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Abstract
During infection by the human immunodeficiency virus (HIV), mutations accumulate in
the intra-host viral population due to selection imposed by host T cell responses. The
timescales at which HIV residues acquire mutations in a host range from days to years,
correlating with their diversity in the global population of hosts, and with the relative
strengths at which different regions of the HIV sequence are targeted by the host. In
recent years, “fitness landscapes” of HIV proteins have been estimated from the global
HIV sequence diversity, and stochastic simulations of in silico HIV infection, using these
inferred landscapes, were shown to generate escape mutations whose locations and
relative timescales correlate with those measured in patients with known T cell
responses. These results suggest that the residue-specific fitness costs and epistatic
interactions in the inferred landscapes encode useful information allowing for predictions
of the dynamics of HIV mutations; however, currently available computational
approaches to HIV dynamics that make use of realistic fitness landscapes are limited to
these fixed-population-size stochastic simulations, which require many simulation runs
and do not provide further insight as to why certain mutations tend to arise in a given
host and for a given sequence background. In this paper, we introduce and examine an
alternative approach, which we designate the evolutionary mean-field (EMF) method.
EMF is an approximate high-recombination-rate model of HIV replication and
mutation, in whose limit the dynamics of a large, diverse population of HIV sequences
becomes computationally tractable. EMF takes as input the fitness landscape of an HIV
protein, the locations and strengths of a host’s T cell responses, and the infecting HIV
strain(s), and outputs a set of time-dependent “effective fitnesses” and frequencies of
mutation at each HIV residue over time. Importantly, the effective fitnesses depend
crucially on the fitness costs, epistatic interactions, and time-varying sequence
background, thus automatically encoding how their combined effect influences the
tendency for an HIV residue to mutate, in a time-dependent manner. As a proof of
principle, we apply EMF to the dynamics of the p24 gag protein infecting a host whose
T cell responses are known, and show how features of the fitness landscape, relative
strengths of host T cell responses, and the sequence background impact the locations
and time course of HIV escape mutations, which is consistent with previous work
employing stochastic simulations. Furthermore, we show how features of longer-term
HIV dynamics, specifically reversions, may be described in terms of these effective
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fitnesses, and also quantify the mean fitness and site entropy of the intra-host
population over time. Finally, we introduce a stochastic population dynamics extension
of EMF, where population size changes depend crucially on the fitness of strains
existing in the population at each time, unlike prior stochastic simulation approaches
with a fixed population size or a time-varying one that is externally defined. The EMF
method offers an alternative framework for studying how genetic-level attributes of the
virus and host immune response impact both the evolutionary and population dynamics
of HIV, in a computationally tractable way.

Author summary
Fitness landscapes of HIV proteins have recently been inferred from HIV sequence
diversity in the global population of hosts, and have been used in simulations of in silico
HIV infection to predict the locations and relative timescales of mutations arising in
hosts with known immune responses. However, computational approaches to HIV
dynamics using realistic fitness landscapes are currently limited to these
fixed-population-size stochastic simulations, which require many simulation runs and do
not provide further insight as to why certain mutations tend to arise in a given host and
for a given sequence background. Here, we introduce an alternative approach designated
the evolutionary mean-field (EMF) method, which is an approximate
high-recombination-rate model of HIV dynamics. It takes as input an HIV fitness
landscape, the locations and strengths of a host’s immune responses, and the infecting
HIV strain(s), and outputs a set of time-dependent “effective fitnesses” and frequencies
of mutation at each HIV residue over time. We apply EMF on an example to show how
features of the fitness landscape, relative strengths of host immune responses, and the
HIV sequence background modify the effective fitnesses and hence the locations and
time course of HIV mutations. We also develop a stochastic population dynamics
extension of EMF where population size changes depend crucially on the fitness of
strains existing in the population at each time. The EMF method enables more detailed
study of how genetic-level attributes of the virus and host immune response shape the
evolutionary and population dynamics of HIV, in a computationally tractable way.

Introduction 1

During acute infection by the human immunodeficiency virus (HIV), the virus replicates 2

rapidly and the viral load (concentration of HIV RNA particles in the blood plasma), a 3

measure of the extent of HIV infection, rises exponentially to a peak 2–3 weeks 4

post-infection [1]. Host cytotoxic T lymphocyte (CTL) responses are detectable just 5

before this peak and expand as the viral load declines [1–3]. CTLs kill HIV-infected 6

host cells through the recognition of HIV-derived peptides 8–10 amino acids long (called 7

epitopes) that are presented on the surface of these cells bound to major 8

histocompatibility complex (MHC) class I molecules [4]. While CTLs partially control 9

HIV in an untreated host [5], they are unable to clear the infection: HIV mutants are 10

generated stochastically via error-prone reverse transcription [6], and those with 11

mutations within epitopes escape epitope-specific CTL recognition. Thus, CTLs impose 12

selective pressures on the mutating intra-host HIV population and select for the 13

emergence of escape mutations over time, which can be quantified by sequencing HIV in 14

the blood of infected hosts [3, 7–9]. 15

The timescales at which HIV escape mutations emerge in the intra-host population 16

vary widely, ranging from days to years [1–3]. What is the origin of this variation, and 17

how does it depend on properties of the virus and/or host immune response? Liu et 18
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al. [3] found a correlation between the rate of viral escape at an epitope, and the entropy 19

of epitope sequences in the global population of hosts infected by the same group or 20

subtype of HIV; they also found that the relative strength of CTL responses targeting 21

each epitope (called the vertical immunodominance) plays an important role [3]. These 22

results suggest that different HIV strains have different levels of replicative fitness: 23

residues where mutations incur large fitness costs tend to be more conserved in the 24

global population of hosts and also tend to acquire escape mutations more slowly; also, 25

CTL responses impose additional fitness costs that are abrogated by escape mutations, 26

and higher vertical immunodominance corresponds to larger costs imposed at an epitope. 27

Using global diversity as an indicator for fitness is also supported by mutations toward 28

the group or subtype consensus residue (called reversions), that tend to occur when HIV 29

is transmitted to an MHC-mismatched host (who presents different epitopes from the 30

donor) [10,11] and continue over years of intra-patient evolution [9]. In recent years, 31

residue-specific fitness costs of HIV mutants have been measured in cell culture [12–15] 32

and from genetic variation within individual hosts [16], which were found to correlate 33

with the global entropy of HIV residues belonging to the same group or subtype of HIV 34

(although less conserved residues also tend to be more commonly targeted by CTLs [16], 35

and low-fitness-cost mutants may sometimes be rarely observed globally [14, 15]). Apart 36

from residue-specific fitness costs, epistatic interactions between residues were also 37

shown to play an important role during HIV infection in particular for the Gag [17–21] 38

and Nef [22] proteins, and this should be reflected in pairwise correlations in the global 39

HIV sequence diversity. In recent years, “fitness landscapes” of various HIV proteins 40

were inferred from this global diversity [12,13,23], and using such inferred landscapes, 41

in silico simulations of HIV infecting patients with known CTL responses found a good 42

correlation in the locations and relative timescales of escape mutations with those 43

measured in the patients [24]. These results suggest that the fitness costs and epistatic 44

interactions in the inferred landscapes encode useful information allowing for good 45

predictions of the dynamics of HIV mutations given a host’s CTL responses, which may 46

provide opportunities to inform the design of vaccine immunogens that promote 47

combinations of escape mutations likely to be harmful for the virus [12,21]. 48

In this paper, we focus on methods for simulating HIV dynamics given a 49

residue-specific fitness landscape such as those inferred previously [12,13, 23]. Doing so 50

is nontrivial as the presence of epistatic interactions deem it insufficient to simulate just 51

one site or one epitope; the sequence background matters (as we will show later). 52

Currently available approaches for simulating the dynamics of full HIV protein 53

sequences including a fitness landscape are limited to the fixed-population-size 54

stochastic simulations mentioned above [24]. However, a stochastic method requires 55

performing many simulation runs (103 in [24]) in order to start making predictions 56

about the locations and timescales of HIV mutations, and it does not make clear post 57

hoc why certain mutations tend to arise in a given host and for a given sequence 58

background. Alternatively, compartmental models of HIV dynamics that consider 59

multiple HIV strains and multiple CTL responses [25–28] could be extended to have one 60

set of equations for each HIV strain in the population, but this would require a very 61

large number of equations as the intra-host population expands and diversifies. 62

