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Abstract

During infection by the human immunodeficiency virus (HIV), mutations accumulate in
the intra-host viral population due to selection imposed by host T cell responses. The
timescales at which HIV residues acquire mutations in a host range from days to years,
correlating with their diversity in the global population of hosts, and with the relative
strengths at which different regions of the HIV sequence are targeted by the host. In
recent years, “fitness landscapes” of HIV proteins have been estimated from the global
HIV sequence diversity, and stochastic simulations of in silico HIV infection, using these
inferred landscapes, were shown to generate escape mutations whose locations and
relative timescales correlate with those measured in patients with known T cell
responses. These results suggest that the residue-specific fitness costs and epistatic
interactions in the inferred landscapes encode useful information allowing for predictions
of the dynamics of HIV mutations; however, currently available computational
approaches to HIV dynamics that make use of realistic fitness landscapes are limited to
these fixed-population-size stochastic simulations, which require many simulation runs
and do not provide further insight as to why certain mutations tend to arise in a given
host and for a given sequence background. In this paper, we introduce and examine an
alternative approach, which we designate the evolutionary mean-field (EMF) method.
EMF is an approximate high-recombination-rate model of HIV replication and
mutation, in whose limit the dynamics of a large, diverse population of HIV sequences
becomes computationally tractable. EMF takes as input the fitness landscape of an HIV
protein, the locations and strengths of a host’s T cell responses, and the infecting HIV
strain(s), and outputs a set of time-dependent “effective fitnesses” and frequencies of
mutation at each HIV residue over time. Importantly, the effective fitnesses depend
crucially on the fitness costs, epistatic interactions, and time-varying sequence
background, thus automatically encoding how their combined effect influences the
tendency for an HIV residue to mutate, in a time-dependent manner. As a proof of
principle, we apply EMF to the dynamics of the p24 gag protein infecting a host whose
T cell responses are known, and show how features of the fitness landscape, relative
strengths of host T cell responses, and the sequence background impact the locations
and time course of HIV escape mutations, which is consistent with previous work
employing stochastic simulations. Furthermore, we show how features of longer-term
HIV dynamics, specifically reversions, may be described in terms of these effective
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fitnesses, and also quantify the mean fitness and site entropy of the intra-host
population over time. Finally, we introduce a stochastic population dynamics extension
of EMF, where population size changes depend crucially on the fitness of strains
existing in the population at each time, unlike prior stochastic simulation approaches
with a fixed population size or a time-varying one that is externally defined. The EMF
method offers an alternative framework for studying how genetic-level attributes of the
virus and host immune response impact both the evolutionary and population dynamics
of HIV, in a computationally tractable way.

Author summary

Fitness landscapes of HIV proteins have recently been inferred from HIV sequence
diversity in the global population of hosts, and have been used in simulations of in silico
HIV infection to predict the locations and relative timescales of mutations arising in
hosts with known immune responses. However, computational approaches to HIV
dynamics using realistic fitness landscapes are currently limited to these
fixed-population-size stochastic simulations, which require many simulation runs and do
not provide further insight as to why certain mutations tend to arise in a given host and
for a given sequence background. Here, we introduce an alternative approach designated
the evolutionary mean-field (EMF) method, which is an approximate
high-recombination-rate model of HIV dynamics. It takes as input an HIV fitness
landscape, the locations and strengths of a host’s immune responses, and the infecting
HIV strain(s), and outputs a set of time-dependent “effective fitnesses” and frequencies
of mutation at each HIV residue over time. We apply EMF on an example to show how
features of the fitness landscape, relative strengths of host immune responses, and the
HIV sequence background modify the effective fitnesses and hence the locations and
time course of HIV mutations. We also develop a stochastic population dynamics
extension of EMF where population size changes depend crucially on the fitness of
strains existing in the population at each time. The EMF method enables more detailed
study of how genetic-level attributes of the virus and host immune response shape the
evolutionary and population dynamics of HIV, in a computationally tractable way.

Introduction

During acute infection by the human immunodeficiency virus (HIV), the virus replicates
rapidly and the viral load (concentration of HIV RNA particles in the blood plasma), a
measure of the extent of HIV infection, rises exponentially to a peak 2-3 weeks
post-infection [1]. Host cytotoxic T lymphocyte (CTL) responses are detectable just
before this peak and expand as the viral load declines [1H3]|. CTLs kill HIV-infected
host cells through the recognition of HIV-derived peptides 8-10 amino acids long (called
epitopes) that are presented on the surface of these cells bound to major
histocompatibility complex (MHC) class I molecules [4]. While CTLs partially control
HIV in an untreated host [5], they are unable to clear the infection: HIV mutants are
generated stochastically via error-prone reverse transcription [6], and those with
mutations within epitopes escape epitope-specific CTL recognition. Thus, CTLs impose
selective pressures on the mutating intra-host HIV population and select for the
emergence of escape mutations over time, which can be quantified by sequencing HIV in
the blood of infected hosts [3/7-9].

The timescales at which HIV escape mutations emerge in the intra-host population
vary widely, ranging from days to years [IH3]. What is the origin of this variation, and
how does it depend on properties of the virus and/or host immune response? Liu et
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al. [3] found a correlation between the rate of viral escape at an epitope, and the entropy
of epitope sequences in the global population of hosts infected by the same group or
subtype of HIV; they also found that the relative strength of CTL responses targeting
each epitope (called the vertical immunodominance) plays an important role [3]. These
results suggest that different HIV strains have different levels of replicative fitness:
residues where mutations incur large fitness costs tend to be more conserved in the
global population of hosts and also tend to acquire escape mutations more slowly; also,
CTL responses impose additional fitness costs that are abrogated by escape mutations,

and higher vertical immunodominance corresponds to larger costs imposed at an epitope.

Using global diversity as an indicator for fitness is also supported by mutations toward
the group or subtype consensus residue (called reversions), that tend to occur when HIV
is transmitted to an MHC-mismatched host (who presents different epitopes from the
donor) [10,/11] and continue over years of intra-patient evolution [9]. In recent years,
residue-specific fitness costs of HIV mutants have been measured in cell culture |12H15]
and from genetic variation within individual hosts [16], which were found to correlate
with the global entropy of HIV residues belonging to the same group or subtype of HIV
(although less conserved residues also tend to be more commonly targeted by CTLs [16],
and low-fitness-cost mutants may sometimes be rarely observed globally [14L{15]). Apart
from residue-specific fitness costs, epistatic interactions between residues were also
shown to play an important role during HIV infection in particular for the Gag [17H21]
and Nef [22] proteins, and this should be reflected in pairwise correlations in the global
HIV sequence diversity. In recent years, “fitness landscapes” of various HIV proteins
were inferred from this global diversity [12}13}23], and using such inferred landscapes,
in silico simulations of HIV infecting patients with known CTL responses found a good
correlation in the locations and relative timescales of escape mutations with those
measured in the patients [24]|. These results suggest that the fitness costs and epistatic
interactions in the inferred landscapes encode useful information allowing for good
predictions of the dynamics of HIV mutations given a host’s CTL responses, which may
provide opportunities to inform the design of vaccine immunogens that promote
combinations of escape mutations likely to be harmful for the virus [12}21].

In this paper, we focus on methods for simulating HIV dynamics given a
residue-specific fitness landscape such as those inferred previously [12L[13[23]. Doing so
is nontrivial as the presence of epistatic interactions deem it insufficient to simulate just
one site or one epitope; the sequence background matters (as we will show later).
Currently available approaches for simulating the dynamics of full HIV protein
sequences including a fitness landscape are limited to the fixed-population-size
stochastic simulations mentioned above |24]. However, a stochastic method requires
performing many simulation runs (10 in [24]) in order to start making predictions
about the locations and timescales of HIV mutations, and it does not make clear post
hoc why certain mutations tend to arise in a given host and for a given sequence
background. Alternatively, compartmental models of HIV dynamics that consider
multiple HIV strains and multiple CTL responses [25H28| could be extended to have one
set of equations for each HIV strain in the population, but this would require a very
large number of equations as the intra-host population expands and diversifies.

