 

School of Medicine. 

Stimuli. Images from seven ‘whole-object’ categories (human faces, human 

bodies, mammals, chairs, tools, scenes, and words), phase-scrambled images, and 

grid-scrambled images were presented on task scans. Word stimuli were included for 

exploratory analyses and results are not considered here. Phase- and grid-scrambled 

stimuli categories were constructed from the whole-object stimuli excluding words. 

Phase-scrambled stimuli preserved the spatial frequency amplitude spectrum of the 

whole-objects stimuli, and grid-scrambled stimuli included basic visual properties of the 

whole-objects images such as line segments and connectors. Localizer scans included 
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human faces, human bodies, objects (chairs and tools), scenes, words, false font 

character strings and phase-scrambled images. The categories for localizer and task 

scans differed slightly since the former was only used to define regions of interest 

(ROIs). 

Scanning Procedure. Subjects participated in two sessions on separate days 

(Fig. S1). Session one included 3 resting scans, 2 localizer scans, and 8 task scans. 

Session two include 2 resting scans, 2 localizer scans, 8 task scans, and 2 post-task 

resting scans. During resting scans participants maintained fixation on a centrally 

presented cross. Localizer scans contained blocks consisting of 20 presentations (300 

ms duration, 700 ms interstimulus interval, ISI) of exemplars from a single category. In 

the task scans, exemplars from all categories were presented in random order 

(duration=300 ms, jittered ISI of 3.7 to 8.7 sec). In both localizer and task scans, 

subjects performed a minimal cognitively engaging task by pressing a button if the 

presented image changed its size or position.  

Imaging Parameters and fMRI pre-processing. Structural and fMRI images 

were obtained from a Siemens 3T Prisma MRI scanner. FMRI scans involved a gradient 

echo-planar sequence sensitive to BOLD contrast (TE = 26.6 ms, flip angle = 58°, 2.4 x 

2.4 x 2.4 mm voxels, 48 contiguous slices, TR = 1.0 s, and multiband factor of 4). FMRI 

data were pre-processed as described in (65). 

Defining ROIs from localizer activation contrasts.  ROIs were defined for 

each subject from univariate vertex-wise statistical contrasts of the localizer conditions. 

One set of contrasts isolated ROIs that preferred a particular category (face, body, or 

scene) relative to the object category (chairs + tools). Vertices from all ROIs that 

preferred a particular category (e.g. bodies) were grouped into a single ‘joint-ROI’, 

excluding all vertices located in early visual areas (V1 to V3) (26), as estimated from 

(37). A second set of contrasts identified ROIs that preferred whole-objects relative to 

phase-scrambled objects (face + body + scene + object > phase-scrambled) or the 

reverse (phase-scrambled > face + body + scene + object)(see Table S1 for ROI 

descriptive statistics, Fig. S3B and Fig. S4B for group-mean locations of ROIs from 

set1 and set2 contrasts). 
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Task scans: multi-voxel activation patterns 

For each joint-ROI from each subject, the multi-vertex activation pattern for each 

stimulus category (except the word category) in the task scans was estimated via a 

GLM that included a category regressor for all stimulus presentations involving the 

category. In addition, the GLM included a target regressor for trials in which a stimulus 

was perturbed in size or position, and baseline and linear trend regressors for each 

scan. The category and target regressors were each convolved with an assumed 

hemodynamic response function, yielding a stimulus-evoked BOLD multi-voxel pattern 

for each category (e.g. the pattern outlined by the red square in Fig. S3A) and for target 

trials.  

For each joint-ROI from each subject, a subject’s representational similarity 

matrix (RSM) was computed by spatially correlating the obtained categorical β weights 

(e.g. the average scene-evoked spatial pattern outlined by the red square in Fig. S3A) 

across categories. A group-averaged categorical RSM in a joint-ROI was computed by 

averaging all 16 subjects’ RSM within a joint-ROI with Fisher-Z transformations and 

reverse Fisher-Z transformations (Fig. 2B). Additionally, for each constituent ROI in 

each joint-ROI from each subject, the multi-vertex activation pattern for each of the 

stimulus exemplars (24 exemplars for each of 6 object categories) in the task scans was 

estimated via an exemplar-specific GLM similar to the above GLM. A group-averaged 

RSM for the stimulus exemplars was then computed for each constituent ROI in each 

joint-ROI (Fig. 2A). Finally, in order to determine the task-evoked magnitude for each 

stimulus category, a β weight matrix was separately computed using spatially non-

normalized BOLD timeseries from the task scans.  