Here, we introduce and examine an alternative approach for simulating HIV 63

dynamics given a fitness landscape, which we designate the evolutionary mean-field 64

(EMF) method. The “mean-field” in EMF does not refer to chemical species reacting 65

according to their mean concentrations (à la compartmental models), but to a class of 66

approximations in statistical physics. Specifically, we map a model of HIV replication 67

and mutation to a statistical physics model (following [29,30]), a mean-field 68

approximation of which gives a set of time-dependent “effective fields” or fitnesses, and 69

estimates of the frequencies of mutation at each HIV residue over time. The EMF 70
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method enables efficient computation of the dynamics of mutations over time, for HIV 71

proteins of realistic size and using realistic fitness landscapes, and unlike stochastic 72

approaches (e.g. [24]) provide a single prediction for a given host and sequence 73

background. Importantly, the effective fitnesses yielded by EMF depend crucially on the 74

fitness costs, epistatic interactions, and time-varying sequence background, thus 75

automatically encoding how their combined effect influence the tendency for an HIV 76

residue to mutate. Analogous mean-field equations were derived in the 77

high-recombination-rate limit (see e.g. Neher and Shraiman [31]), which is precisely the 78

biological interpretation of the EMF approximation. 79

In the Results, we apply EMF as a proof of principle to study the dynamics of the 80

p24 gag protein infecting a host whose CTL responses are known (from [3]). Specifically, 81

we show how fitness costs and epistatic interactions in the fitness landscape, vertical 82

immunodominance of CTL responses, and the sequence background modify the effective 83

fitnesses and hence impact the locations and time course of HIV escape mutations. 84

These results are consistent with previous work employing stochastic simulations [24], 85

and provide an alternative framework for understanding how genetic-level features of 86

the virus and host CTL response combine to affect HIV dynamics. We also show how 87

reversions and potential compensatory mutations may be described in terms of these 88

effective fitnesses, and quantify the mean fitness and site entropy of the intra-host 89

population over time. Since EMF is an approximate high-recombination-rate method, in 90

S2 Appendix we perform fixed-population-size stochastic simulations with a finite 91

recombination rate (as in [24]) to validate our results for this example. 92

Finally, a fixed-population-size simulation method (such as [24]) does not reflect that 93

the viral load changes by several orders of magnitude during acute HIV infection [1], 94

but computing population size changes by tracking the fitnesses of all HIV sequences in 95

a large, diverse population is also computationally nontrivial. In the final part of this 96

paper, we develop a stochastic population dynamics method based on the EMF 97

approximation, where population size changes depend crucially on the fitness of strains 98

existing in the population at each time, unlike prior stochastic simulation approaches 99

with a fixed population size [24, 32] or a time-varying one that is externally defined [33]. 100

Using this method on the example above, we show that the locations of HIV escape 101

mutations are now stochastic, but the deterministic EMF method gives good predictions 102

on average. This method also produces a characteristic exponential rise and fall of the 103

HIV population size that is qualitatively consistent with the plasma viral load during 104

acute infection. We end in the Discussion by discussing limitations, uses, and further 105

extensions of EMF, including how to incorporate explicit target cell and CTL clone 106

populations, like other compartmental models of HIV dynamics [25–28]. The EMF 107

method offers an alternative framework for understanding how genetic-level features of 108

HIV and the host CTL response impact HIV dynamics in terms of effective fitnesses, 109

and enables a more detailed study of how the fitness landscape and sequence 110

background impact the evolutionary and population dynamics of HIV, in a 111

computationally tractable way. 112

Methods 113

The fitness landscape of an HIV protein 114

We model the fitness landscape of an HIV protein following prior work [12,13,24]: We 115

describe HIV strains by their amino acid sequence, and in particular consider binary 116

sequences S = (s1, · · · , sL) where si = 0 represents the consensus amino acid and si = 1 117

represents any other residue at position i, and L is the length of the protein. The binary 118

approximation (used in [12] but not [13, 24]) is reasonable for highly conserved proteins 119
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such as p24 gag [12]; taking si to be one of four nucleotides or one of twenty amino 120

acids is a straightforward extension, but beyond the scope of this paper. 121

We consider the intrinsic fitness of HIV sequence S to obey 122

Fin(S) = F0 +
L∑
i=1

hisi +
∑
i<j

Jijsisj , (1)

where F0 is the intrinsic fitness of the consensus sequence, {hi} are the fitness costs of 123

mutations at site i, and {Jij} capture pairwise epistatic interactions between sites i and 124

j1. We estimate the values of F0, {hi} and {Jij} in Parameter estimation. 125

During intra-host infection, the fitness of HIV sequence S is altered from its intrinsic 126

value by host CTL pressure. Following [24], we model the effect of CTL-mediated killing 127

of HIV-infected cells and HIV mutational escape by imposing a fitness cost bε on HIV 128

sequences S with no mutation in epitope ε, which is abrogated if S contains at least one 129

mutation within ε. Given a set of epitopes {ε} each beginning at site iε and of length lε 130

amino acids, the within-host fitness of HIV sequence S is thus 131

Fhost(S) = Fin(S)−
∑
ε

bε(1− siε) · · · (1− siε+lε−1). (2)

(This expression assumes that all targeted epitope sequences are (0, · · · , 0); if epitope ε 132

instead has sjε = 1, replace 1− sjε → sjε .) In general, bε is time-dependent so Fhost(S) 133

is time-dependent. 134

Model of HIV dynamics on a fitness landscape 135

An HIV particle replicates by infecting a CD4+ host cell and reverse transcribing its 136

RNA genome into DNA. HIV DNA is then integrated into host DNA and new copies of 137

the virus are produced by the target cell. The ability of an HIV strain to replicate and 138

infect new target cells in a host is described by its replicative fitness Fhost (here 139

modeled by Eq (2)). Also, reverse transcription is error-prone, and introduces random 140

point mutations within the HIV genome with a probability that depends on the 141

nucleotide-to-nucleotide substitution rates [6, 16]. 142

Here, we model HIV replication and mutation by a discretized-time Markov model 143

(see Fig 1). In one replication cycle (which takes roughly 1 day [34]), the effective 144

number of offspring of HIV sequence S is eF (S) where F = Fhost. Note that this is 145

equivalent to solving the continuous-time equation dN(S)
dt = F (S)N(S) for unit time, 146

where N(S) is the population size of sequence S; in the Discussion we elaborate on 147

continuous-time extensions of our methods. Also note that we do not explicitly model 148

infection of target cells or target cell dynamics; in the Discussion we discuss extensions 149

that include explicit consideration of a target cell population. 150

To model error-prone reverse transcription, we consider that sequence S mutates 151

with probability µ/site before replication (see Fig 1). Note that having mutations occur 152

before replication is important for deriving the EMF equations below, but a model with 153

replication before mutation can also be thought of as having one fewer round of 154

mutations in the beginning, and hence both models should produce essentially the same 155

results after many time steps if the mutation rate is small (not shown). Here we also 156

consider µ to be independent of the residue, but we show in S1 Appendix that similar 157

results are obtained when nucleotide-dependent substitution rates are accounted for. 158

First, let us write down the equations for replication and mutation of a single site si.
Suppose si = 0 has fitness F0 and si = 1 has fitness F0 + hi. Also suppose that si = 0

1Note that our methods can easily be extended to fitness landscapes with higher-order interactions;
indeed, we model CTL epitopes as a higher-order interaction (see later).

March 11, 2019 5/28

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 12, 2019. ; https://doi.org/10.1101/518704doi: bioRxiv preprint 

https://doi.org/10.1101/518704
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig 1. Model of HIV replication and mutation. In one replication cycle, HIV sequence S reverse transcribes its
genome, introducing random point mutations with probability µ/site and producing sequence S′. Sequence S′ produces eF (S′)

offspring in one generation. See Eq (5) for the transition matrix describing this process.

mutates to si = 1 or vice-versa with probability µ/generation. At time k, let the
population size be N (k)

i and the frequency of si = 1 in the population be m(k)
i . The

population sizes of si = 0 and si = 1 at time k + 1 are thus given by(
eF0 0
0 eF0+hi

)(
1− µ µ
µ 1− µ

)(
1−m(k)

i

m
(k)
i

)
N

(k)
i

=eF0

(
(1− µ)(1−m(k)

i ) + µm
(k)
i

ehi [µ(1−m(k)
i ) + (1− µ)m

(k)
i ]

)
N

(k)
i , (3)

and their sum gives the total population size N (k+1)
i at time k + 1, with ratio 159

Z̃
(k+1)
i (m

(k)
i ) ≡ N

(k+1)
i

N
(k)
i

= eF0{(1−µ)(1−m(k)
i )+µm

(k)
i +ehi [µ(1−m(k)

i )+(1−µ)m
(k)
i ]}.