Here, we introduce and examine an alternative approach for simulating HIV
dynamics given a fitness landscape, which we designate the evolutionary mean-field
(EMF) method. The “mean-field” in EMF does not refer to chemical species reacting
according to their mean concentrations (a la compartmental models), but to a class of
approximations in statistical physics. Specifically, we map a model of HIV replication
and mutation to a statistical physics model (following [29,/30]), a mean-field
approximation of which gives a set of time-dependent “effective fields” or fitnesses, and
estimates of the frequencies of mutation at each HIV residue over time. The EMF
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method enables efficient computation of the dynamics of mutations over time, for HIV
proteins of realistic size and using realistic fitness landscapes, and unlike stochastic
approaches (e.g. [24]) provide a single prediction for a given host and sequence
background. Importantly, the effective fitnesses yielded by EMF depend crucially on the
fitness costs, epistatic interactions, and time-varying sequence background, thus
automatically encoding how their combined effect influence the tendency for an HIV
residue to mutate. Analogous mean-field equations were derived in the
high-recombination-rate limit (see e.g. Neher and Shraiman [31]), which is precisely the
biological interpretation of the EMF approximation.

In the we apply EMF as a proof of principle to study the dynamics of the
p24 gag protein infecting a host whose CTL responses are known (from |[3]). Specifically,
we show how fitness costs and epistatic interactions in the fitness landscape, vertical
immunodominance of CTL responses, and the sequence background modify the effective
fitnesses and hence impact the locations and time course of HIV escape mutations.
These results are consistent with previous work employing stochastic simulations [24],
and provide an alternative framework for understanding how genetic-level features of
the virus and host CTL response combine to affect HIV dynamics. We also show how
reversions and potential compensatory mutations may be described in terms of these
effective fitnesses, and quantify the mean fitness and site entropy of the intra-host
population over time. Since EMF is an approximate high-recombination-rate method, in
we perform fixed-population-size stochastic simulations with a finite
recombination rate (as in [24]) to validate our results for this example.

Finally, a fixed-population-size simulation method (such as [24]) does not reflect that
the viral load changes by several orders of magnitude during acute HIV infection [1],
but computing population size changes by tracking the fitnesses of all HIV sequences in
a large, diverse population is also computationally nontrivial. In the final part of this
paper, we develop a stochastic population dynamics method based on the EMF
approximation, where population size changes depend crucially on the fitness of strains
existing in the population at each time, unlike prior stochastic simulation approaches
with a fixed population size [24L32] or a time-varying one that is externally defined [33].
Using this method on the example above, we show that the locations of HIV escape
mutations are now stochastic, but the deterministic EMF method gives good predictions
on average. This method also produces a characteristic exponential rise and fall of the
HIV population size that is qualitatively consistent with the plasma viral load during
acute infection. We end in the by discussing limitations, uses, and further
extensions of EMF, including how to incorporate explicit target cell and CTL clone
populations, like other compartmental models of HIV dynamics |25128]. The EMF
method offers an alternative framework for understanding how genetic-level features of
HIV and the host CTL response impact HIV dynamics in terms of effective fitnesses,
and enables a more detailed study of how the fitness landscape and sequence
background impact the evolutionary and population dynamics of HIV, in a
computationally tractable way.

Methods

The fitness landscape of an HIV protein

We model the fitness landscape of an HIV protein following prior work [12}|13}/24]: We
describe HIV strains by their amino acid sequence, and in particular consider binary

sequences S = (s1,- - ,sy) where s; = 0 represents the consensus amino acid and s; =1
represents any other residue at position 7, and L is the length of the protein. The binary
approximation (used in [12] but not [13,/24]) is reasonable for highly conserved proteins
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such as p24 gag |12|; taking s; to be one of four nucleotides or one of twenty amino
acids is a straightforward extension, but beyond the scope of this paper.
We consider the intrinsic fitness of HIV sequence S to obey

L
EH(S) :F0+Zhi8i+ZJij3i5j7 (1)
i=1

i<j

where Fj is the intrinsic fitness of the consensus sequence, {h;} are the fitness costs of
mutations at site ¢, and {J;;} capture pairwise epistatic interactions between sites i and
jﬂ We estimate the values of Fy, {h;} and {J;;} in[Parameter estimation|

During intra-host infection, the fitness of HIV sequence S is altered from its intrinsic
value by host CTL pressure. Following [24], we model the effect of CTL-mediated killing
of HIV-infected cells and HIV mutational escape by imposing a fitness cost b. on HIV
sequences S with no mutation in epitope €, which is abrogated if S contains at least one
mutation within . Given a set of epitopes {¢} each beginning at site i and of length I,
amino acids, the within-host fitness of HIV sequence S is thus

Frost(S) = Fin(S) = Y be(1 = si) -+ (1 = si41.-1). (2)

(This expression assumes that all targeted epitope sequences are (0,--- ,0); if epitope &
instead has s;_ = 1, replace 1 —s;. — s;_.) In general, b, is time-dependent so Fiost(.S)
is time-dependent.

Model of HIV dynamics on a fitness landscape

An HIV particle replicates by infecting a CD4" host cell and reverse transcribing its
RNA genome into DNA. HIV DNA is then integrated into host DNA and new copies of
the virus are produced by the target cell. The ability of an HIV strain to replicate and
infect new target cells in a host is described by its replicative fitness Fiost (here
modeled by Eq ) Also, reverse transcription is error-prone, and introduces random
point mutations within the HIV genome with a probability that depends on the
nucleotide-to-nucleotide substitution rates |6}16].

Here, we model HIV replication and mutation by a discretized-time Markov model
(see Fig[l). In one replication cycle (which takes roughly 1 day [34]), the effective
number of offspring of HIV sequence S is ef’ (5) where F = Flost. Note that this is
equivalent to solving the continuous-time equation %(ts) = F(S)N(S) for unit time,
where N(5) is the population size of sequence S; in the we elaborate on
continuous-time extensions of our methods. Also note that we do not explicitly model
infection of target cells or target cell dynamics; in the we discuss extensions
that include explicit consideration of a target cell population.

To model error-prone reverse transcription, we consider that sequence S mutates
with probability p/site before replication (see Fig. Note that having mutations occur
before replication is important for deriving the EMF equations below, but a model with
replication before mutation can also be thought of as having one fewer round of
mutations in the beginning, and hence both models should produce essentially the same
results after many time steps if the mutation rate is small (not shown). Here we also
consider i to be independent of the residue, but we show in that similar
results are obtained when nucleotide-dependent substitution rates are accounted for.