Determining similarity of resting multi-vertex patterns and stimulus-evoked 

patterns 

For each participant’s individual joint-ROI and the associated constituent ROIs, 

we determined the degree to which the multi-vertex pattern for a stimulus-evoked 

activity pattern for a category matched the multi-vertex pattern on each resting frame. 

The procedure is illustrated in Figure 3A for a single subject using real data. In the first 
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step, as described above, the multi-vertex pattern evoked by a category in a region was 

determined (e.g. the ‘Scene’ activity pattern outlined by the red square in Fig. 3A, ‘Task 

BOLD’).  Then, framewise intrinsic activity patterns were obtained from resting-state 

scans and the average stimulus-evoked pattern for a category was spatially correlated 

with the resting activity pattern on a frame (Fig. 3A, ‘Resting-state BOLD’). A high 

positive correlation coefficient indicates that the multi-vertex resting activity pattern on a 

given frame was very similar to the pattern evoked by the category (e.g. the resting 

frame with a ‘Scene’-like resting activity pattern outlined by the magenta square in Fig. 

3A). A near zero correlation coefficient indicates that the multi-vertex resting activity 

pattern on a given frame was not similar to the pattern evoked by the category (e.g. the 

resting frame with a not-‘Scene’-like resting activity pattern outlined by the green square 

in Fig. 3A). Finally, a high negative correlation coefficient indicates that the multi-vertex 

resting activity pattern on a given frame was very similar to the inverse of the pattern 

evoked by the category (e.g. the resting frame with a ‘Scene’-inverted resting activity 

pattern outlined by the cyan square in Fig. 3A). This procedure was repeated across all 

resting frames, resulting in a ‘pattern-to-rest’ correlation timeseries (one correlation 

coefficient per resting frame) for a particular category in a particular ROI, as shown by 

the timeseries in Figure 3A.  

From each timeseries, we constructed a corresponding distribution of correlation 

coefficients (Fig. 3A, distribution shown in blue). The upper 90% value of each 

distribution, hereafter termed the U90-value, was then determined. The U90 value 

computed for a category and ROI served as a measure of the relationship between 

resting activity patterns and the patterns evoked by a category mean. The U90-value 

was used as an alternative measure of variance since the U90-value refers to a spatial 

correlation coefficient value, which indicates the degree of pattern similarity between the 

task-evoked and resting state activity pattern. Using the U90-value instead of the 

variance of the distribution as a summary measure does not change the results of the 

analysis. For analyses that involved the Whole-Objects joint-ROI rather than joint-ROIs 

that preferred a particular object category such as faces, U90-values for the six whole-

object categories (face, body, mammal, chair, tool, scene) were averaged together to 

form a whole-objects U90 value.   
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Statistical analysis of U90 values  

U90 values were analyzed via repeated measures ANOVAs and post-hoc paired 

t-tests. For example, the statistical significance of an overall dependence of U90 values 

for a joint-ROI on the stimulus category was determined by conducting repeated-

measures ANOVAs with Category-Type as factors. Paired t-tests were then conducted 

to test specific contrasts, with a Bonferroni-Holm correction for multiple comparisons.  

Pattern-based resting functional connectivity 

For the following pattern-based FC analysis, we used constituent ROIs from the 

joint-ROI that preferred a particular category (face, body, or scene) relative to the object 

category (chairs + tools). Since only two face constituent ROIs were found and one of 

those ROIs largely overlapped with a Body constituent ROI in ventral temporal cortex, 

Face constituent ROIs were not included in the FC analysis. Therefore, pattern-based 

FC was computed over 14 ROIs: 5 from the Body joint-ROI and 9 from the Scene joint-

ROI. 