(4)
Thus, for HIV sequences of length L replicating according to a fitness landscape Eq 160

(2), the number of offspring with sequence S(k+1) produced by a single sequence S(k) in 161

one generation (or equivalently, the ratio between their populations) is given by 162

〈S(k+1)|T |S(k)〉 = eF (S(k+1))
L∏
i=1

(1− µ)
δ
s
(k)
i

,s
(k+1)
i µ

1−δ
s
(k)
i

,s
(k+1)
i , (5)

where δ
s
(k)
i ,s

(k+1)
i

is the Kronecker delta. The 2L × 2L transition matrix T is not a 163

transition probability matrix (which would require
∑
S′〈S′|T |S〉 = 1), but the transition 164

matrix of a model with time-varying population size. The state at each time is a vector 165

P of populations of the 2L sequences S. 166

Now, suppose we know the fitness landscape Fhost and the initial population P(0). 167

Our goal is to characterize P at future times, specifically to answer two kinds of 168

questions: 169

1. What is the steady state at long times? Which escape mutations arise? Are there 170

reversions or compensatory mutations? 171

2. What are the dynamics towards the steady state? What is the order and 172

timescale of mutations? Are there transient dynamics? 173

The most direct method of solution is to find P(k + 1) = TP(k) for k = 0, · · · , n, from 174

which we can compute, for example, the statistics of mutations at site i over time. This 175
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involves, at time k, finding the marginal frequency 176

mi(k) =

∑
s1
· · ·
∑
sL

P(k)si∑
s1
· · ·
∑
sL

P(k)
. (6)

Equipped with this information, we can for example predict the relative probabilities of 177

making each escape mutation in an epitope. 178

However, this direct method is computationally intractable. For an HIV protein of 179

length L = 200, there are 2200 ≈ 1060 possible sequences, so brute-force matrix 180

multiplication, matrix decompositions of T , or computation of Eq (6) by direct 181

summation aren’t feasible in general. In practice, if the population size is not 182

prohibitively large or if P is sparse, then all sequences existing in the population may be 183

tracked individually. In particular, if µN � 1 (where N = ||P||1 is the population size), 184

successive selective sweeps occur and the population may be described by a dominant 185

strain at each time [35]. However, this is not the regime HIV is in during intra-host 186

infection, when the population continually accumulates diversity through mutations 187

that are selected upon by strong CTL pressure. A commonly used method when 188

µN & 1 is to perform stochastic simulations with a fixed population size N . In S2 189

Appendix, we perform such (Wright–Fisher) simulations following the methods of [24], 190

for the example considered in Results. 191

The evolutionary mean-field (EMF) method 192

In the following, we solve P(k + 1) = TP(k) for k = 0, · · · , n approximately, which 193

directly yields estimates of Eq (6) for all HIV residues over time. 194

To do this, we first map the above model of HIV replication and mutation to a 195

statistical physics model (first introduced in [29,30]). Using the identity 196

δsi,s′i = 1
2 [1 + (1− 2si)(1− 2s′i)], we rewrite Eq (5) in the form eH(S(k+1),S(k)), with 197

energy (Hamiltonian) given by 198

H(S(k+1), S(k)) = F (S(k+1)) +K
L∑
i=1

(1− 2s
(k)
i )(1− 2s

(k+1)
i ), (7)

where K ≡ 1
2 log 1−µ

µ , and we have omitted a constant term L
2 log(1− µ)µ for notational 199

clarity. The total number of offspring produced by sequence S(k) in one generation is 200

given by 201

Z(k+1)(S(k)) ≡
∑

{S(k+1)}

〈S(k+1)|T |S(k)〉 =
∑

{S(k+1)}

eH(S(k+1),S(k)). (8)

Note that H(S(k+1), S(k)) depends on both S(k) and S(k+1), while the ‘partition 202

function’ Z(k+1) has the 2L possible sequences {S(k+1)} summed over. Extending to 203

multiple generations, the Hamiltonian has a structure shown in Fig 2, left, with sites 204

(spins) within each generation interacting according to F (S), and spins along the time 205

dimension having nearest-neighbor couplings K [29, 30]. The partition function 206

(summing over {S(1)}, · · · , {S(n)}) is then the total number of offspring produced by a 207

single sequence S(0) over n generations. 208

Now, consider an approximate Hamiltonian 209

H̃(S(k+1), S(k)) =
L∑
i=1

[
h̃
(k+1)
i s

(k+1)
i +K(1− 2s

(k)
i )(1− 2s

(k+1)
i )

]
, (9)

where the “effective fields” or fitnesses h̃(k+1)
i at sites i = 1, · · · , L are to be determined. 210

Unlike Eq (7), here the spins i are noninteracting (see Fig 2, right). This simplifies 211
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Fig 2. The evolutionary mean-field approximation. Left: A statistical physics model with Hamiltonian
H(S(n), · · · , S(0)), generalizing Eq (7) to multiple generations. Right: A schematic of the evolutionary mean-field (EMF)
approximation. The “effective fitnesses” h̃(k)i depend on the time-varying sequence background in a nontrivial manner (see
Eqs (14) and (16)).

computation of the total number of offspring produced by sequence S(k) in one 212

generation, to 213

Z̃(k+1)(S(k)) =
L∏
i=1

[
eh̃

(k+1)
i ∓K + e±K

]
, (10)

which is now a product of L terms instead of a sum over 2L terms (cf. Eq (8)). In 214

Eq (10), the upper sign is for s(k)i = 0 and the lower sign is for s(k)i = 1. 215

We want to define effective fitnesses {h̃(k+1)
i } such that Z(S(k)) and Z̃(S(k)) are as 216

“close” as possible. To do this, we make use of Gibbs’ inequality [36], which states that 217

the Kullback–Leibler divergence of two distributions P and P̃ is nonnegative, i.e. 218

DKL(P̃ ||P ) ≥ 0. Using the forms P (·) = eH(·)/Z and P̃ (·) = eH̃(·)/Z̃, Gibbs’ inequality 219

becomes 220

logZ(k+1) ≥ log Z̃(k+1) + 〈H(S(k+1), S(k))− H̃(S(k+1), S(k))〉∼, (11)

where 〈f〉∼ ≡
∑
x f(x)P̃ (x) is the expectation value of f with respect to the 221

approximate model. (We note here that Shekhar et al. [37] used Eq (11) in similar work 222

to study the relation between the prevalence and intrinsic fitness landscapes of HIV; 223

they used a different H̃ involving Fin instead of Eq (9), and their resulting equations do 224

not reduce the computational complexity of the solution, which is our goal here, because 225

their H̃ is still interacting.) 226

For the within-host fitness landscape Eq (2), 227

〈H−H̃〉∼ =
L∑
i=1

(
hi−h̃(k+1)

i

)
m

(k+1)
i +

∑
i<j

Jijm
(k+1)
i m

(k+1)
j −

∑
ε

bε
∏
j∈ε

(1−m(k+1)
j ), (12)

where we have defined m(k+1)
i ≡ 〈s(k+1)

i 〉∼, and 〈s(k+1)
i s

(k+1)
j 〉 = m

(k+1)
i m

(k+1)
j because 228

sites are decoupled in the approximate model. Thus, extremizing the RHS of Eq (11) 229

w.r.t. h̃(k+1)
i , and using Eqs (10) and (12), leads to 230

0 =
∂

∂h̃
(k+1)
i

[
log Z̃(k+1) + 〈H − H̃〉∼

]
=��

��
m

(k+1)
i −��

��
m

(k+1)
i +

[ ∂

∂h̃
(k+1)
i

m
(k+1)
i

][
hi − h̃(k+1)

i +
∑
j 6=i

Jijm
(k+1)
j

]
,

(13)
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for sites i outside of epitopes giving 231

h̃
(k+1)
i = hi +

∑
j 6=i

Jijm
(k+1)
j , (14)

and 232

0 =�
���

m
(k+1)
i −�

���
m

(k+1)
i +

[ ∂

∂h̃
(k+1)
i

m
(k+1)
i

]
×
[
hi − h̃(k+1)

i +
∑
j 6=i

Jijm
(k+1)
j − bε

∏
j∈ε\i

(1−m(k+1)
j )

