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Quantifying the strength, sign, and origin of species interactions, along with their

dependence on environmental context, is at the heart of prediction and understanding in

ecological communities. Pairwise interaction models like Lotka-Volterra provide an

important and flexible foundation, but notably absent is an explicit mechanism mediating

interactions. Consumer-resource models incorporate mechanism and the resource landscape

dependency, but describing competitive and mutualistic interactions is more ambiguous.

Here, we seek to bridge this gap by modeling a coarse-grained version of a species’ true,

cellular metabolism to describe resource consumption via uptake and conversion into

biomass, energy, and byproducts. This approach does not require detailed chemical reaction

information, but it provides a more explicit description of underlying mechanisms then

pairwise interaction or consumer-resource models. Using a model system, we find that when

metabolic reactions require two distinct resources we recover Liebig’s Law and multiplicative

co-limitation in particular limits. In between these limits, we derive a more general

phenomenological form for consumer growth rate, and we find corresponding rates of

secondary metabolite production, allowing us to model competitive and non-competitive

interactions (e.g., mutualism). Using the more general form, we show how secondary

metabolite production can support coexistence even when two species compete for a shared

resource, and we show how differences in metabolic rates change species equilibria. Building

on these findings, we make the case for incorporating metabolism to update the

phenomenology we use to model species interactions.
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A central goal in ecology is to understand and predict the dynamics in communities of interacting

species (Holt, 1977; Loreau, 2010; Vellend, 2010, 2016). Mathematical models allow us to generate and test

theoretical predictions, and the development of such models leads to a hierarchy of challenges. The first

challenge is determining an appropriate functional form describing species dynamics. A range of functional

forms with increasing complexity has been used and each has strengths and weaknesses which are often

context dependent (Holling, 1959; Abrams, 1982; DeAngelis et al., 1989; Murdoch et al., 2003; Mougi &

Kondoh, 2012). Second, we need to parametrize these equations, for example by quantifying the strength

and sign of species interactions in a given environmental context. While some attempts have been made to

parametrize real-life systems, accurately fitting interaction strengths remains challenging in both empirical

and theoretical work (Schoener, 1983; Tilman, 1987; Ives et al., 2003; Carrara et al., 2015; Terry et al.,

2017; Barner et al., 2018). Finally, we may wish to determine how a change in the environmental context

will modify species interactions, dynamics, and even coexistence. Integrating each of these goals will lead

to the development of robust models which can predict the dynamics of complex communities, even when

the environmental landscape changes within and across ecosystems.

The Lotka-Volterra equations provide an example of mathematical models which has been widely used

for close to a century (Lotka, 1932; Volterra, 1926). These equations characterize species interactions in

terms of the net, direct effect of one population on another’s growth rate, so that in the case of two species

with abundances N1 and N2:

dN1

dt
= r1N1 − a11N2

1 − a21N1N2

dN2

dt
= r2N2 − a22N2

2 − a12N1N2. (1)

Here, r1 and r2 are per capita growth rates when species are rare, and the parameters aij (collectively

called a community matrix) represent intra- and interspecific interactions. Empirically, it has been

extremely difficult to reliably estimate these parameters (Schoener, 1983; Tilman, 1987). Even where it has
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been possible to infer or approximate pairwise interactions (Stein et al., 2013; Marino et al., 2013; Fisher &

Mehta, 2014; Bucci et al., 2016), it may be difficult to translate the inferred interactions in different

environmental contexts. These models lack an explicit description of the mechanisms mediating interactions

(Abrams, 1983; Grilli et al., 2017). For example, if two species compete, it is often because consume

common resources (Gause & Witt, 1935; MacArthur, 1970; Schoener, 1983). However, these models assume

that resource dynamics can be safely ignored because resource dynamics are faster than consumer dynamics

(MacArthur, 1970). This exposes an important context-dependence of Lotka-Volterra type equations: the

strength and even the sign of a pairwise interaction may depend on what resources are present (Xiao et al.,

2017). As such, landscape variation can influence species composition due to differences in competitive

ability and the context dependence of species interactions (Cadotte & Tucker, 2017).