Three pattern-based FC matrices were computed. Figure S6 illustrates the 

procedure for computing the cells of an FC matrix using the pattern-to-rest correlation 

timeseries from two scene regions (TOS, PPA) and two body regions (EBA, FBA). 

Figure 6A shows the resulting matrices. First, for each participant, pattern-to-rest 

correlation timeseries for all 14 ROIs were generated using only the body-evoked 

pattern for each ROI (i.e. the spatial activity pattern evoked by bodies in that ROI during 

the Task scans). The correlation between the timeseries for all pairings of the 14 ROIs 

was then computed (i.e. body-ROI-to-body-ROI, scene-ROI-to-scene-ROI, and body-

ROI-to-scene-ROI pairings). For example, the leftmost graphs in Figure S6 show the 

correlation between TOS and PPA (top graph) and the correlation between EBA and 

FBA (bottom graph) using the pattern-to-rest correlation timeseries generated in each 

ROI from the body-evoked pattern. The correlation coefficients were then entered into 

the corresponding cells of the pattern-based FC matrix, “Using Body pattern-to-Rest 

correlation timeseries only”, shown in Figure 6A. 
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A similar procedure was used to generate a pattern-based FC matrix using only 

the scene-evoked pattern for each ROI. Pattern-to-rest correlation timeseries for all 14 

ROIs were generated using only the scene-evoked pattern for each ROI (i.e. the pattern 

evoked by scenes in that ROI during the Task scans). Then the correlation between the 

pattern-to-rest correlation timeseries for all pairings of the 14 ROIs was computed. For 

example, the middle graphs in Figure S6 show the correlation between TOS and PPA, 

and between EBA and FBA using the pattern-to-rest correlation timeseries generated in 

each ROI using the scene-evoked pattern. Finally, the correlation coefficients were 

entered into the corresponding cells of the pattern-based FC matrix, “Using Scene 

pattern-to-rest correlation timeseries only”, shown in Figure 6A. 

To generate the third pattern-based FC matrix in Figure 6A (“using Preferred 

Pattern-to-Rest correlation timeseries), the pattern-to-rest correlation timeseries in a 

Body ROI was generated using the body-evoked pattern for that ROI and the pattern-to-

rest correlation timeseries in a Scene ROI was generated using the scene-evoked 

pattern for that ROI. Then the correlation between the correlation timeseries for all 

pairings of the 14 ROIs was computed and entered into the appropriate cells of the 

pattern-based FC matrix.  

Finally, a vertex-averaged FC matrix was computed by first averaging the resting 

BOLD timeseries across all vertices of an ROI to generate a vertex-averaged timeseries, 

and then temporally correlating these averaged timeseries for all pairs of ROIs. Vertex-

averaged FC matrices, which correspond to the standard regional FC matrices found in 

the literature, eliminate any information carried by the spatial pattern of BOLD activity 

within ROIs. 

 Pattern-based FC values were analyzed via repeated measures ANOVAs and 

paired t-tests. For example, we statistically evaluated whether the magnitude of pattern-

based FC depended on both the category of the stimulus-evoked spatial activity pattern 

and the preferred category of the ROIs by conducting a repeated-measures ANOVA 

with the Category-evoked pattern (body, scene) and ROI-Type (body, scene) as factors. 

Paired t-tests were conducted to test differences between specific evoked patterns/ROI 
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combinations. For example, pattern-based FC values for body ROIs vs. scene ROIs 

were compared for correlation timeseries generated using body-evoked spatial patterns. 
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Figure 1. The putative cyclic interplay between brain activity evoked by real-world 

experiences and resting-state activity. 

 

 

 

 

 

 

 

 

 

 

 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 10, 2019. ; https://doi.org/10.1101/518712doi: bioRxiv preprint 

https://doi.org/10.1101/518712


P a g e  | 35 

 

 

Figure 2. Representational similarity analysis (RSA) of individual stimuli and categories. 