]
,

(15)

for sites i in epitope ε giving 233

h̃
(k+1)
i = hi +

∑
j 6=i

Jijm
(k+1)
j − bε

∏
j∈ε\i

(1−m(k+1)
j ). (16)

Equation (16) again assumes that the targeted epitope sequence is (0, · · · , 0); replace 234

1−m(k+1)
j → m

(k+1)
j if ε contains a site j with sj = 1. 235

The m(k+1)
i ≡ 〈s(k+1)

i 〉∼ are the frequencies of mutation at site i and time k + 1 in 236

the approximate model. For s(k)i = 0 or 1, we find by differentiating Eq (10) w.r.t. 237

h̃
(k+1)
i that 238

m
(k+1)
i =

eh̃
(k+1)
i ∓K

e±K + eh̃
(k+1)
i ∓K

, (17)

where again the upper sign is for s(k)i = 0 and the lower sign is for s(k)i = 1. For generic 239

0 ≤ m(k)
i ≤ 1, we obtain 240

m
(k+1)
i =

eh̃
(k+1)
i [µ(1−m(k)

i ) + (1− µ)m
(k)
i ]

Z̃
(k+1)
i

(
m

(k)
i ; h̃

(k+1)
i

) , (18)

which is analogous to the one-site case (see Eqs (3) and (4)). 241

To summarize, the EMF method starts with the initial frequencies of HIV mutations 242

{m(0)
i }, and computes the L effective fitnesses {h̃(k+1)

i } (Eqs (14) and (16)) and 243

frequencies of mutations {m(k+1)
i } (Eq (18)) at times k + 1 recursively from the {m(k)

i } 244

at the previous time k. While computing the marginal frequencies at each time by 245

Eq (6) involves summing over 2L terms, which is intractable for HIV sequences of 246

realistic size, Eq (18) contains a sum of no more than two terms in the denominator, 247

however requiring simultaneous solution with Eqs (14) and (16) (because h̃(k+1)
i 248

depends on m(k+1)
j for j 6= i which in turn depend on h̃(k+1)

j ). A 249

dynamic-programming-like method of solution is to iterate between {h̃(k+1)
i } and 250

{m(k+1)
i } until convergence for each k (not shown). However, if the {m(k)

i } do not 251

change drastically with time, a computationally more efficient implementation is to 252

replace m(k+1)
i with m(k)

i in Eqs (14) and (16), and to “shoot” forward in time k, 253

iterating between {h̃(k)i } and {m
(k)
i } for larger and larger k: 254

{m(0)
i }

Eqs (14) and (16)−−−−−−−−−−−→ {h̃(1)i }
Eq (18)−−−−−→ {m(1)

i }
Eqs (14) and (16)−−−−−−−−−−−→ {h̃(2)i } → · · · . (19)
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EMF population dynamics method 255

Finally, the EMF method also allows for the computation of the population dynamics, 256

since Z(k+1) (Eq (8)) is the ratio of total population sizes between times k + 1 and k. 257

While computing Z(k+1) involves summing over 2L terms, the RHS of Eq (11) gives a 258

computationally tractable lower bound: 259

logZ(k+1) ≥
L∑
i=1

log Z̃
(k+1)
i + Fhost(m

(k+1)
1 , · · · ,m(k+1)

L )−
L∑
i=1

h̃
(k+1)
i m

(k+1)
i , (20)

where Fhost(m
(k+1)
1 , · · · ,m(k+1)

L ) is the mean fitness of the population at time k + 1 260

within the EMF approximation. 261

Motivated by prior stochastic simulation approaches [24,32,33], we thus define a 262

stochastic population dynamics method based on EMF by taking the population size at 263

generation k + 1, N (k+1), to be Poisson-distributed (following e.g. [33]) with mean 264

N (k)Z(k+1). Importantly, population size changes depend crucially on which mutations 265

exist and arise in the population at each time. We also draw the frequencies of 266

mutations {m(k+1)
i } at time k + 1 from a binomial distribution (following 267

e.g. [24, 32,33]) with N (k+1) trials and probabilities given by Eq (18). 268

Interpretation of EMF as a high-recombination-rate model of 269

HIV dynamics 270

The EMF method solves the model of HIV replication and mutation defined by Eq (5) 271

approximately by a model with L independently evolving sites experiencing 272

time-dependent fitnesses {h̃(k)i }, yielding estimates of the frequencies of mutation {m(k)
i } 273

at all HIV residues over time. While this approximation was motivated by statistical 274

physics, mean-field equations analogous to Eq (14) were derived for genotype dynamics 275

in the high-recombination-rate limit (see Neher and Shraiman [31]). Indeed, in this limit 276

the probability that mutations at sites i and j are jointly observed on a sequence is 277

simply equal to the product of their frequencies, mimj (called linkage equilibrium [38]). 278

Because EMF approximates sequence dynamics by the dynamics of independently 279

evolving sites, it should be viewed as a high-recombination-rate model of HIV dynamics. 280

HIV does undergo recombination during intra-host infection: it switches RNA 281

templates during reverse transcription at a rate estimated at 2.8 282

events/genome/cycle [39], and this may generate novel recombinant sequences if a 283

target cell is coinfected by multiple HIV strains [40]. The effective HIV recombination 284

rate was estimated from intra-host genetic variation to be 285

1.4× 10−5/nucleotide/day [41], which is of the same order as its mutation rate. 286

Recombination plays an important role during HIV infection because separate escape 287

mutations recombining onto the same genome generate fitter viruses that escape 288

multiple epitopes [42], and so models of HIV dynamics with high recombination rates 289

would lead to higher escape rates from multiple epitopes [32]. Because EMF is a 290

high-recombination-rate approximation, escape mutations predicted by this method 291

should occur on a faster timescale than in models with a finite recombination rate 292

(e.g. [24, 32]), and so the transient dynamics produced by EMF may be inaccurate, but 293

the locations and relative timescales of mutations caused by fitness effects should 294

nevertheless be comparable and consistent. Indeed, in S2 Appendix we demonstrate 295

consistency of the results presented for the example below with those obtained using the 296

stochastic simulation method of [24] with a finite recombination rate. 297
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Parameter estimation 298

Prevalence landscape of the p24 gag protein 299

p24 gag, which encodes the HIV capsid, is a highly conserved protein, for which 300

binarized amino acid sequences is a reasonable approximation [12]. We follow the 301

methods of [24] to infer the prevalence landscape of p24 from an alignment of HIV-1 302

group M subtype B protein sequences (downloaded from [43]). To improve data quality, 303

all sequences with >5% gaps or ambiguous amino acids were excluded, and all 304

remaining ambiguous amino acids were imputed by the consensus at that position [24]. 305

The sequences were then binarized such that the most common (consensus) residue at 306

each position was relabeled 0, and any mutation (or gap) was relabeled 1. To prevent 307

multiple sequences drawn from the same patient from introducing biases in the sample 308

mean and second moment, we weighted each sequence by one divided by the number of 309

samples from that patient in the alignment [24]. We describe the distribution of p24 310

sequences by P (S) ∝ eFp(S) where the prevalence landscape obeys the form 311

F p(S) =
L∑
i=1

hpi si +
∑
i<j

Jpijsisj , (21)

which is the maximum-entropy distribution given the empirical means and second 312

moments of mutation (see [12,13]). We inferred the values of {hpi } and {J
p
ij} using 313

available techniques [44,45], and the resulting prevalence landscape is shown in Fig 3. 314

Fig 3. The prevalence landscape of p24. Left panel: Fields hpi along the p24 sequence (length L = 231). All hpi < 0
because p24 is highly conserved so all si = 1 are observed less frequently than si = 0. Right panel: Color map of couplings
Jpij ; positive couplings are in blue and negative couplings are in red.