First, let us write down the equations for replication and mutation of a single site s;.
Suppose s; = 0 has fitness Fj, and s; = 1 has fitness Fyy + h;. Also suppose that s; =0

1Note that our methods can easily be extended to fitness landscapes with higher-order interactions;
indeed, we model CTL epitopes as a higher-order interaction (see later).
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reverse transcription efl1 offspring

N | - ]
S u/site
| L

(k+1)th generation

Fig 1. Model of HIV replication and mutation. In one replication cycle, HIV sequence S reverse transcribes its

genome, introducing random point mutations with probability p/site and producing sequence S’. Sequence S’ produces e

F(S)

offspring in one generation. See Eq for the transition matrix describing this process.

mutates to s; = 1 or vice-versa with probability u/generation. At time &, let the

population size be Ni(k) and the frequency of s; = 1 in the population be mgk). The
population sizes of s; = 0 and s; = 1 at time k + 1 are thus given by

efo 0 l—p p 1—mi® N

_ R (1 — (@ —m®) + pm® (k)
=e B (k) wy | N (3)
a1 = m®) + (1 — wym®)

and their sum gives the total population size Ni(kH) at time k + 1, with ratio

_ N D
ZM D () = NG = {1 ) (1=m{) 4 pm ™+ [u(1—mf) + (1= ym M}
i
(4)

Thus, for HIV sequences of length L replicating according to a fitness landscape Eq
, the number of offspring with sequence S 1) produced by a single sequence S*) in
one generation (or equivalently, the ratio between their populations) is given by

L
(k+1) O (k) (k+1) 1=0 (&) (ht1)
(SETIST) = "D T — ) oo e (5)
i=1

where 5s<_k) SO D) is the Kronecker delta. The 2F x 2L transition matrix 7 is not a

transition probability matrix (which would require ) ¢, (S'|T'|S) = 1), but the transition
matrix of a model with time-varying population size. The state at each time is a vector
PP of populations of the 2¥ sequences S.

Now, suppose we know the fitness landscape F}ost and the initial population P(0).
Our goal is to characterize P at future times, specifically to answer two kinds of
questions:

1. What is the steady state at long times? Which escape mutations arise? Are there
reversions or compensatory mutations?

2. What are the dynamics towards the steady state? What is the order and
timescale of mutations? Are there transient dynamics?

The most direct method of solution is to find P(k + 1) = TP(k) for k =0,--- ,n, from
which we can compute, for example, the statistics of mutations at site ¢ over time. This
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involves, at time k, finding the marginal frequency

_ Zsl T ZSL P(k)sl
e s, P(R)

Equipped with this information, we can for example predict the relative probabilities of
making each escape mutation in an epitope.

However, this direct method is computationally intractable. For an HIV protein of
length L = 200, there are 22°° =~ 10%° possible sequences, so brute-force matrix
multiplication, matrix decompositions of T', or computation of Eq @ by direct
summation aren’t feasible in general. In practice, if the population size is not
prohibitively large or if P is sparse, then all sequences existing in the population may be
tracked individually. In particular, if uN < 1 (where N = ||P||; is the population size),
successive selective sweeps occur and the population may be described by a dominant
strain at each time [35]. However, this is not the regime HIV is in during intra-host
infection, when the population continually accumulates diversity through mutations
that are selected upon by strong CTL pressure. A commonly used method when
4N 2 1is to perform stochastic simulations with a fixed population size N. In
we perform such (Wright—Fisher) simulations following the methods of [24],

for the example considered in

mi(k) (6)

The evolutionary mean-field (EMF) method

In the following, we solve P(k + 1) = TP(k) for k = 0,--- , n approximately, which
directly yields estimates of Eq @ for all HIV residues over time.

To do this, we first map the above model of HIV replication and mutation to a
statistical physics model (first introduced in [29,[30]). Using the identity

0,51 = %[1 + (1 —2s;)(1 — 2s%)], we rewrite Eq in the form eH(S(Hl)’S(m), with

energy (Hamiltonian) given by

L
H(SWD, 50y = p(st+1y 4 )31 - 25M) (1 — 251, (7)
i=1

where K = 1 log 177", and we have omitted a constant term %bg(l — u)p for notational

clarity. The total number of offspring produced by sequence S*) in one generation is
given by

Z(k+1)(S(k))E Z <S(k+1)|T‘S(k)>: Z eH(S(kH)’S(k))_ (8)
{S(k+1)} {S(’chl)}

Note that H(S*+1, S*)) depends on both S*) and S*+1), while the ‘partition
function’ Z*+1) has the 2% possible sequences {S*+1} summed over. Extending to
multiple generations, the Hamiltonian has a structure shown in Fig[2] left, with sites
(spins) within each generation interacting according to F'(S), and spins along the time
dimension having nearest-neighbor couplings K [29,/30]. The partition function
(summing over {SM}, ... {S(1}) is then the total number of offspring produced by a
single sequence S(®) over n generations.

Now, consider an approximate Hamiltonian

L
H(SED 5k — Z [}”Ll(k+1)sz(k+1) +K(1— 255’“))(1 B 2$§k+1))]’ (9)
=1

where the “effective fields” or fitnesses fzgkﬂ) at sites ¢ = 1,--- | L are to be determined.
Unlike Eq , here the spins ¢ are noninteracting (see Fig[2] right). This simplifies
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Fig 2. The evolutionary mean-field approximation. Left: A statistical physics model with Hamiltonian
H(S™, ... S0) generalizing Eq @ to multiple generations. Right: A schematic of the evolutionary mean-field (EMF)

approximation. The “effective fitnesses” Bik) depend on the time-varying sequence background in a nontrivial manner (see

Eqgs and )

computation of the total number of offspring produced by sequence S*) in one
generation, to

Z(k-i—l)(S(k)) — f[ [eﬁgk+1)¥}( + eiK], (10)
i=1
Which is now a product of L terms instead of a sum over 2L terms (cf. Eq ) In
Eq , the upper sign is for s( ) — 0 and the lower sign is for sl(-k) =1.

We want to define effective fitnesses {ngﬂ)} such that Z(S®) and Z(S™) are as
“close” as possible. To do this, we make use of Gibbs’ inequality , which states that
the Kullback-Leibler divergence of two distributions P and P is nonnegative, i.e.
Dg,(P||P) > 0. Using the forms P(-) = ¢#()/Z and P(-) = ¢#()/Z, Gibbs’ inequality
becomes

log ZHF*D > log Zk+D) 4 (H(SK+D gy _ F(stk+D) gk (11)

where (f) =3, f(z)P(z) is the expectation value of f with respect to the
approximate model. (We note here that Shekhar et al. used Eq in similar work
to study the relation between the prevalence and intrinsic fitness landscapes of HIV;
they used a different H involving F, instead of Eq (EI), and their resulting equations do
not reduce the computational complexity of the solution, which is our goal here, because
their H is still interacting. )

For the within-host fitness landscape Eq ,

Mh

i—h NI LN Lm D N TTa-m ), (12)

z:l i<j e jee

where we have defined m(kH) = (s (k+1)> and (s; (k1) gkﬂ)) (’H_l) m'" ) because

sites are decoupled in the approxnnate model Thus extremizing the RHS of Eq (11] .

w.r.t. hEkH), and using Eqgs (10f) and 7 leads to

Z 13
= T T [aﬁgmmz(“l)} [hi BCEREDY Jiﬁmg‘kﬂ)}’ v
( i#i
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for sites ¢ outside of epitopes giving
) <
J#i

and

0= T T [l

% [ L (k+1) +Z‘]U (k+1) — b H (k+1))]’
J#i jee\i
for sites ¢ in epitope € giving
h(k—H) h; +ZJ” (k+1) —b H k+1)
J#i jee\i

(14)

(16)

Equation again assumes that the targeted epitope sequence is (0, - -- ,0); replace

1- m§-k+1) — mg-kﬂ) if € contains a site j with s; = 1.

The mEkH) = (sgkﬂ))N are the frequencies of mutation at site ¢ and time k +

1in

the approximate model. For sgk) =0 or 1, we find by differentiating Eq w.r.t.

B that
ISSAIRE S ¢

?

K 4 eh TR

where again the upper sign is for s,gk)

0< mgk) < 1, we obtain

= 0 and the lower sign is for sgk)

~<k+1> k k
ey _ @ (1= mi) 4+ (1 pym )
i Z(k+1) (mgk);ﬁ§k+1))

which is analogous to the one-site case (see Eqs and (4)).