(A) RSA for individual exemplars for each ‘whole-object’ category in 3 classical 

category-preferential areas. (B) RSA based on the average spatial pattern 

evoked for each category. 
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Figure 3. Task-rest pattern similarity analysis in visual regions preferring specific 
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categories. (A) Procedure for computing U90-values: determining the category-

evoked spatial pattern on task scans, spatially correlating that pattern with the 

activity pattern on each resting frame, computing a U90 value from the resulting 

distribution of correlation coefficients. (B) Superimposed distributions of correlation 

coefficients for a joint-ROI’s preferred stimulus category, which was defined by the 

corresponding localizer contrast (light green; e.g. Body in the Body-preferred joint-

ROI) and the phase-scrambled category (gray). (C) Group-averaged U90 values for 

the joint-ROI’s preferred category (green symbol), other whole-object categories 

(red symbols), grid-scrambled category (blue symbol), and phase-scrambled 

category (gray symbol). Black symbols indicate significant paired t-test between the 

joint-ROI’s preferred category and indicated category (++ = Bonferroni-Holm 

corrected p-val ≤ 0.005). Error bars indicate ±SEM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 10, 2019. ; https://doi.org/10.1101/518712doi: bioRxiv preprint 

https://doi.org/10.1101/518712


P a g e  | 38 

 

 

 Figure 4. Task-rest pattern similarity analysis in regions preferring phase-scrambled 

objects or whole-objects. (A) RSAs for Whole-Objects and Phase-Scrambled 

Objects joint-ROIs based on the average spatial pattern for each category. (B) 

Group-averaged U90 values. Black symbols indicate significant paired t-test 

between the whole-object category and scrambled category (++ = Bonferroni-

Holm corrected p-val ≤ 0.005). Error bars indicate ±SEM. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 10, 2019. ; https://doi.org/10.1101/518712doi: bioRxiv preprint 

https://doi.org/10.1101/518712


P a g e  | 39 

 

 

Figure 5. Correlation between activation strengths from task scans and U90 values 

across all categories and participants. 
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Figure 6. Pattern-based FC. (A) Pattern-based FC matrices computed using body-

evoked, scene-evoked, or preferred category-evoked spatial patterns (see text 

for details). (B) Left, Middle: Group-averaged pattern-based FC between body-

preferring regions and between scene-preferring regions computed using body-

evoked patterns (left) or scene-evoked patterns (middle). Right: Group-averaged 

pattern-based FC between body and scene regions computed using body-

evoked, scene-evoked, or preferred-category-evoked activity patterns. Black 

symbols indicate significant group paired t-test comparing correlation (ρ) values 

(* = p-val ≤ 0.05). Error bars indicate ±SEM. 
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Supplementary Information Text 

 

Materials and Methods 

Participants 

The study included 16 healthy young adult volunteers (10 female; age 21 – 35 years-old) 

with no prior history of neurological or psychiatric disorders. All participants were right-handed 

native English speakers with normal or corrected-to-normal vision. All participants gave 

informed consent to take part in the experiment, and the study was approved by the Institutional 

Review Board (IRB) of Washington University in St. Louis School of Medicine.  

 

Stimuli 

Nine categories of color images subtending 8o x 8o of visual angle were included in 

event-related ‘task’ fMRI scans. Seven ‘whole-object’ categories consisted of images that are 

encountered in real-world environments: human faces, human bodies, mammals, chairs, tools, 

scenes, and words. Stimuli, excluding the word category, were obtained from Downing et al., 

2006 (1). Faces, bodies and mammals served as animate categories, and chairs, tools and 

scenes as inanimate categories (2). Word stimuli were included for exploratory analyses and 

results for those stimuli will not be considered in this paper.  

Two control stimulus categories were constructed from the above stimuli excluding the 

word stimuli. A low-level control consisted of phase-scrambled stimuli that preserved the spatial 

frequency amplitude spectrum of the whole-objects images. An intermediate-level control 

consisted of grid-scrambled stimuli that included basic visual properties of the whole-objects 

images such as line segments and connectors. For the low-level control condition, 2D phase-

scrambled images of the exemplars from the 6 categories were generated by applying the same 

set of random phases to each 2-dimensional frequency component of the original image while 

keeping the magnitude constant (3). Exemplars from all six whole-objects categories except real 

word stimuli were 2D phase-scrambled, yielding a total of 144 2D Phase-scrambled stimuli. For 

the intermediate-level control condition, grid-scrambled images of exemplars from the six whole-

objects categories were generated by sub-dividing each image into a 10 x 10 grid (each grid is 
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0.8o x 0.8o) and randomly rearranging the individual grid segments. Supplementary Figure 2 

shows exemplar stimuli from the 8 categories used. 