Estimating the proportionality factor between prevalence and fitness 315

landscapes, β, and fitness of consensus, F0, from replicative capacity 316

measurements 317

Shekhar et al. [37] showed via in silico simulations and a variational argument that the 318

prevalence landscape (Eq (21)) and intrinsic fitness landscape (Eq (1)) of HIV are 319

proportionally related in certain regimes, particularly when the global population of 320
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hosts mounts very diverse immune responses (which is to some extent satisfied; see 321

e.g. [16]). We thus relate the {hpi } and {J
p
ij} of the prevalence landscape and the {hi} 322

and {Jij} of the fitness landscape by a proportionality factor β, i.e. hi = βhpi and 323

Jij = βJpij . Note that β has units of inverse time, because {hpi } and {J
p
ij} are 324

dimensionless while {hi} and {Jij} describe replicative fitness costs and epistatic effects 325

with units of inverse time. 326

To estimate β, we first turned to Mann et al. [13], who found a correlation between 327

the measured replicative capacities RC(S) of a number of p24 mutants S in cell culture, 328

and their prevalence landscape values F p(S). Specifically, they found a proportionality 329

factor of 0.07 between RC(S)/RC(SNL4-3) and F p(S)− F p(SNL4-3), where NL4-3 is a 330

reference strain with mutations at sites 120 and 208 in p24 with respect to the HIV-1 331

group M subtype B consensus sequence. Given that RC(SNL4-3) = 1.5 day−1 [13], we 332

obtain β = 0.07× 1.5 = 0.11 day−1. We found that this value of β produces relative 333

fitness costs (F0 − Fin(S))/F0 distributed around 40–50%, which are significantly larger 334

than those inferred from intra-host variation in another study that were (broadly) 335

distributed around 10% [16]. Because replicative capacity measurements in cell culture 336

may not quantitatively equal viral growth rates in a host, motivated by [16] we instead 337

took β = 0.023 day−1, which gives relative fitness costs of all single and double mutants 338

shown in Fig 4. 339

Using F p(SNL4-3) = −4.13, RC(SNL4-3) = 1.5 day−1, and β = 0.023 day−1, we solve 340

F0 − 1.5 = β(0− F p(SNL4-3)) to find F0 = 1.6 day−1. We performed the following 341

back-of-the-envelope check: around the time of peak viremia—roughly 2 weeks after 342

infection—there are ∼1010 virus particles in a host (because there is a peak viral load of 343

∼106 RNA copies/ml of blood [1] and ∼5 liters of blood in a human). Solving 344

exp(F × 14 days) = 1010 gives F ≈ 1.6 day−1, which is consistent. 345

Fig 4. Histograms of relative fitness costs of all single and double mutants according to the fitness
landscape Eq (1), using the prevalence landscape of Fig 3, β = 0.023 day−1, and F0 = 1.6 day−1.
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The CTL response, bε(t) 346

For the kinetics of the CTL response at epitope ε, bε(t), we assumed the following 347

Hill-like functional form2: 348

bε(t) =

{
0, 0 ≤ t < t0

(t−t0)nHill

t
nHill
1/2

+(t−t0)nHill
bε,0, t ≥ t0,

(22)

where the CTL response is activated t0 days post-infection, increases to a maximum of 349

bε,0 at long times, and t1/2 and nHill parametrize the rate of this increase. As a 350

systemic HIV infection begins around 5–10 days post-infection and CTL responses 351

emerge 2–3 weeks post-infection [1], we took t0 = 7 days, t1/2 = 7 days, and nHill = 2. 352

For the overall magnitude of the CTL response btot =
∑
ε bε,0, we found that a range 353

of values lead to realistic-looking population dynamics curves during the first weeks of 354

infection (see S1 Fig). We believe this is biologically plausible as different untreated 355

hosts presumably have variations in the magnitudes and timescales of their CTL 356

responses, yet all hosts experience significant exponential growth and decline of plasma 357

viral load during acute infection [1]. We chose a representative value of btot = 6 day−1 358

for our population dynamics simulations. 359

The mutation rate, µ 360

The overall rate at which nucleotide substitutions occur during HIV infection was 361

estimated at 1.2× 10−5/nucleotide/day [16], and more specifically varies between each 362

pair of nucleotides [6, 16]. Here, we consider a simplified probability of mutation µ for 363

binary amino acid residues that is three times the nucleotide substitution rate, 364

µ = 3.6× 10−5/site/generation. However, in S1 Appendix we extend our methods to 365

allow for site and state-dependent mutation rates, compute the transition probabilities 366

µi,0→1 and µi,1→0 for the patient used in the example below, and show that the 367

resulting dynamics of mutations are similar to the main text. Constructing a full amino 368

acid substitution matrix using the codon map requires a model with multiple states per 369

site, which is beyond the scope of this paper. 370

Table 1 summarizes all of the parameter values we used. 371

Table 1. Parameter values used for the application of EMF to the
dynamics of p24.
parameter description value (units)

L length of consensus p24 amino acid sequence 231 sites
β proportionality constant between prevalence and

fitness landscapes: hi = βhpi , Jij = βJpij

0.023 day−1

F0 intrinsic fitness of consensus sequence 1.6 day−1

btot overall magnitude of CTL response 6 day−1

t0 time delay before activation of CTL response 7 days
t1/2 time to half-maximum of CTL response 7 days
nHill Hill coefficient of CTL response 2
µ mutation rate 3.6× 10−5

site−1day−1

N0 initial population size 10

2We found that HIV dynamics do not depend sensitively on the precise form of bε(t), and in the
Discussion we propose an extension of our methods that include explicit consideration of CTL clone
populations.
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Patient CH58 [3] 372

Here we describe a patient (data taken from [3]) whom we use as an example for 373

application of the EMF method. Patient CH58 was a male infected by an HIV-1 group 374

M subtype B strain [3]. He was not treated with antiretroviral therapy (ART) during 375

the period of study, in accordance with contemporaneous medical protocol. Blood 376

plasma was drawn at several timepoints from which snapshots of the intra-host HIV 377

population were determined by single genome amplification and sequencing [8], and the 378

specificity and magnitude of HIV-specific CTL responses were also mapped by 379

interferon-γ ELISpot assays against overlapping peptides spanning the founder viral 380

sequence [3]. The founder sequence had five mutations in p24 w.r.t. the subtype B 381

consensus, and two p24 epitopes were targeted by the patient (see Fig 5(A), left panel; 382

one epitope in Env and one in Nef were also targeted (not shown)). Mutations away 383

from the founder sequence in each blood sample are listed in Fig 5(A), right panel. 384

Frequencies of mutations in the two p24 epitopes over time are also plotted in Fig 5(B). 385

Results 386

Application of EMF to predict p24 mutational dynamics in 387

patient CH58 388

As a proof of principle, we apply the EMF method to simulate the dynamics of the p24 389

gag protein within a patient whose CTL responses and dynamics are known (taken 390

from [3]). Note that the main goal of this section is to demonstrate use of the method, 391

and not to prove that simulated HIV dynamics using fitness landscapes can predict with 392

good accuracy the locations and timescales of escape mutations (as was done in [24] for 393

a larger number of HIV proteins and patients). 394

As input to EMF, we use: 395

1. the binarized p24 founder sequence infecting patient CH58 (Fig 5(A), left panel); 396

2. the within-host fitness landscape of p24 (Eq 2), with parameters F0, {hi} and 397

{Jij} inferred in Parameter estimation, the locations of the p24 epitopes 398

(Fig 5(A), left panel), and their magnitudes b1,0 and b2,0, where b1,0 + b2,0 = btot. 399

In the following, we first consider b1,0 = b2,0, and study the effect of the vertical 400

immunodominance, b1,0 6= b2,0, later. 401

EMF outputs coupled dynamics of effective fields and frequencies of 402

mutation at each HIV residue over time 403

Starting with the {m(0)
i } in Fig 5(A), left panel, we follow Eq (19) to recursively 404

compute the L effective fields {h̃(k)i } and frequencies of mutations {m(k)
i } over time k, 405

which are plotted in Fig 6. We find that following the activation of the CTL response 406

(yellow dotted lines), the effective fields at sites within epitopes rise above zero 407