An alternate approach is to model competitive interactions as the explicit result of shared resource

consumption (Grover, 1990; Tilman, 1980; Tilman et al., 1982; Litchman, 2003; Abrams, 2009). For

example, in the case of two species with abundances N1 and N2 competing for a single shared resource, R,

the prototypical consumer-resource model is:

dR

dt
= ρ− aiNiR

dN1

dt
= ε1a1N1R− µ1N1

dN2

dt
= ε2a2N2R− µ2N2, (2)

where ρ describes the environmental input rate of an abiotic resource, ai describes the resource uptake

rates, εi describes the resource use efficiency, and µi are the species mortality rates. These models produce

species interactions as an emergent property dependent on shared resource consumption, and so the issue

of inferring species interactions is no longer quite the right question—though there is now a challenge in

determining consumer feeding preferences. Assuming we can infer or otherwise estimate those preferences,

one critical aspect of the environmental context is now explicitly characterized, via resource input rates like
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ρ. As such, species dynamics across resource landscapes can be understood better than in the case of

Lotka-Volterra, where the effect of the environment is implicit (Tilman, 1977; Grover, 1990, 2011).

The more explicit mechanism gives an advantage, but there is a cost. Lotka-Volterra equations are

extremely flexible and can straightforwardly incorporate a mixture of antagonistic and mutualistic

interactions simply by altering the signs of entries in the community matrix, aij (Mougi & Kondoh, 2012;

Allesina & Tang, 2012). But for consumer-resource models we have to be careful about how those

mechanisms are formulated. Consumption can take a variety of forms depending, for example, on whether

resources are substitutable or essential (Tilman, 1980), and mutualistic interactions can occur via resource

production and exchange (Loreau, 2001; Freilich et al., 2011; Zelezniak et al., 2015). The latter in

particular is under explored relative to consumption (Butler & O’Dwyer, 2018), and an open question is to

what extent the precise form of exchange might affect community dynamics and species coexistence.

So how do we retain the advantages of consumer-resource models, but also incorporate the flexibility

of models of direct species interactions? Current consumer-resource models are largely agnostic to what

happens inside cells or organisms. For many systems, this approach may be valid especially when the

resources (i.e., prey) belong to higher trophic levels, self-regulate, and/or closely match the stoichiometric

requirements of the consumer (Sterner & Elser, 2002; Cherif & Loreau, 2007; Hall, 2009). However, most

microorganisms consume abiotic resources which do not self-regulate. Second, any single resource

consumed generally does not satisfy the full stoichiometric requirements. For example, heterotrophic

microorganisms require organic carbon, but they still require nitrogen, phosphorus, and other resources to

grow and reproduce. Because growth depends on multiple resources, dynamics may depend on a single

limiting resource (e.g., Liebig’s Law of the Minimum von Liebig & Gregory, 1842; Odum, 1959) or an

interaction between resources (e.g., multiplicative co-limitation Harpole et al., 2011). Likewise, the

consumption and transformation of resources depends on how cells produce biomass, energy, and metabolic

byproducts, and species interactions may therefore depend on metabolic rates and byproduct production.

Furthermore, all of these processes may depend on environmental conditions like temperature, but it is not
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clear how to incorporate this information. Here, we propose that going one level deeper into cellular

metabolism will allow us to generalize consumer-resource models in a meaningful way and give them the

same flexibility to describe multiple interaction types as models of direct species interactions.

Results

The Metabolically Informed Consumer-Resource Model We know a substantial amount about

the internal physiology of cells, and there have been large advancements in the development of flux balance

models which use biochemistry and genomics to describe (to some level of approximation) every reaction

that occurs within a cell (Kauffman et al., 2003; Orth et al., 2010). More recently, these models have been

applied in the context of entire microbial communities and their interactions (Embree et al., 2015;

Zomorrodi & Segrè, 2016; Pacheco et al., 2018). However, we propose that including a full description of a

metabolic network may not be required to develop a useful ecological model. Here, we model the internal

dynamics via simplified metabolic networks, which require less knowledge of the particular species’

idiosyncrasies but still capture the major metabolic events transforming resources. Our simplified

metabolic model is based on a basic fermentation reaction, homolactic fermentation, which uses glucose

and phosphate and produces lactate (Fig. 1). If used strictly for energy production, one glucose and two

phosphate molecules yields two molecules of lactate and generates chemical energy in the form of two ATP

(Gottschalk, 1986). However, to produce biomass, some of the available glucose and phosphate must be

used for anabolic metabolism—forming new biomass and maintaining cellular stoichiometry. In this

reaction, the glucose is used to form new biomass and to produce chemical energy via fermentation. The

energetic component results in the production of the byproduct, lactate, which is exported back into the

environment (i.e., excretion); therefore, efficiency is emergent property determined by the balance between

the biomass and energy production.