Color images of exemplars from seven categories were included in blocked-design 

localizer scans: human faces, human bodies, objects (chairs and tools), scenes, words, false 

font character strings and phase-scrambled images. The categories for the localizer scans 

differed slightly from the categories for the task scans since the former was only used to define 

the regions of interest (ROIs). ROIs related to the false font and word stimuli will not be 

considered in this paper.  

Stimuli were presented using the Psychophysics Toolbox package (4) in MATLAB (The 

MathWorks). Stimulus images were projected onto a screen and were viewed through a mirror 

mounted on the head coil. All stimuli were presented centrally on a gray background.  

 

Scanning Procedure 

The study consisted of two separate sessions, each conducted on a separate day (Fig. 

S1). In session one, subjects received 3 resting state runs, 2 localizer runs, and 8 task runs. In 

session 2, subjects received 2 resting state runs, 2 localizer runs, 8 task runs, and 2 post-task 

resting state runs. One subject had a total of 13 task runs over the two sessions instead of 16.  

Resting state runs. Participants received a total of 7 resting state scans, each lasting 5 

min (300 TRs). During a scan the participant was asked to maintain fixation on a cross that was 

displayed at the center of the screen during the entire run. Five resting scans (3 for first session 

and 2 for second session) were conducted before any localizer or task scans to collect stimulus-

free intrinsic activities. For the second session only, two additional 5 min resting state scans 

were conducted after the task scans to investigate potential post stimuli-driven effects on 

intrinsic activity. The results from the post-task resting scans will not be discussed here. 

Localizer runs. Each session included 2 localizer runs (4 in total), each lasting 5 min and 

40s (340 TRs), and each localizer scan was presented in a blocked fMRI design. Each block of 

a localizer run contained 20 images of a single category, and those images were different from 

the images used in the task scans. A fully randomized sequence of eight blocks, consisting of 

the 7 stimulus categories and a fixation block, was repeated twice within each run. At the 

beginning and the end of each run, an additional fixation block was presented for 4s and 16s.  
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Within each category block, images were presented for 300ms with an inter-stimulus interval 

(ISI) of 700ms. A fixation cross was continuously present at the center of the screen during the 

ISI and during fixation blocks. During category blocks, participants performed a minimally 

cognitively engaging task by pressing a button if the initially presented image was changed in 

size or position during the 300ms presentation.  

Task runs. Each session included 8 task runs (16 in total), each lasting 5 min and 15s 

(315 TRs). For each subject and for each run, stimulus presentation order and inter-stimulus 

intervals were fully randomized using Optseq2 (5).  Each stimulus presentation lasted for 300ms 

and the interval between stimuli was jittered between 3.7s and 8.7s. A fixation cross was 

continuously present at the center of the screen during the ISI. In each whole-objects category, 

there were 24 separate exemplars (e.g. 24 different faces) and each exemplar was repeated 4 

times. In each scrambled category, there were 96 exemplars, each presented once. Participants 

performed a minimally cognitively engaging task by pressing a button if the presented image 

changed its size or position during a 300ms presentation, the same task as that performed 

during the localizer scans. 

 

Imaging parameters 

Data were obtained from a Siemens 3T Prisma MRI scanner. Structural images for atlas 

transformation and lesion segmentation were acquired using T1-weighted magnetization 

prepared-rapid gradient echo (MP-RAGE) (1 x 1 x 1 mm voxels; echo time [TE] = 2.36 ms, 

repetition time [TR] = 1700 ms, TI=1000 ms, flip angle = 8°) and T2-weighted fast spin echo 

sequences (1 x 1 x 1 mm voxels; TE = 564 ms, TR = 3200 ms). FMRI scans were collected 

using a gradient echo-planar sequence sensitive to BOLD contrast (TE = 26.6 ms, flip angle = 

58°, 2.4 x 2.4 x 2.4 mm voxels, 48 contiguous slices, TR = 1.0 s, and multiband factor of 4).  