(17)

= 1. For generic

(18)

To summarize, the EMF method starts with the initial frequencies of HIV mutations

{m } and computes the L effective fitnesses {h(kJr1 } (Egs and ) and

frequencies of mutations {mikﬂ)} (Eq (1 ) at times k + 1 recursively from the {ml(-k)}
at the previous time k. While computing the marginal frequencies at each time by

Eq @ involves summing over 2% terms, which is intractable for HIV sequences of
realistic size, Eq contains a sum of no more than two terms in the denominat
however requiring simultaneous solution with Eqs (14)) and (16) (because ﬁng)
depends on m(k+ ) for j # 4 which in turn depend on h kﬂ)) A

dynamic-programming-like method of solution is to iterate between {ﬁ§k+1)} and

{mgkﬂ)} until convergence for each & (not shown). However, if the {mgk)} do not

or,

change drastically with time, a computationally more efficient implementation is to

replace m,

(k+1) with mgk) in Egs and , and to “shoot” forward in time k,
iterating between {EE’“)} and {mgk)} for larger and larger k:

(m{?y 2= B2, g1y 2B, 0y 2e BB, 2,

(19)
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EMF population dynamics method

Finally, the EMF method also allows for the computation of the population dynamics,
since Z*+1) (Eq ) is the ratio of total population sizes between times k + 1 and k.
While computing Z*+1) involves summing over 2% terms, the RHS of Eq gives a
computationally tractable lower bound:

~

L

log Z(k+1) > log Zi(kJrl) + Fhost(mgk+1)7 L k+1) k+1) k+1)’ (20)
where Fhost(mgkﬂ), . ,m(LkH))
within the EMF approximation.

Motivated by prior stochastic simulation approaches [241[3233], we thus define a
stochastic population dynamics method based on EMF by taking the population size at
generation k + 1, N**1) o be Poisson-distributed (following e.g. [33]) with mean
N®) Zz(k+1)  Tmportantly, population size changes depend crucially on which mutations
exist and arise in the population at each time. We also draw the frequencies of
mutations { m(k+1)} at time k + 1 from a binomial distribution (following
e.g. [24,32,33]) with N*+1) trials and probabilities given by Eq .

is the mean fitness of the population at time k + 1

Interpretation of EMF as a high-recombination-rate model of
HIV dynamics

The EMF method solves the model of HIV replication and mutation defined by Eq
approximately by a model with L independently evolving sites experiencing
time-dependent fitnesses {izgk)}, yielding estimates of the frequencies of mutation {mgk)}
at all HIV residues over time. While this approximation was motivated by statistical
physics, mean-field equations analogous to Eq were derived for genotype dynamics
in the high-recombination-rate limit (see Neher and Shraiman [31]). Indeed, in this limit
the probability that mutations at sites ¢ and j are jointly observed on a sequence is

simply equal to the product of their frequencies, m;m; (called linkage equilibrium [3g]).

Because EMF approximates sequence dynamics by the dynamics of independently

evolving sites, it should be viewed as a high-recombination-rate model of HIV dynamics.

HIV does undergo recombination during intra-host infection: it switches RNA
templates during reverse transcription at a rate estimated at 2.8
events/genome/cycle [39], and this may generate novel recombinant sequences if a
target cell is coinfected by multiple HIV strains [40]. The effective HIV recombination
rate was estimated from intra-host genetic variation to be
1.4 x 1075 /nucleotide/day |41], which is of the same order as its mutation rate.
Recombination plays an important role during HIV infection because separate escape
mutations recombining onto the same genome generate fitter viruses that escape
multiple epitopes [42], and so models of HIV dynamics with high recombination rates
would lead to higher escape rates from multiple epitopes |32|. Because EMF is a
high-recombination-rate approximation, escape mutations predicted by this method
should occur on a faster timescale than in models with a finite recombination rate
(e.g. |24132]), and so the transient dynamics produced by EMF may be inaccurate, but
the locations and relative timescales of mutations caused by fitness effects should
nevertheless be comparable and consistent. Indeed, in we demonstrate
consistency of the results presented for the example below with those obtained using the
stochastic simulation method of [24] with a finite recombination rate.
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Parameter estimation
Prevalence landscape of the p24 gag protein

p24 gag, which encodes the HIV capsid, is a highly conserved protein, for which
binarized amino acid sequences is a reasonable approximation . We follow the
methods of to infer the prevalence landscape of p24 from an alignment of HIV-1
group M subtype B protein sequences (downloaded from ) To improve data quality,
all sequences with >5% gaps or ambiguous amino acids were excluded, and all
remaining ambiguous amino acids were imputed by the consensus at that position [24].
The sequences were then binarized such that the most common (consensus) residue at
each position was relabeled 0, and any mutation (or gap) was relabeled 1. To prevent
multiple sequences drawn from the same patient from introducing biases in the sample
mean and second moment, we weighted each sequence by one divided by the number of
samples from that patient in the alignment . We describe the distribution of p24
sequences by P(S) oc ef’ "(5) where the prevalence landscape obeys the form

L

FP(S) = thSZ'FZJZSZS], (21)
i=1 i<j

which is the maximum-entropy distribution given the empirical means and second

moments of mutation (see ) We inferred the values of {h}} and {J;} using
available techniques [44/45], and the resulting prevalence landscape is shown in Fig

1

-10

01 50 100 150 200 231

Fig 3. The prevalence landscape of p24. Left panel: Fields h? along the p24 sequence (length L = 231). All A <0
because p24 is highly conserved so all s; = 1 are observed less frequently than s; = 0. Right panel: Color map of couplings

JP

zj;

positive couplings are in blue and negative couplings are in red.

Estimating the proportionality factor between prevalence and fitness
landscapes, 3, and fitness of consensus, Fj, from replicative capacity
measurements

Shekhar et al. showed via in silico simulations and a variational argument that the
prevalence landscape (Eq (21))) and intrinsic fitness landscape (Eq (1)) of HIV are
proportionally related in certain regimes, particularly when the global population of
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hosts mounts very diverse immune responses (which is to some extent satisfied; see
e.g. ) We thus relate the {h}} and {J};} of the prevalence landscape and the {h;}
and {J;;} of the fitness landscape by a proportionality factor 3, i.e. h; = Sh? and

Jij = BJ};. Note that B has units of inverse time, because {h}} and {J;} are
dimensionless while {h;} and {J;;} describe replicative fitness costs and epistatic effects
with units of inverse time.

To estimate 3, we first turned to Mann et al. , who found a correlation between
the measured replicative capacities RC(S) of a number of p24 mutants S in cell culture,
and their prevalence landscape values FP(S). Specifically, they found a proportionality
factor of 0.07 between RC(S)/RC(SnLa-3) and FP(S) — FP(SnLa-3), where NL4-3 is a
reference strain with mutations at sites 120 and 208 in p24 with respect to the HIV-1
group M subtype B consensus sequence. Given that RC(Sxp4.3) = 1.5 day ! , we
obtain 8 = 0.07 x 1.5 = 0.11 day~!. We found that this value of 3 produces relative
fitness costs (Fo — Fin(5))/Fy distributed around 40-50%, which are significantly larger
than those inferred from intra-host variation in another study that were (broadly)
distributed around 10% . Because replicative capacity measurements in cell culture
may not quantitatively equal viral growth rates in a host, motivated by we instead
took 8 = 0.023 day—', which gives relative fitness costs of all single and double mutants
shown in Fig[4]

Using FP(Snp4-3) = —4.13, RC(Snp4-3) = 1.5 day ™!, and 8 = 0.023 day !, we solve
Fy — 1.5 = B(0 — FP(Sxpa3)) to find Fy = 1.6 day . We performed the following
back-of-the-envelope check: around the time of peak viremia—roughly 2 weeks after
infection—there are ~1019 virus particles in a host (because there is a peak viral load of
~10% RNA copies/ml of blood [1] and ~5 liters of blood in a human). Solving
exp(F x 14 days) = 109 gives F ~ 1.6 day !, which is consistent.