Here, we assume that cellular metabolism relies on the interaction of sugar and phosphate, producing

new biomass and a byproduct (lactate). Given that we consider one phosphate molecule, this already
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simplifies the resource requirements relative to the true process. But we will see general principles emerge.

R1 +R2
β−→ Biomass +R3 (3)

R1 here is the sugar, R2 represents a source of phosphorus, and R3 is the metabolic byproduct

(lactate). We model this intracellular reaction as occurring at rate β. Next, we assume that our organism

grows in a resource replete environment, such as a chemostat, and therefore resource inputs are constant.

In addition, we assume that metabolic rates are not limited by any other factors and that resources do not

inhibit growth. Therefore, we can balance fluxes for the internal cell densities of the three resources

(labeled M1, M2 and M3). This leads to:

νbio = βM1M2

ν1 = k1 − βM1M2

ν2 = k2 − βM1M2

ν3 = βM1M2, (4)

for uptake rates k1 and k2, which can depend in an arbitrary way on external resource concentrations R1,

R2 and R3, outflow (i.e., export) rates ν1, ν2 and ν3, and biomass production νbio. We make a natural

assumption that export of each resource is determined by passive excretion: i.e. that να = λαMα for each

metabolite, where lambdaα is a species and resource-specific constant.

We can now solve this system of polynomial equations for internal resource concentrations (see

Methods). Using these equations, we built a set of generalized, co-limited consumer-resource equations

using uptake rates and a simplified flux balance analysis as the only building blocks. For simplicity, we

assume that resource uptake and export are passive processes. First, we focus on one species and model its

uptake rate kα of resource α as Cα1Rα, where Rα is the external (environmental) concentration of this
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resource. Applying this assumption, we derive a general set of equations for the consumer and three

resources:

dR1

dt
= ρ1 − η1R1 −R1C11N1 + ν1N1

= ρ1 − η1R1 −N1

(
λ1λ2
2β
− F (β,C11R1, C21R2)

2
+
C11R1 + C21R2

2

)
dR2

dt
= ρ2 − η2R2 −R2C21N1 + ν2N1

= ρ2 − η2R2 −N1

(
λ1λ2
2β
− F (β,C11R1, C21R2)

2
+
C11R1 + C21R2

2

)
dR3

dt
= ρ3 − η3R3 + ν3N1

= ρ3 − η3R3 +N1

(
λ1λ2
2β
− F (β,C11R1, C21R2)

2
+
C11R1 + C21R2

2

)
dN1

dt
= νbioN1 − µ1N1

= N1

(
λ1λ2
2β
− F (β,C11R1, C21R2)

2
+
C11R1 + C21R2

2

)
− µ1N1, (5)

where ρα and ηα are inflow and outflow rates for each of the three resources, and µ1 is the mortality rate of

the consumer.

We now note two limits (see Methods). First, when β is large relative to the other rates the

consumer-resource equations become:

dR1

dt
= ρ1 − η1R1 −R1C11N1

+
N1

2

[
R1C11 −R2C21 + |R1C11 −R2C21|+

η1η2
β

(
R1C11 +R2C21

|R1C11 −R2C21|
− 1

)]
dR2

dt
= ρ2 − η2R2 −R2C21N1

+
N1

2

[
R2C21 −R1C11 + |R1C11 −R2C21|+

η1η2
β

(
R1C11 +R2C21

|R1C11 −R2C21|
− 1

)]
dR3

dt
= ρ3 − η3R3 +N1 min(R1C11, R2C21)

dN1

dt
= N1 min(R1C11, R2C21)− µ1N1, (6)
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and therefore we recover Liebig’s law (i.e. the net growth rate of the consumer is min(R1C11, R2C21)).

Using these equations in numerical simulations, we observe that the consumer abundance saturates

(Fig. 2A), and the final abundance depends on the inflow rate of the more limiting resource (Fig. 2B). As

such, the model in this limit behaves similar to classical consumer-resource models. In addition, we

generate novel terms for the byproduct production rate, which in this fast reaction rate limit is

' N1 min(R1C11, R2C21), and we find corresponding equations for the uptake and export of glucose and

phosphate.