 

fMRI pre-processing  

fMRI data underwent pre-processing as previously described (6). This included: (1) 

compensation for asynchronous slice acquisition using sinc interpolation; (2) elimination of 

odd/even slice intensity differences resulting from interleaved acquisition; (3) whole brain 

intensity normalization to achieve a mode value of 1000; (4) spatial realignment within and 
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across fMRI runs; and (5) resampling to 2.4 mm cubic voxels in atlas space, including 

realignment and atlas transformation in one resampling step. Cross-modal (e.g. T2-weighted to 

T1-weighted) image registration was accomplished by aligning image gradients.  

Surface generation and processing of functional data followed procedures similar to 

Glasser et al (7). First, anatomical surfaces were generated for each subject’s T1 MRI using 

FreeSurfer automated segmentation (8). This step included brain extraction, segmentation, 

generation of white matter and pial surface, inflation of the surfaces to a sphere, and surface 

shape-based spherical registration to the subjects’ “native” surface to the fs_average surface. 

The left and right hemispheres were then resampled to 164,000 vertices and registered to each 

other (9). 

Data were passed through several additional preprocessing steps: (i) removal by 

regression of the following sources of spurious variance: (a) six parameters obtained by rigid 

body correction of head motion, (b) the signal averaged over the whole brain (global signal 

regression), (c) signal from ventricles and CSF, and (d) signal from white matter; (ii) temporal 

filtering retaining frequencies in the 0.009–0.08-Hz band; and (iii) frame censoring (framewise 

displacement (FD) ≥ 0.5mm). The first four frames of each BOLD run were excluded. 

To account for magnitude variability between different task and resting state runs, the 

BOLD timeseries for each vertex were Z-normalized across time within the task and the resting 

state runs. This Z-normalization was not applied to the localizer scans. Also, it was not applied 

to the Task scans for a separate analysis described below in which task-evoked activation 

magnitudes were determined (see below, Task scans: multi-voxel activation patterns). 

Defining ROIs from localizer activation contrasts 

 ROIs were defined from univariate vertex-wise statistical contrasts on the localizer 

activation magnitudes for different categories. For example, face-selective areas were defined 

from the vertices for the contrast of faces minus objects, where objects consisted of chairs and 

tools. First, for each participant a general linear model (GLM) was applied to their functional 

localizer scans. The GLM consisted of separate regressors for each stimulus category (e.g. 

faces) using an assumed hemodynamic response function from the Statistical Parametric 

Mapping (SPM12), a baseline term, and a linear trend term. Condition contrasts were formed to 

identify vertices showing a preference for each category, using a scheme similar to that of 

Bracci and Op de Beeck (2016) (10): body-preference (body > objects, i.e. chairs and tools), 
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face-preference (face > objects), scene-preference (scene > objects), whole-objects-preference 

(face + body + scene + object (chair+tool) > phase-scrambled), and phase-scrambled-objects-

preference (phase-scrambled  > face + body + scene + object (chair+tool)).  

A group random-effect statistical Z-map for each contrast was then computed from the 

single-subject localizer GLMs (see Fig. S3A for the group z-statistic maps for body-, face-, and 

scene-preferences). The Z-values obtained were sorted in magnitude. From the highest Z-

values from the map, the group peak with the next highest Z-value was generated until the Z-

value was <= 2.0. Group peaks had to be separated by at least 38.4mm (9.6 mm x 4) in the 

sphere mesh to prevent a vertex being assigned to multiple ROIs in a subject. ROIs were then 

defined separately for each participant based on the individual’s univariate statistical maps (11, 

12). From each group peak defined above, the corresponding peak for an individual subject 

peak was defined as the vertex with the highest Z-value within a sphere of 9.6 mm radius 

centered around the group peak in each subject’s sphere mesh. The single-subject ROI was 

formed from the vertices exceeding Z= 2.0 in a sphere of 9.6 mm radius centered around the 

peak in the subject’s mesh. All ROIs used in the following analysis contained at least 175 

vertices in at least 14 subjects. ROIs in individual subjects with less than 175 vertices were 

discarded.  