(B) Relative fitness costs of double mutants

1200 -
251
1000 1
201
800 -
15
600 -
101
400
57 200 1
0- 0.
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.00 005 010 015 020 025 0.30

-hilFo

-(hi + hj + Jj)IFo

Fig 4. Histograms of relative fitness costs of all single and double mutants according to the fitness
landscape Eq 1) using the prevalence landscape of Fig |3, 3 = 0.023 day~!, and Fy = 1.6 day'.
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The CTL response, b.(t)

For the kinetics of the CTL response at epitope ¢, b:(t), we assumed the following
Hill-like functional formP}

0, 0<t<ty
bg(t) = (t—to)"Hill ba,o, t> 1o,

t;L/HQi” -‘r(t—to)"HiU

(22)

where the CTL response is activated ¢y days post-infection, increases to a maximum of
be,0 at long times, and t; /5 and ng parametrize the rate of this increase. As a
systemic HIV infection begins around 5-10 days post-infection and CTL responses
emerge 2-3 weeks post-infection [1], we took ¢ty = 7 days, 12 = 7 days, and ngy = 2.
For the overall magnitude of the CTL response byt = . be0, we found that a range
of values lead to realistic-looking population dynamics curves during the first weeks of
infection (see . We believe this is biologically plausible as different untreated
hosts presumably have variations in the magnitudes and timescales of their CTL
responses, yet all hosts experience significant exponential growth and decline of plasma

viral load during acute infection |1]. We chose a representative value of byt = 6 day™

for our population dynamics simulations.

The mutation rate, u

1

The overall rate at which nucleotide substitutions occur during HIV infection was
estimated at 1.2 x 1075 /nucleotide/day |16], and more specifically varies between each
pair of nucleotides |6,/16]. Here, we consider a simplified probability of mutation p for
binary amino acid residues that is three times the nucleotide substitution rate,
p = 3.6 x 1075 /site/generation. However, in we extend our methods to
allow for site and state-dependent mutation rates, compute the transition probabilities
ti0—1 and p; 150 for the patient used in the example below, and show that the
resulting dynamics of mutations are similar to the main text. Constructing a full amino
acid substitution matrix using the codon map requires a model with multiple states per
site, which is beyond the scope of this paper.

Table [I| summarizes all of the parameter values we used.

Table 1. Parameter values used for the application of EMF to the
dynamics of p24.

| parameter | description | value (units) |
L length of consensus p24 amino acid sequence 231 sites
I} proportionality constant between prevalence and 0.023 day !
fitness landscapes: h; = Shy, Ji; = BJ};
Fy intrinsic fitness of consensus sequence 1.6 day~!
beot overall magnitude of CTL response 6 day !
| to | time delay before activation of CTL response | 7 days |
" TheT |77 timeto halfamasimum of T response |~ Teays |
THil Hill coefficient of CTL response 2
1 mutation rate 3.6 x 107°
site!day !
Ny initial population size 10

2We found that HIV dynamics do not depend sensitively on the precise form of b.(t), and in the
[Discussion] we propose an extension of our methods that include explicit consideration of CTL clone

populations.
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Patient CH58 |[3]

Here we describe a patient (data taken from [3]) whom we use as an example for
application of the EMF method. Patient CH58 was a male infected by an HIV-1 group
M subtype B strain [3]. He was not treated with antiretroviral therapy (ART) during
the period of study, in accordance with contemporaneous medical protocol. Blood
plasma was drawn at several timepoints from which snapshots of the intra-host HIV
population were determined by single genome amplification and sequencing [§], and the
specificity and magnitude of HIV-specific CTL responses were also mapped by
interferon-y ELISpot assays against overlapping peptides spanning the founder viral
sequence [3|. The founder sequence had five mutations in p24 w.r.t. the subtype B
consensus, and two p24 epitopes were targeted by the patient (see Fig A), left panel,;
one epitope in Env and one in Nef were also targeted (not shown)). Mutations away
from the founder sequence in each blood sample are listed in Fig (A)7 right panel.

Frequencies of mutations in the two p24 epitopes over time are also plotted in Fig (B)

Results

Application of EMF to predict p24 mutational dynamics in
patient CH58

As a proof of principle, we apply the EMF method to simulate the dynamics of the p24
gag protein within a patient whose CTL responses and dynamics are known (taken
from [3]). Note that the main goal of this section is to demonstrate use of the method,
and not to prove that simulated HIV dynamics using fitness landscapes can predict with
good accuracy the locations and timescales of escape mutations (as was done in |24] for
a larger number of HIV proteins and patients).

As input to EMF, we use:

1. the binarized p24 founder sequence infecting patient CH58 (Fig (A), left panel);

2. the within-host fitness landscape of p24 (Eq [2)), with parameters Fy, {h;} and
{Ji;} inferred in [Parameter estimation} the locations of the p24 epitopes
(Fig A)7 left panel), and their magnitudes by, and ba o, where by o + b2,0 = byos.

In the following, we first consider by o = ba,0, and study the effect of the vertical
immunodominance, by o # by, later.

EMF outputs coupled dynamics of effective fields and frequencies of
mutation at each HIV residue over time

Starting with the {mgo)} in Fig A), left panel, we follow Eq to recursively
compute the L effective fields {ilik)} and frequencies of mutations {ml(-k)} over time k,
which are plotted in Fig[6 We find that following the activation of the CTL response
(yellow dotted lines), the effective fields at sites within epitopes rise above zero

(Fig @(A)), signifying a selective pressure to mutate to s; = 1 at these sites. At longer
times, two sites (15 and 110 as shown later) have large ng) > 0, while the rest are
distributed around a value less than zero.

The effective fields dictate the dynamics of the mutational frequencies m
(k)

%

(k)

(Fig EI(B)) Positive ﬁgk) lead to increasing m; ', while negative fzgk) lead to decreasing

mgk), with the magnitude of ﬁgk) determining the rate of change. In turn, changes in

the ml(-k) feed back into the time-varying effective fields izg-k) (for j # %) through terms
depending on J;; and b, in Eqs and , thus prescribing how the changing
sequence background modifies the tendency for each HIV residue to mutate.
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| timepoint (days) | p24 mutations | no. of samples

(A)

8 - 6
- 7
45 110 1
1
CH58 1
sites initially non-consensus: 35 110 9
27,91, 107, 120, 225 6
p24 epitopes: 0 5
sites 15-23 154 5
sites 108117 70 -
239 92, 1
110 2
350 11, 110 1
15, 110 1
(B) CHO58, p24
1.0
15
— 110
c o8] — 116
S
E r/////\
£ 0.6 / \
© /
>
g 0.4 /
(]
3
= /
g /
= 0.2 /
0.0 . , : . : —
0 50 100 150 200 250 300 350

days

Fig 5. Dynamics of p24 measured in patient CH58 (data taken from ) (A) Left panel: Non-consensus residues
in the founder sequence and epitopes in p24 targeted by patient CH58. Right panel: p24 mutants and sampled frequencies
drawn from patient CH58 at multiple timepoints post-infection. Each row represents a distinct sampled sequence. (B)
Frequencies of mutations at sites 15, 110 and 116 sampled from patient CH58 over time.