On the other hand, when β is small relative to the other rates the consumer-resource equations

become:

dR1

dt
= ρ1 − η1R1 −R1C11N1 +N1

(
C11R1 −

βC11R1C21R2

λ1λ2

)
dR2

dt
= ρ2 − η2R2 −R2C21N1 +N1

(
C21R2 −

βC11R1C21R2

λ1λ2

)
dR3

dt
= ρ3 − η3R3 +N1

βC11R1C21R2

λ1λ2
dN1

dt
= N1

βC11R1C21R2

λ1λ2
− µ1N1. (7)

Hence, we recover multiplicative co-limitation by the two resources (i.e., the net growth rate of the

consumer is βC11R1C21R1

λ1λ2
). Using numerical simulations, we observe that consumer abundance, N1

saturates as expected but now includes a growth lag-phase (Fig. 2C). However, the final abundance

depends on the inflow rate of both resources (Fig. 2D). An increase in the flux rate of either resource will

yield a higher final population abundance.

In summary, from this coarse-grained representation, we recover two classic outcomes of

consumer-resource theory by taking limits of the internal reaction rate β. We can also generalize these

classic limits for intermediate β, in a way that is not currently used in consumer-resource models and falls

neither into the category of Liebig’s Law nor multiplicative co-limitation. Finally, we find functional forms
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for the production rate of lactate (and excretion of other resources) in each of these limits. Our model

therefore demonstrates how we can generalize the functional form of consumer-resource models by

considering realistic, simplified intracellular processes.

Two Species Model We now modify the model above to incorporate a second species. Here, both

species use R2 (phosphate), but the second species, N2, uses a combination of R2 and R3 (lactate) to

generate new biomass. While we are using this as a model with both competition (e.g., shared resources)

and facilitation (e.g., metabolic cross feeding) interactions, it also represents the natural cross-feeding

interaction between lactate producing and lactate consuming bacteria found in human and animal digestive

systems (Duncan et al., 2004). These metabolic cross-feeding interactions are common in microbial systems

(Mee et al., 2014; Tasoff et al., 2015; Zelezniak et al., 2015) and have industrial applications (Jiao et al.,

2012). As such, our model demonstrates how competition and facilitation mediate species dynamics and

coexistence conditions and can be used to understand natural and engineered microbial systems.

First, we define two distinct internal metabolic processes, one for each consumer species:

R1 +R2
β1−→ Biomass1 +R3

R2 +R3
β2−→ Biomass2. (8)

Consumer N2 may also produce a metabolic byproduct, but we have not included such a process here

because we are focusing on competition for R2 and facilitation through the production of R3 by species N1.

Importantly, we now have two internal reaction rates, β1 and β2. Here we focus on how these rates, both

relative to each other and also to the other rates in the model, affect species coexistence. This approach

demonstrates the power of modeling coarse-grained metabolic processes as the mechanism underlying

species interactions. Furthermore, it allows us to explore the potential for changes in species coexistence

due to metabolic (i.e., reaction rates) and landscape (i.e., inflow rates) factors.
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Generalizing the approach in the previous section, we define the fluxes for an individual belonging to

species N1 as:

νbio,1 = β1M1M2

ν11 = k11 − β1M1M2

ν21 = k21 − β1M1M2

ν31 = β1M1M2 (9)

for internal concentrations M1 and M2, and uptake rates ki1. While for an individual of species N2 we have:

νbio,2 = β2M1M3

ν12 = k12 − β2M1M3

ν32 = k32 − β2M1M3. (10)

We also assume that all resources can be secreted from both consumers, but to simplify the model slightly

we will assume that the specific export rates are equal, λ, broadly consistent with passive diffusion across

sufficiently similar cell wall types. With this assumption, we can solve for internal equilibrium in both cell

types (see Methods). Finally, we can put all of this together to generate a set of equations for both species

and all three resources.

To focus on the effects of internal reaction rates and the resource landscape, we will further simplify

our model by making a few assumptions. We will assume that the outflow rates for each resource are the

same, so that ηi = η, and that the per capita mortality rates for each consumer are equal, so that µi = µ.