To remove differences in BOLD magnitude across MR frames, for each ROI a z-

normalization was applied across the vertices of each frame of the resting and task scans. This 

within-frame Z-normalization was not applied to the localizer scans. Also, it was not applied to 

the Task scans for a separate analysis described below in which task-evoked activation 

magnitudes were determined (see below, Task scans: multi-voxel activation patterns). 

Two sets of ROIs were created for use in different analyses. The first set was created 

from the localizer-defined ROIs that preferred a particular target category (face, body, or scene) 

relative to the object category (chairs + tools). We grouped the vertices from the target-preferred 

ROIs into a single target-preferred ‘joint-ROI’.  For each joint-ROI, all vertices located in early 

visual areas (V1 to V3) were excluded (13), as estimated from surface topology using the 

template created by Wang et al. (14). A second set of ROIs consisted of Whole-Object ROIs 

(face + body + scene + object > phase-scrambled) and Phase-Scrambled Object ROIs (phase-

scrambled > face + body + scene + object). Whole-Object and Phase-Scrambled Object ROIs 

were grouped, respectively, into a Whole-Objects joint-ROI and a Phase-Scrambled Objects 

joint-ROI. Supplementary Table 1 summarizes the mean MNI coordinate, mean Z-score for the 
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obtained group peak, and mean number of vertices for all constituent ROIs in each joint-ROI. 

Supplementary Figure 3B schematically indicates the position of all constituent ROIs in the 

Face-, the Body- and Scene-joint-ROIs based on their group peak locations. Supplementary 

Figure 4B shows the location of all constituent ROIs in the Whole-Objects joint-ROI and the 

Phase-Scrambled Objects joint-ROI superimposed on a surface map of V1-V3 using the 

template from Wang et al. (14). 
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Supplementary Figure 1. Experimental design, with separate resting scans, blocked-design 

localizer scans, and event-related task scans.  
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Supplementary Figure 2. Stimulus categories used in the experiment.  
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Supplementary Figure 3. Body, Face, and Scene ROIs (regions of interest). (A) Group z-

statistic Localizer maps for category-preferring visual regions. ROIs were separately 

defined for each individual from their localizer maps using the group foci as a constraint. 

(B) Schematic rendering of three sets of category-preferential ROIs for faces, bodies, 

and scenes using the object category (tools and chairs) as the baseline.   
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Supplementary Figure 4. Whole-object and Phase-scrambled ROIs. (A) Group z-statistic 

Localizer maps of visual regions that prefer whole-objects or phase-scrambled objects. 

(B) Schematic rendering of Whole-Objects and Phase-Scrambled ROIs.  ROIs were 

separately defined for each individual from their localizer maps using the group foci as a 

constraint. Surface renderings of V1, V2, and V3 from the Wang et al. template (14) are 

superimposed. 

 

 

 

 

 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 10, 2019. ; https://doi.org/10.1101/518712doi: bioRxiv preprint 

https://doi.org/10.1101/518712


P a g e  | 51 

 

 

Supplementary Figure 5. Group mean activation strength from task scans for all stimulus 

categories in each joint-ROI. Error bars indicate ±SEM. 

 

 

 

 

 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 10, 2019. ; https://doi.org/10.1101/518712doi: bioRxiv preprint 

https://doi.org/10.1101/518712


P a g e  | 52 

 

 

Supplementary Figure 6. Pattern-to-rest correlation timeseries computed using body-evoked 

and scene-evoked activity patterns in two scene-preferring and two body-preferring ROIs. 
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Supplementary Figure 7. A standard non-pattern-based FC matrix was computed by first 

averaging the vertexwise timeseries of the BOLD signal within each region, and then 

correlating the resulting timeseries across all pairs of regions (Left). All cells involving 

FC between body regions, between scene regions, and between body and scene 

regions are averaged and plotted (Right).  
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Supplementary Figure 8. Graphs of the profile of group-averaged U90 values across stimulus 

categories for each constituent body region, scene region, and face region.  
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Supplementary Table 1. ROI Summary 
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Supplementary Table 2.  Spatial correlation between face-evoked, body-evoked, and scene-

evoked activity patterns in three joint-ROIs. 
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