EMF combines fitness costs and epistatic interactions to predict the
locations of HIV escape mutations

Focusing on the two p24 epitopes, we find that mutations initially arise at all sites
within each epitope, but eventually one fixes while the others decline (Fig . This

behavior may be discerned from the EMF equations: if the frequency of mutation milC
at site 7 in an epitope is close to 1, the last term of Eq will be small for sites j # i
in the epitope, but not for site 7. There is thus a tendency for the other mg.k) to decline
to zero, leaving all of the weight of b.(k) to act on site ¢ and keeping it mutated.
EMF combines fitness costs and epistatic interactions to determine which escape
mutations arise. In the first p24 epitope, site 15 is the least-fitness-cost mutation

according to the intrinsic landscape Fj,(S) (Fig[7(A) inset) and is the one that fixed. In

March 11, 2019

15/128


https://doi.org/10.1101/518704
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/518704; this version posted March 12, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

(A)

aCC-BY-NC-ND 4.0 International license.

EMF (CHO58, p24)
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©
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Fig 6. Dynamics of effective fields and frequencies of mutations output by EMF. (A) Effective fields {fzgk)}, and

(B) frequencies of mutations {mgk)}, at each of the L residues of p24 during evolution within patient CH58, as predicted by

corresponds to 1 day because we have used parameter values in units of day~! (see Table

the EMF method. Plotted in the yellow dotted lines are the CTL response b (t)/b.0 (Eq ) One generation of EMF
0}

10 (A) EMF (CHO58, p24)
' relative fitness effects 15
16
0.8 1
5 v
E 18
3 19
g 0.6 20
Y
o 21
>
S 0.4 22
g 23
= -0.12 —0.08 —-0.04 0.00
o hilFo
= 0.2
0.0 —&\ , , . . ;
0 50 100 150 200 250 300

generations

350

frequency of mutation

EMF (CHO58, p24)

relative fitness effects

108
109
° 110
111
112
113
114
115

117
—0.04 0.00

100 150 200 250 300 350

generations

Fig 7. Frequencies of mutations in p24 epitopes targeted by patient CH58. Frequencies of mutations in the p24
epitopes at (A) sites 15-23, and (B) sites 108-117, as predicted by the EMF method. Insets show h;/Fj at each site within

each epitope, and the least-fitness-cost mutations are marked with red circles.

the second epitope, site 116 is the least-fitness-cost mutation (Fig E(B) inset) but site
> h{iy
mutation at site 110 fixed by 350 days post-infection (Fig[f|B)), and furthermore there
appeared to be competition between mutations at sites 110 and 116 at intermediate
times (Fig B)), qualitatively resembling the dynamics produced by EMF for this
patient (Fig m(B)) We emphasize that this is merely one example that we chose to
present, but Barton et al. showed empirically (by performing 103 stochastic
simulations per HIV protein and host) that HIV fitness landscapes inferred from global

110 fixed, and indeed h

at all times k& (not shown). In the patient, an escape
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prevalence provide good predictions of the locations of HIV escape mutations, for a
larger number of patients and proteins studied [24]. Here, we have shown that EMF is
capable of making similar predictions that are directly encoded in the effective fitnesses.

EMF predicts the vertical immunodominance of CTL responses to affect
the order and timescale of escape mutations by modifying the relative
strengths of effective fitnesses

In patient CH58, a mutation at site 15 was only detected on day 350 (Fig[f[B)). This
delay might be caused by a smaller CTL population targeting the first p24 epitope, and
hence a weaker selective pressure for sites 15-23 to mutate. Indeed, the peak CTL
response at this epitope was measured by ELISpot to be smaller by a factor of 4-5 than
at sites 108117 [3|. To study how EMF predicts the vertical immunodominance of CTL
responses to change the dynamics of mutations, we repeated the above simulation using
b1,0 = b2,0/5 and keeping the same overall by, = b1,9 + b2 o as before. The resulting
dynamics are shown in Fig[8[A) (solid lines). The same escape mutations arise, but
unlike the b1 g = by o case (dotted lines), escape at site 15 occurs later than at site 110.
This delay would be compounded by a larger time lag ¢y for the first epitope as
compared with the second, as was observed in the patient [3] (not shown). Indeed, Liu
et al. |3] performed a statistical analysis for a larger number of patients and proteins
and showed that the vertical immunodominance correlates well with the rate of HIV
escape. Here, EMF encodes this effect simply by modifying the relative strengths of the
effective fitnesses.

(A) EMF (CHO58, p24) (B) EMF (CHO58, p24)
1.0 1.0 —=
- 0.8 c 0.8
o o
-t -~
£ 5
g 0.6 1 g 0.6
Y— Y
o o
o 3
c 0.4 c 0.4
] ]
3 3
o jon
o g
- 0.2 = 0.2
0.0 T T T 0.0 T T T .
0 40 60 80 100 0 20 40 60 80 100
generations generations

Fig 8. Effect of vertical immunodominance and sequence background on the dynamics of p24 escape
mutations in patient CH58. (A) Mutational dynamics at sites 15, 110 and 116 when by o = ba,0/5 (solid lines), and

b0 = bz (dotted lines), for the same overall by = b1,0 + ba2,0. (B) Mutational dynamics at sites 15, 110 and 116 when the
founder sequence is the NL4-3 strain (s129 and so0s = 1; solid lines), as compared with the actual founder sequence of patient
CH58 (dotted lines). Here, site 116 mutates instead of 110.

EMF predicts that a different sequence background may cause different
escape mutations to arise in a host because of compensatory interactions

In models of HIV dynamics with multiple HIV strains that do not consider epistatic
interactions (e.g. [25128.[32]), the sequence background outside of an epitope does not
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affect the locations of escape mutations in the epitope. Here, we asked if a different
founder sequence might affect the locations of escape mutations, for a host that mounts
the same CTL responses as patient CH58. We simulated the dynamics starting with, as
an example, the NL4-3 strain (used in the experiments of , with mutations at sites
120 and 208 in p24 w.r.t. the subtype B consensus). Fig[8(B) (solid lines) shows the
result for sites 15, 110 and 116. In contrast with the above (dotted lines), site 116
acquired an escape mutation instead of 110, which is in fact the naive expectation based
on knowledge of just the fitness costs (Fig[7{B) inset). Thus, knowing the epistatic
interactions of the fitness landscape may enable more accurate predictions of which
escape mutations arise given the sequence background, which were indeed the findings
of for a larger number of HIV proteins and patients studied. Here, we have shown
that EMF efficiently makes such predictions that are encoded in the effective fitnesses.

EMF predicts reversions and compensatory mutations occurring over
longer timescales

Apart from mutational escape within epitopes, EMF also informs the dynamics of
mutations outside of epitopes. Figure [9] shows the effective fields and frequencies of
mutations at all p24 residues outside of the two epitopes output by EMF for patient
CHS58. The effective fields are distributed around a value less than zero and are mostly
negative. Because their magnitudes are closer to zero than at sites within epitopes
(Fig |§|(A)), the mutational dynamics they induce tend to occur over longer timescales.
We find that the initially non-consensus sites revert back to consensus over a range of
timescales (Fig[9(B)), which is qualitatively consistent with the findings of Refs
and especially ﬂgﬂ that found that sites tend to revert to the group or subtype consensus
residue throughout the course of intra-patient evolution in all of the patients studied.
Within the EMF framework, a distribution of reversion timescales is due to a
distribution of effective fitnesses that are negative and close to zero.