(Fig 6(A)), signifying a selective pressure to mutate to si = 1 at these sites. At longer 408

times, two sites (15 and 110 as shown later) have large h̃(k)i > 0, while the rest are 409

distributed around a value less than zero. 410

The effective fields dictate the dynamics of the mutational frequencies m(k)
i 411

(Fig 6(B)). Positive h̃(k)i lead to increasing m(k)
i , while negative h̃(k)i lead to decreasing 412

m
(k)
i , with the magnitude of h̃(k)i determining the rate of change. In turn, changes in 413

the m(k)
i feed back into the time-varying effective fields h̃(k)j (for j 6= i) through terms 414

depending on Jij and bε in Eqs (14) and (16), thus prescribing how the changing 415

sequence background modifies the tendency for each HIV residue to mutate. 416

March 11, 2019 14/28

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 12, 2019. ; https://doi.org/10.1101/518704doi: bioRxiv preprint 

https://doi.org/10.1101/518704
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig 5. Dynamics of p24 measured in patient CH58 (data taken from [3]). (A) Left panel: Non-consensus residues
in the founder sequence and epitopes in p24 targeted by patient CH58. Right panel: p24 mutants and sampled frequencies
drawn from patient CH58 at multiple timepoints post-infection. Each row represents a distinct sampled sequence. (B)
Frequencies of mutations at sites 15, 110 and 116 sampled from patient CH58 over time.

EMF combines fitness costs and epistatic interactions to predict the 417

locations of HIV escape mutations 418

Focusing on the two p24 epitopes, we find that mutations initially arise at all sites 419

within each epitope, but eventually one fixes while the others decline (Fig 7). This 420

behavior may be discerned from the EMF equations: if the frequency of mutation m(k)
i 421

at site i in an epitope is close to 1, the last term of Eq (16) will be small for sites j 6= i 422

in the epitope, but not for site i. There is thus a tendency for the other m(k)
j to decline 423

to zero, leaving all of the weight of bε(k) to act on site i and keeping it mutated. 424

EMF combines fitness costs and epistatic interactions to determine which escape 425

mutations arise. In the first p24 epitope, site 15 is the least-fitness-cost mutation 426

according to the intrinsic landscape Fin(S) (Fig 7(A) inset) and is the one that fixed. In 427
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Fig 6. Dynamics of effective fields and frequencies of mutations output by EMF. (A) Effective fields {h̃(k)i }, and
(B) frequencies of mutations {m(k)

i }, at each of the L residues of p24 during evolution within patient CH58, as predicted by
the EMF method. Plotted in the yellow dotted lines are the CTL response bε(t)/bε,0 (Eq (22)). One generation of EMF
corresponds to 1 day because we have used parameter values in units of day−1 (see Table 1).

Fig 7. Frequencies of mutations in p24 epitopes targeted by patient CH58. Frequencies of mutations in the p24
epitopes at (A) sites 15–23, and (B) sites 108–117, as predicted by the EMF method. Insets show hi/F0 at each site within
each epitope, and the least-fitness-cost mutations are marked with red circles.

the second epitope, site 116 is the least-fitness-cost mutation (Fig 7(B) inset) but site 428

110 fixed, and indeed h̃(k)110 > h̃
(k)
116 at all times k (not shown). In the patient, an escape 429

mutation at site 110 fixed by 350 days post-infection (Fig 5(B)), and furthermore there 430

appeared to be competition between mutations at sites 110 and 116 at intermediate 431

times (Fig 5(B)), qualitatively resembling the dynamics produced by EMF for this 432

patient (Fig 7(B)). We emphasize that this is merely one example that we chose to 433

present, but Barton et al. [24] showed empirically (by performing 103 stochastic 434

simulations per HIV protein and host) that HIV fitness landscapes inferred from global 435
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prevalence provide good predictions of the locations of HIV escape mutations, for a 436

larger number of patients and proteins studied [24]. Here, we have shown that EMF is 437

capable of making similar predictions that are directly encoded in the effective fitnesses. 438

EMF predicts the vertical immunodominance of CTL responses to affect 439

the order and timescale of escape mutations by modifying the relative 440

strengths of effective fitnesses 441

In patient CH58, a mutation at site 15 was only detected on day 350 (Fig 5(B)). This 442

delay might be caused by a smaller CTL population targeting the first p24 epitope, and 443

hence a weaker selective pressure for sites 15–23 to mutate. Indeed, the peak CTL 444

response at this epitope was measured by ELISpot to be smaller by a factor of 4–5 than 445

at sites 108–117 [3]. To study how EMF predicts the vertical immunodominance of CTL 446

responses to change the dynamics of mutations, we repeated the above simulation using 447

b1,0 = b2,0/5 and keeping the same overall btot = b1,0 + b2,0 as before. The resulting 448

dynamics are shown in Fig 8(A) (solid lines). The same escape mutations arise, but 449

unlike the b1,0 = b2,0 case (dotted lines), escape at site 15 occurs later than at site 110. 450

This delay would be compounded by a larger time lag t0 for the first epitope as 451

compared with the second, as was observed in the patient [3] (not shown). Indeed, Liu 452

et al. [3] performed a statistical analysis for a larger number of patients and proteins 453

and showed that the vertical immunodominance correlates well with the rate of HIV 454

escape. Here, EMF encodes this effect simply by modifying the relative strengths of the 455

effective fitnesses. 456

Fig 8. Effect of vertical immunodominance and sequence background on the dynamics of p24 escape
mutations in patient CH58. (A) Mutational dynamics at sites 15, 110 and 116 when b1,0 = b2,0/5 (solid lines), and
b1,0 = b2,0 (dotted lines), for the same overall btot = b1,0 + b2,0. (B) Mutational dynamics at sites 15, 110 and 116 when the
founder sequence is the NL4-3 strain (s120 and s208 = 1; solid lines), as compared with the actual founder sequence of patient
CH58 (dotted lines). Here, site 116 mutates instead of 110.

EMF predicts that a different sequence background may cause different 457

escape mutations to arise in a host because of compensatory interactions 458

In models of HIV dynamics with multiple HIV strains that do not consider epistatic 459

interactions (e.g. [25–28,32]), the sequence background outside of an epitope does not 460
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affect the locations of escape mutations in the epitope. Here, we asked if a different 461

founder sequence might affect the locations of escape mutations, for a host that mounts 462

the same CTL responses as patient CH58. We simulated the dynamics starting with, as 463

an example, the NL4-3 strain (used in the experiments of [13], with mutations at sites 464

120 and 208 in p24 w.r.t. the subtype B consensus). Fig 8(B) (solid lines) shows the 465

result for sites 15, 110 and 116. In contrast with the above (dotted lines), site 116 466

acquired an escape mutation instead of 110, which is in fact the naïve expectation based 467

on knowledge of just the fitness costs (Fig 7(B) inset). Thus, knowing the epistatic 468

interactions of the fitness landscape may enable more accurate predictions of which 469

escape mutations arise given the sequence background, which were indeed the findings 470

of [24] for a larger number of HIV proteins and patients studied. Here, we have shown 471

that EMF efficiently makes such predictions that are encoded in the effective fitnesses. 472

EMF predicts reversions and compensatory mutations occurring over 473

longer timescales 474

Apart from mutational escape within epitopes, EMF also informs the dynamics of 475

mutations outside of epitopes. Figure 9 shows the effective fields and frequencies of 476

mutations at all p24 residues outside of the two epitopes output by EMF for patient 477

CH58. The effective fields are distributed around a value less than zero and are mostly 478

negative. Because their magnitudes are closer to zero than at sites within epitopes 479

(Fig 6(A)), the mutational dynamics they induce tend to occur over longer timescales. 480

We find that the initially non-consensus sites revert back to consensus over a range of 481

timescales (Fig 9(B)), which is qualitatively consistent with the findings of Refs [10,11] 482

and especially [9] that found that sites tend to revert to the group or subtype consensus 483

residue throughout the course of intra-patient evolution in all of the patients studied. 484

Within the EMF framework, a distribution of reversion timescales is due to a 485

distribution of effective fitnesses that are negative and close to zero. 486

Fig 9. Reversions and compensatory mutations in patient CH58, as predicted by EMF. (A) Effective fields
{h̃(k)i }, and (B) frequencies of mutations {m(k)

i }, at p24 residues outside of epitopes for patient CH58, as predicted by the
EMF method. Compensatory mutations occur at sites whose effective fields rise above zero (here, site 148). Reversions occur
at sites initially non-consensus whose effective fields remain negative (here, sites 91, 107, 120, and 225). Site 27 was initially
non-consensus but not predicted by EMF to revert.