EMF (CHO58, p24) 10 (B) EMF (CHO058, p24)
' 27
— 01
c 0.81 — 107
o — 120
E 148
g 06- 225
w“ \
o
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c 0.4
[}
3
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g
N 02-
0.0 , \

generations

200 250 300 350 0 50 100 150 200 250 300 350
generations

Fig 9. Reversions and compensatory mutations in patient CH58, as predicted by EMF. (A) Effective fields

{ﬁgk)}, and (B) frequencies of mutations {mgk)}, at p24 residues outside of epitopes for patient CH58, as predicted by the
EMF method. Compensatory mutations occur at sites whose effective fields rise above zero (here, site 148). Reversions occur
at sites initially non-consensus whose effective fields remain negative (here, sites 91, 107, 120, and 225). Site 27 was initially
non-consensus but not predicted by EMF to revert.

Finally, EMF predicts A4 > 0 at long times (Fig @(A)) and hence a potential
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compensatory mutation to arise at site 148 (Fig|9(B)). This did not occur in the patient;
instead, mutations at sites 92 and 11 arose (FigA), right panel). We emphasize that
there are many possible reasons why mutations predicted by EMF may not occur in the
patient, and vice-versa: EMF is an approximate high-recombination-rate model that
ignores many important processes during HIV infection, a real infection presumably has
large stochastic effects that cannot be precisely predicted, the fitness landscape may be
incomplete, etc. (see . For patient CH58, the site 92 mutation appeared with
the site 116 mutation on day 239 at a low frequency before the site 116 mutation went
extinct, so the site 92 mutation could possibly be a hitchhiker mutation, which cannot
be modeled by EMF. The site 11 mutation might also affect antigen processing of the
epitope at site 15-23 and hence its presentation to CTLs |46L/47], allowing evasion of
CTL pressure despite not having a mutation within the actual epitope; indeed it arose
at the same time as the site 15 escape mutation. Our current method does not account
for antigen-processing mutants, although Fj,.st can easily be modified to do so.

Mean fitness and site entropy of the intra-host population

The mean fitness and other quantities describing the entire intra-host population are
particularly simple to compute within the EMF framework, which we show here. The
mean fitness at time k is given by

(FY0 = Fni?, - mif), (23)

which is plotted in Fig A) for F' = Fiost (blue curve) and F' = Fj, (orange curve).
As host CTLs are activated, the founder sequence becomes strongly selected against,
which is represented by the valleys in Fig A). The intra-host population evolves over
time to “climb” out of this fitness valley through the generation of mutants and selection
of beneficial ones. Thus, the mean fitness first decreases, and then is a strictly
nondecreasing function of time. The blue and orange curves merge because for

sequences that have completely escaped host CTL responses, Fyost and Fi, are identical.

(A) EMF (CHO58, p24) (B) EMF (CHO58, p24)
0.0 0.06 1
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=
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§ o 0.03
£ —2.01 Q
£ 0.024
C
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— Fooat 0.01
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Fig 10. Mean fitness and site entropy of the intra-host population in patient CH58 over time, as predicted
by EMF. (A) Mean fitness <F>(k) — Fp of the intra-host population over time, using F' = Fj,os (blue line) and F' = F;,
(orange line). The grey dotted line is the fitness of the consensus sequence (0, - -+ ,0). (B) The mean entropy per site over time.

A measure of genetic diversity of the intra-host population is the mean entropy per

March 11, 2019

19/128

513


https://doi.org/10.1101/518704
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/518704; this version posted March 12, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY-NC-ND 4.0 International license.

site,
L
1
HY = =237 [m logy mi? + (1 = m{?) logy (1 = m{")].
i=1

This quantifies how different the frequencies of mutation are, on average, from 0

(24)

or 1

(—=mlogym — (1 —m)logy(1 —m) is bounded by 0 and 1, equals 0 at m = 0 and 1, and

equals 1 at m = 1/2). Figure [L0[B) shows that the mean site entropy spikes whe
several escape mutations arise simultaneously when CTL responses are activated

n
, and

declines as escape mutations either fix or disappear. Even at long times, the mean site
entropy remains at a finite value because mutations are continuously generated at all

sites but remain at low levels due to being less fit; this is a manifestation of

mutation-selection balance [38|. (Consistently, Zanini et al. |16] used mutation-selection

balance to infer the fitness costs at all sites in the HIV genome not undergoing
CTL-driven selection.)

Application of EMF stochastic population dynamics method

In we introduced a stochastic population dynamics method based on the
approach, where population size changes depend on the frequencies of mutations {

EMF
m{}

in the population at each time, unlike prior stochastic simulation approaches with a
fixed population size [24,[32] or a time-varying one that is externally defined |33]. In the
following, we apply this method again to the dynamics of p24 gag in patient CH58,

assuming the initial population size to be Ny = 10, and keeping all other parame
values the same as before (see Table [1)).

EMF population dynamics simulations produce variability in the locat
of escape mutations, but are consistent with the deterministic EMF
method

Figures [IT(A)-{LI}(C) show the dynamics of mutations at sites 15, 110 and 116 in
representative stochastic runs (dotted lines), their mean over 200 stochastic runs

(dashed lines), and a comparison with the deterministic EMF method above (solid lines).

ter

ions

ten

Figures [II{D)-II[E) show the mean of 200 stochastic runs (dashed lines) and the

deterministic dynamics (solid lines) at all sites in the two p24 epitopes. Figures
[[1[F){11[G) show in greater detail the fraction among 200 stochastic runs where
in each of the epitopes has the highest frequency of mutation at the end of the
simulation.

We find that the stochastic method produces escape events in individual runs

a site

that

can be very different from the deterministic EMF prediction: with some probability,

other sites may fix, particularly when they happen to arise early enough in a simu
(not shown). This is why the mean values for sites 15, 110 and 116 are lower than
deterministic case, and the averages for other within-epitope sites are higher (see

lation
in the

Figs D)E)) However, for both epitopes, the deterministic EMF method is a

good predictor of the stochastic case averaged over many simulation runs. In the

first

epitope, site 15 fixes most of the time (Fig[II(F)), and in the second, greater variability
in the locations of escape mutations (particularly at sites 115 and 116; see Fig [IT(G))
seem to correspond with higher frequencies of mutation at these sites at intermediate
times in the deterministic dynamics (Fig|11{E)). Hence, these simulations suggest that

adding stochasticity to our methods produces variability in the dynamics of escap
on average, the results are consistent with the deterministic case.

e, but
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Fig 11. Stochastic dynamics of escape as predicted by EMF population dynamics simulations. Frequencies of
mutation at (A) site 15, (B) site 110, and (C) site 116 produced by the deterministic EMF method (solid lines), 10
representative stochastic runs (dotted lines), and the mean over 200 independent stochastic runs (dashed lines). (D)—(E)
Frequencies of mutations within the two p24 epitopes produced by the deterministic EMF method (solid lines), and the mean
over 200 independent stochastic runs (dashed lines). We did not plot error bars because the dynamics lead to sites having
mutational frequencies tending to 0 or 1, so the spread around the mean does not reflect the results of individual stochastic
runs. (F)—(G) Fraction among 200 stochastic runs where a site has the highest frequency of mutation in the epitope at the
end of the simulation. Site 15 fixes most of the time in the first epitope, but there is greater variability in the second,
especially at sites 115 and 116 instead of 110, which is consistent with the deterministic EMF dynamics.

EMF population dynamics simulations produce exponential growth and
decline of the population size, consistent with viral load kinetics during
acute infection
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exponentially, then exponentially declines following activation of CTL responses. These
dynamics are consistent with plasma viral load kinetics in untreated hosts |1], and also
experiments that found a rapid rebound in plasma viral load following CTL depletion
that reversed upon the replenishment of these cells |5]. Furthermore, this characteristic
exponential growth and decline is observed for a range of byt (see , which is
consistent with the fact that diverse hosts, who presumably have a range of magnitudes
and specificities of CTL responses, experience qualitatively similar viral load kinetics
during acute infection.

EMF (CHO58, p24)

1013 J

1011_

109 J

107 4

population size

105 J

103 4

10!

m—— deterministic
stochastic

T T T T T T T

0 5 10 15 20 25 30 35 40

generations

Fig 12. Dynamics of the population size in patient CH58 using EMF population dynamics simulations.
Dynamics of population size over time for the deterministic EMF method (blue line) and 10 representative stochastic runs

(red lines). The exponential increase

and initial decrease in the population size qualitatively resemble plasma viral load

kinetics during early acute infection. However, the unbounded exponential growth after viral escape clearly does not reflect a
real infection, and is a result of not explicitly considering viral infection and elimination of target cells.

While the exponential increase in viral load and initial decline after activation of
host CTL responses resemble viral load kinetics in a real infection, the intra-host
population quickly overcomes host CTL pressure and continues to grow exponentially.
In actual patients, this does not happen, for two important reasons:

1. We did not consider an explicit target cell population that declines following
infection. Models that include the dynamics of host target cells via ordinary
differential equations show an approach to a finite fixed point as opposed to

unbounded growth (see e.g. [28]). In the we propose how our methods
may be extended to include dynamics of an explicit target cell population.

2. There are immunodominance shifts in the CTL response. CTLs specific for
epitopes from which the HIV population has escaped decline, and new CTL clones
specific for other epitopes emerge (see e.g. [25]). Thus, there is continuous CTL
selection and HIV escape throughout the course of intra-host infection, which we
did not attempt to model here.
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Discussion

In this paper, we introduced an approach for simulating HIV dynamics given a fitness
landscape, which we designated the evolutionary mean-field (EMF) method. EMF is an
approximate high-recombination-rate model of HIV replication and mutation, with
time-varying population sizes. EMF takes as input the fitness landscape of an HIV
protein, including epistatic interactions, and the locations and strengths of a host’s CTL
responses, and outputs time-dependent “effective fitnesses” describing the tendency for
each HIV residue to mutate, and frequencies of mutations caused by these time-varying
fitness effects. Applying this method to the dynamics of the p24 gag protein in a
patient whose CTL responses are known (from [3]), we showed how fitness costs and
compensatory interactions, vertical immunodominance of CTL responses, and the
sequence background modify the effective fitnesses and hence impact the locations and
relative timescales of HIV escape mutations, which is consistent with previous work
employing stochastic simulations [24]. These include cases where knowledge of the
epistatic interactions improves upon predictions relying simply on fitness costs. We also
show that features of longer-term dynamics, specifically reversions, may be described in

terms of the effective fitnesses, which is also qualitatively consistent with other work [9].

EMF makes quick predictions that may otherwise require performing many stochastic
simulation runs [24], and furthermore describes various genetic-level attributes known to
influence HIV dynamics in terms of their combined effect on the effective fitnesses.

We also developed a stochastic population dynamics method based on EMF, and
quantified the variability in the escape mutations that arise in the same example. The
HIV population sizes resulting from this method show a characteristic exponential rise
and fall during early infection, consistent with observed viral load kinetics, although the
unbounded exponential growth following HIV escape is a weakness of the current
implementation, and we suggest below extensions to overcome it.

What have we lost from a high-recombination-rate approximation of HIV dynamics?
Unlike a real HIV infection, here escape mutations in separate epitopes quickly
recombine, forming variants that escape multiple epitopes; in this sense EMF simulates
a “stronger” virus. Also, EMF is unable to account for important features such as clonal
interference and genetic hitchhiking that do not occur in linkage equilibrium. On the
other hand, EMF provides quick dynamical predictions that can be checked against
simulations implementing a finite recombination rate [24], and we expect that, averaged
over many hypothetical runs, mutations arising due to fitness effects in a model with

finite recombination rate should be comparable and consistent with the results of EMF.

Indeed, in we performed this check and validated the results obtained in
the above example with Wright—Fisher simulations with a finite recombination rate (as
in [24]). Neher and Shraiman [31] obtained analogous mean-field equations to Eq
as the lowest order in an expansion in the inverse recombination rate; it would be
interesting to consider the next-order corrections (i.e., quasi-linkage equilibrium) which
would be a finite-recombination-rate extension of EMF (this would however require
L(L — 1) extra equations, i.e. 5 x 10* for p24).

We have presented EMF as a discretized-time algorithm where each time step
represents one day (see Table , which roughly corresponds to a replication cycle of
HIV [34]. We could of course discretize time more finely, scaling the replication and
mutation rates appropriately, i.e., if one time step represents x < 1 days, then
Fy — kEy, biot — Kbiot, and S — k5. In this limit, the HIV population size obeys

PO — B )N (), (25)
t
where Fjost(t) depends on the genetic composition of the population at time ¢, and CTL
pressure is implicit in Fj,os;. Thus, mutational escape leads to continued exponential
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growth (Fig. To overcome this limitation, we may consider target cell and CTL
clone populations explicitly (much like in other compartmental models of HIV
dynamics [25H28]):

1. To account for explicit viral infection of target cells and target cell dynamics, we
propose extending Eq to a pair of coupled equations:

AT (t)

7 = )\ — dTT(t) - Elost (t)N(t)T(t)7 (26)
PO R ONWOT(E) - 5N (1), (27)

where A and dr are the influx and natural death rates of target cells, and 0 is the
rate of clearance of viral particles. Effectively, these equations extend
two-compartment models of HIV dynamics (see e.g. [28]) to have viral infectivity
that depends on the genetic composition of the intra-host population. Models that
include target cell dynamics produce viral population sizes that approach a finite
fixed point [28]; in essence, “fit” viruses do not grow unboundedly if target cells
are limiting. Within the EMF procedure, we propose first computing an
intermediate N (t + 6t) using Eq , which accounts for population size changes
due to the fitness of strains in the population, and then T'(t + §t) and N (¢t + dt)
using Eqs and (with N in place of N on the RHS of these equations).

2. To account for explicit CTL clone dynamics, we propose extending Eq to
have one equation for each CTL clone:

AN -
= = Fu®N@) Zjbg(t)Na(t>, (28)

dbflt(t) - rsbs(t)(l—;bs(t)/btot) N.(t), (29)

where Eq uses Fj, instead of Fjogt, 7 is the growth rate of the CTL
population specific for epitope €, N.(t) is the HIV subpopulation susceptible to
these CTLs, and byt is now a carrying capacity.

While this paper developed an approach to HIV dynamics given a fitness landscape,
the method is presumably limited by the quantitative accuracy of the landscapes used.
While we have limited ourselves to binary sequences, using fitness landscapes of
nucleotide or amino acid sequences (such as those inferred in [13}/24]) would likely
improve the accuracy of EMF’s predictions. Considering higher-order interactions in the
landscape would also help, should these become known. Extensions of EMF to
non-binary sequences and to fitness landscapes with higher-order interactions are
straightforward, but beyond the scope of this paper. Also, we estimated the p24 fitness
landscape from its prevalence in the global population of hosts (following [12}13}24]),
but quantitative estimates of fitness from prevalence are limited by several issues as
studied previously |14H16}/37]; in particular, prevalent HIV mutations are more likely to
be HLA-associated than less prevalent ones [16]. Alternatively, measurements of
intrinsic fitness from cell culture experiments [14,/15|, including epistatic interactions,
may eventually lead to more accurately known fitness landscapes of HIV proteins. This
may lead to more accurate predictions of the intra-host dynamics computed using EMF,
and other methods.

Supporting information

S1 Appendix. EMF with state and site-dependent mutation rates.
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S2 Appendix. Validation of EMF dynamics results by Wright—Fisher
simulations.

S1 Fig. EMF population dynamics produces a characteristic exponential
rise and fall of population size during the early stages of infection, for a
range of by..
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