Finally, EMF predicts h̃148 > 0 at long times (Fig 9(A)) and hence a potential 487
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compensatory mutation to arise at site 148 (Fig 9(B)). This did not occur in the patient; 488

instead, mutations at sites 92 and 11 arose (Fig 5(A), right panel). We emphasize that 489

there are many possible reasons why mutations predicted by EMF may not occur in the 490

patient, and vice-versa: EMF is an approximate high-recombination-rate model that 491

ignores many important processes during HIV infection, a real infection presumably has 492

large stochastic effects that cannot be precisely predicted, the fitness landscape may be 493

incomplete, etc. (see Discussion). For patient CH58, the site 92 mutation appeared with 494

the site 116 mutation on day 239 at a low frequency before the site 116 mutation went 495

extinct, so the site 92 mutation could possibly be a hitchhiker mutation, which cannot 496

be modeled by EMF. The site 11 mutation might also affect antigen processing of the 497

epitope at site 15–23 and hence its presentation to CTLs [46,47], allowing evasion of 498

CTL pressure despite not having a mutation within the actual epitope; indeed it arose 499

at the same time as the site 15 escape mutation. Our current method does not account 500

for antigen-processing mutants, although Fhost can easily be modified to do so. 501

Mean fitness and site entropy of the intra-host population 502

The mean fitness and other quantities describing the entire intra-host population are 503

particularly simple to compute within the EMF framework, which we show here. The 504

mean fitness at time k is given by 505

〈F 〉(k) = F (m
(k)
1 , · · · ,m(k)

L ), (23)

which is plotted in Fig 10(A) for F = Fhost (blue curve) and F = Fin (orange curve). 506

As host CTLs are activated, the founder sequence becomes strongly selected against, 507

which is represented by the valleys in Fig 10(A). The intra-host population evolves over 508

time to “climb” out of this fitness valley through the generation of mutants and selection 509

of beneficial ones. Thus, the mean fitness first decreases, and then is a strictly 510

nondecreasing function of time. The blue and orange curves merge because for 511

sequences that have completely escaped host CTL responses, Fhost and Fin are identical. 512

Fig 10. Mean fitness and site entropy of the intra-host population in patient CH58 over time, as predicted
by EMF. (A) Mean fitness 〈F 〉(k) − F0 of the intra-host population over time, using F = Fhost (blue line) and F = Fin
(orange line). The grey dotted line is the fitness of the consensus sequence (0, · · · , 0). (B) The mean entropy per site over time.

A measure of genetic diversity of the intra-host population is the mean entropy per 513

March 11, 2019 19/28

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 12, 2019. ; https://doi.org/10.1101/518704doi: bioRxiv preprint 

https://doi.org/10.1101/518704
http://creativecommons.org/licenses/by-nc-nd/4.0/


site, 514

H(k) = − 1

L

L∑
i=1

[
m

(k)
i log2m

(k)
i + (1−m(k)

i ) log2(1−m(k)
i )
]
. (24)

This quantifies how different the frequencies of mutation are, on average, from 0 or 1 515

(−m log2m− (1−m) log2(1−m) is bounded by 0 and 1, equals 0 at m = 0 and 1, and 516

equals 1 at m = 1/2). Figure 10(B) shows that the mean site entropy spikes when 517

several escape mutations arise simultaneously when CTL responses are activated, and 518

declines as escape mutations either fix or disappear. Even at long times, the mean site 519

entropy remains at a finite value because mutations are continuously generated at all 520

sites but remain at low levels due to being less fit; this is a manifestation of 521

mutation-selection balance [38]. (Consistently, Zanini et al. [16] used mutation-selection 522

balance to infer the fitness costs at all sites in the HIV genome not undergoing 523

CTL-driven selection.) 524

Application of EMF stochastic population dynamics method 525

In Methods, we introduced a stochastic population dynamics method based on the EMF 526

approach, where population size changes depend on the frequencies of mutations {m(k)
i } 527

in the population at each time, unlike prior stochastic simulation approaches with a 528

fixed population size [24, 32] or a time-varying one that is externally defined [33]. In the 529

following, we apply this method again to the dynamics of p24 gag in patient CH58, 530

assuming the initial population size to be N0 = 10, and keeping all other parameter 531

values the same as before (see Table 1). 532

EMF population dynamics simulations produce variability in the locations 533

of escape mutations, but are consistent with the deterministic EMF 534

method 535

Figures 11(A)–11(C) show the dynamics of mutations at sites 15, 110 and 116 in ten 536

representative stochastic runs (dotted lines), their mean over 200 stochastic runs 537

(dashed lines), and a comparison with the deterministic EMF method above (solid lines). 538

Figures 11(D)–11(E) show the mean of 200 stochastic runs (dashed lines) and the 539

deterministic dynamics (solid lines) at all sites in the two p24 epitopes. Figures 540

11(F)–11(G) show in greater detail the fraction among 200 stochastic runs where a site 541

in each of the epitopes has the highest frequency of mutation at the end of the 542

simulation. 543

We find that the stochastic method produces escape events in individual runs that 544

can be very different from the deterministic EMF prediction: with some probability, 545

other sites may fix, particularly when they happen to arise early enough in a simulation 546

(not shown). This is why the mean values for sites 15, 110 and 116 are lower than in the 547

deterministic case, and the averages for other within-epitope sites are higher (see 548

Figs 11(D)–11(E)). However, for both epitopes, the deterministic EMF method is a 549

good predictor of the stochastic case averaged over many simulation runs. In the first 550

epitope, site 15 fixes most of the time (Fig 11(F)), and in the second, greater variability 551

in the locations of escape mutations (particularly at sites 115 and 116; see Fig 11(G)) 552

seem to correspond with higher frequencies of mutation at these sites at intermediate 553

times in the deterministic dynamics (Fig 11(E)). Hence, these simulations suggest that 554

adding stochasticity to our methods produces variability in the dynamics of escape, but 555

on average, the results are consistent with the deterministic case. 556
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Fig 11. Stochastic dynamics of escape as predicted by EMF population dynamics simulations. Frequencies of
mutation at (A) site 15, (B) site 110, and (C) site 116 produced by the deterministic EMF method (solid lines), 10
representative stochastic runs (dotted lines), and the mean over 200 independent stochastic runs (dashed lines). (D)–(E)
Frequencies of mutations within the two p24 epitopes produced by the deterministic EMF method (solid lines), and the mean
over 200 independent stochastic runs (dashed lines). We did not plot error bars because the dynamics lead to sites having
mutational frequencies tending to 0 or 1, so the spread around the mean does not reflect the results of individual stochastic
runs. (F)–(G) Fraction among 200 stochastic runs where a site has the highest frequency of mutation in the epitope at the
end of the simulation. Site 15 fixes most of the time in the first epitope, but there is greater variability in the second,
especially at sites 115 and 116 instead of 110, which is consistent with the deterministic EMF dynamics.

EMF population dynamics simulations produce exponential growth and 557

decline of the population size, consistent with viral load kinetics during 558

acute infection 559

Figure 12 shows the log population size over time for the determinstic case (blue line), 560

and 10 stochastic simulation runs (red lines). The population first increases 561

March 11, 2019 21/28

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 12, 2019. ; https://doi.org/10.1101/518704doi: bioRxiv preprint 

https://doi.org/10.1101/518704
http://creativecommons.org/licenses/by-nc-nd/4.0/


exponentially, then exponentially declines following activation of CTL responses. These 562

dynamics are consistent with plasma viral load kinetics in untreated hosts [1], and also 563

experiments that found a rapid rebound in plasma viral load following CTL depletion 564

that reversed upon the replenishment of these cells [5]. Furthermore, this characteristic 565

exponential growth and decline is observed for a range of btot (see S1 Fig), which is 566

consistent with the fact that diverse hosts, who presumably have a range of magnitudes 567

and specificities of CTL responses, experience qualitatively similar viral load kinetics 568

during acute infection. 569

Fig 12. Dynamics of the population size in patient CH58 using EMF population dynamics simulations.
Dynamics of population size over time for the deterministic EMF method (blue line) and 10 representative stochastic runs
(red lines). The exponential increase and initial decrease in the population size qualitatively resemble plasma viral load
kinetics during early acute infection. However, the unbounded exponential growth after viral escape clearly does not reflect a
real infection, and is a result of not explicitly considering viral infection and elimination of target cells.

While the exponential increase in viral load and initial decline after activation of 570

host CTL responses resemble viral load kinetics in a real infection, the intra-host 571

population quickly overcomes host CTL pressure and continues to grow exponentially. 572

In actual patients, this does not happen, for two important reasons: 573

1. We did not consider an explicit target cell population that declines following 574

infection. Models that include the dynamics of host target cells via ordinary 575

differential equations show an approach to a finite fixed point as opposed to 576

unbounded growth (see e.g. [28]). In the Discussion, we propose how our methods 577

may be extended to include dynamics of an explicit target cell population. 578

2. There are immunodominance shifts in the CTL response. CTLs specific for 579

epitopes from which the HIV population has escaped decline, and new CTL clones 580

specific for other epitopes emerge (see e.g. [25]). Thus, there is continuous CTL 581

selection and HIV escape throughout the course of intra-host infection, which we 582

did not attempt to model here. 583
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Discussion 584

In this paper, we introduced an approach for simulating HIV dynamics given a fitness 585

landscape, which we designated the evolutionary mean-field (EMF) method. EMF is an 586

approximate high-recombination-rate model of HIV replication and mutation, with 587

time-varying population sizes. EMF takes as input the fitness landscape of an HIV 588

protein, including epistatic interactions, and the locations and strengths of a host’s CTL 589

responses, and outputs time-dependent “effective fitnesses” describing the tendency for 590

each HIV residue to mutate, and frequencies of mutations caused by these time-varying 591

fitness effects. Applying this method to the dynamics of the p24 gag protein in a 592

patient whose CTL responses are known (from [3]), we showed how fitness costs and 593

compensatory interactions, vertical immunodominance of CTL responses, and the 594

sequence background modify the effective fitnesses and hence impact the locations and 595

relative timescales of HIV escape mutations, which is consistent with previous work 596

employing stochastic simulations [24]. These include cases where knowledge of the 597

epistatic interactions improves upon predictions relying simply on fitness costs. We also 598

show that features of longer-term dynamics, specifically reversions, may be described in 599

terms of the effective fitnesses, which is also qualitatively consistent with other work [9]. 600

EMF makes quick predictions that may otherwise require performing many stochastic 601

simulation runs [24], and furthermore describes various genetic-level attributes known to 602

influence HIV dynamics in terms of their combined effect on the effective fitnesses. 603

We also developed a stochastic population dynamics method based on EMF, and 604

quantified the variability in the escape mutations that arise in the same example. The 605

HIV population sizes resulting from this method show a characteristic exponential rise 606

and fall during early infection, consistent with observed viral load kinetics, although the 607

unbounded exponential growth following HIV escape is a weakness of the current 608

implementation, and we suggest below extensions to overcome it. 609

What have we lost from a high-recombination-rate approximation of HIV dynamics? 610

Unlike a real HIV infection, here escape mutations in separate epitopes quickly 611

recombine, forming variants that escape multiple epitopes; in this sense EMF simulates 612

a “stronger” virus. Also, EMF is unable to account for important features such as clonal 613

interference and genetic hitchhiking that do not occur in linkage equilibrium. On the 614

other hand, EMF provides quick dynamical predictions that can be checked against 615

simulations implementing a finite recombination rate [24], and we expect that, averaged 616

over many hypothetical runs, mutations arising due to fitness effects in a model with 617

finite recombination rate should be comparable and consistent with the results of EMF. 618

Indeed, in S2 Appendix we performed this check and validated the results obtained in 619

the above example with Wright–Fisher simulations with a finite recombination rate (as 620

in [24]). Neher and Shraiman [31] obtained analogous mean-field equations to Eq (14) 621

as the lowest order in an expansion in the inverse recombination rate; it would be 622

interesting to consider the next-order corrections (i.e., quasi-linkage equilibrium) which 623

would be a finite-recombination-rate extension of EMF (this would however require 624

L(L− 1) extra equations, i.e. 5× 104 for p24). 625

We have presented EMF as a discretized-time algorithm where each time step 626

represents one day (see Table 1), which roughly corresponds to a replication cycle of 627

HIV [34]. We could of course discretize time more finely, scaling the replication and 628

mutation rates appropriately, i.e., if one time step represents κ� 1 days, then 629

F0 → κF0, btot → κbtot, and β → κβ. In this limit, the HIV population size obeys 630

dN(t)

dt
= Fhost(t)N(t), (25)

where Fhost(t) depends on the genetic composition of the population at time t, and CTL 631

pressure is implicit in Fhost. Thus, mutational escape leads to continued exponential 632
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growth (Fig 12). To overcome this limitation, we may consider target cell and CTL 633

clone populations explicitly (much like in other compartmental models of HIV 634

dynamics [25–28]): 635

1. To account for explicit viral infection of target cells and target cell dynamics, we 636

propose extending Eq (25) to a pair of coupled equations: 637

dT (t)

dt
= λ− dTT (t)− Fhost(t)N(t)T (t), (26)

dN(t)

dt
= Fhost(t)N(t)T (t)− δN(t), (27)

where λ and dT are the influx and natural death rates of target cells, and δ is the 638

rate of clearance of viral particles. Effectively, these equations extend 639

two-compartment models of HIV dynamics (see e.g. [28]) to have viral infectivity 640

that depends on the genetic composition of the intra-host population. Models that 641

include target cell dynamics produce viral population sizes that approach a finite 642

fixed point [28]; in essence, “fit” viruses do not grow unboundedly if target cells 643

are limiting. Within the EMF procedure, we propose first computing an 644

intermediate N̄(t+ δt) using Eq (20), which accounts for population size changes 645

due to the fitness of strains in the population, and then T (t+ δt) and N(t+ δt) 646

using Eqs (26) and (27) (with N̄ in place of N on the RHS of these equations). 647

2. To account for explicit CTL clone dynamics, we propose extending Eq (25) to 648

have one equation for each CTL clone: 649

dN(t)

dt
= Fin(t)N(t)−

∑
ε

bε(t)Nε(t), (28)

dbε(t)

dt
= rεbε(t)(1−

∑
ε

bε(t)/btot)Nε(t), (29)

where Eq (28) uses Fin instead of Fhost, rε is the growth rate of the CTL 650

population specific for epitope ε, Nε(t) is the HIV subpopulation susceptible to 651

these CTLs, and btot is now a carrying capacity. 652

While this paper developed an approach to HIV dynamics given a fitness landscape, 653

the method is presumably limited by the quantitative accuracy of the landscapes used. 654

While we have limited ourselves to binary sequences, using fitness landscapes of 655

nucleotide or amino acid sequences (such as those inferred in [13,24]) would likely 656

improve the accuracy of EMF’s predictions. Considering higher-order interactions in the 657

landscape would also help, should these become known. Extensions of EMF to 658

non-binary sequences and to fitness landscapes with higher-order interactions are 659

straightforward, but beyond the scope of this paper. Also, we estimated the p24 fitness 660

landscape from its prevalence in the global population of hosts (following [12,13,24]), 661

but quantitative estimates of fitness from prevalence are limited by several issues as 662

studied previously [14–16,37]; in particular, prevalent HIV mutations are more likely to 663

be HLA-associated than less prevalent ones [16]. Alternatively, measurements of 664

intrinsic fitness from cell culture experiments [14,15], including epistatic interactions, 665

may eventually lead to more accurately known fitness landscapes of HIV proteins. This 666

may lead to more accurate predictions of the intra-host dynamics computed using EMF, 667

and other methods. 668

Supporting information 669

S1 Appendix. EMF with state and site-dependent mutation rates. 670
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S2 Appendix. Validation of EMF dynamics results by Wright–Fisher 671

simulations. 672

S1 Fig. EMF population dynamics produces a characteristic exponential 673

rise and fall of population size during the early stages of infection, for a 674

range of btot. 675
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