We will also again assume that the per capita uptake rate of resource i by species j can be written as

CijRi. We will then determine the effects of internal reaction rate by independently changing the value of
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β for each species. In addition, we will change the landscape conditions by exploring the inflow rates for

each resource ρi. Given these assumptions, our two species consumer-resource model is:

dR1

dt
= ρ− ηR1 −R1C11N1 + ν11N1 −R1C12N2 + ν12N2

= ρ− ηR1

−N1

(
λ2

2β1
− F (β1, C11R1, C21R2)

2
+
C11R1 + C21R2

2

)
−N2

(
λ2

2β2
− F (β2, C12R1, C32R3)

2
+
C12R1 + C32R3

2

)
dR2

dt
= ρ− ηR2 −R2C21N1 + ν21N1

= ρ− ηR2 −N1

(
λ2

2β1
− F (β1, C11R1, C21R2)

2
+
C11R1 + C21R2

2

)
dR3

dt
= ρ− ηR3 + ν31N1 −R3C31N3 + ν32N2

= ρ− ηR3

+N1

(
λ2

2β1
− F (β1, C11R1, C21R2)

2
+
C11R1 + C21R2

2

)
−N2

(
λ2

2β2
− F (β2, C12R1, C32R3)

2
+
C12R1 + C32R3

2

)
dN1

dt
= N1νbio,1 − µN1

= N1

(
λ2

2β1
− F (β1, C11R1, C21R2)

2
+
C11R1 + C21R2

2

)
− µN1

dN2

dt
= N2νbio,2 − µN2

= N2

(
λ2

2β2
− F (β2, C12R1, C32R3)

2
+
C12R1 + C32R3

2

)
− µN2. (11)

Using numerical simulations, we model the consumer dynamics to determine species dynamics and

equilibrium conditions (Fig. 4). First we consider when the internal metabolic rates, βi, are the same.

When internal metabolic rates are both high, species coexist at a density determined by the shared

resource inflow rate (i.e., ρ2) until the inflow rate of the unshared resource, R1, exceeds the inflow rate of

the shared resource, R2. When ρ1 is greater than ρ2 (i.e., ρ1/ρ2 > 1), species N1 will outcompete species

N2 for R2, and N2 will become rare (Fig. 4A). These findings expand the expectations of Liebig’s Law to
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two cross-feeding species and demonstrate both species dynamics and equilibrium abundances across

various resource landscapes. In contrast, when internal metabolic rates are low, species relative abundances

are determined by their respective required resources and both species have growth lag-phases. These

findings expand the expectations of multiplicative co-limitation to two cross-feeding species. However, since

species N1 will not be resource limited when ρ1 is greater than ρ2, then species N2 will maintain a higher

relative abundance across wider resource landscape (Fig. 4B, see Eq. 7). Together, we find that if internal

rates are the same but either high or low compared to the other rates in our model, then our results

expand the expectations of Liebig’s Law and multiplicative co-limitation to the two-species system with a

metabolic dependency. In addition, we find that coexistence depends on both the internal metabolic rates

and the resource inflow rates even when uptake rates are the same.

Finally, we consider the dynamics and equilibria when the internal metabolic rates, βi, are the

different. We find that, when the rates differ the outcome depends on which species has the higher

metabolic rate. When the byproduct producer, N1, has the higher rate, then the results are similar to

when both species have high internal metabolic rates (Fig. 4C). We do note, however, two important

differences: 1) species N2 exhibits a growth lag-phase, and 2) both R1 and R2 are depleted as the species

reach an equilibrium. However, when species N2, has the higher rate, then the coexistence conditions and

high relative abundances for both species are greatly expanded. In fact, we find coexistence with moderate

abundances along all inflow rates tested and the final abundances of both species are determined only by

the shared resource, R2 (Fig. 4D). In addition, we find that both species exhibit growth lag-phases and

that R2 and R3 are now the depleted resources. These findings highlight how variation in both the internal

metabolic reaction rates and in the environmental conditions can influence species interactions and change

expectations for coexistence.
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Discussion

Classic formulations for pairwise interactions and consumer resource dynamics have each led to insights

regarding species coexistence, community stability, population self-regulation (Schoener, 1983; Barabás

et al., 2017; Allesina & Tang, 2012; Leibold & McPeek, 2006). Here, we identify trade-offs with each

approach. Lotka-Volterra (and related) equations provide a flexible approach to modeling a range of

interactions between species but are unable to generalize across environmental variation because they do

not provide an unambiguous way to include the resource landscape. While it may be possible to modify

per capita growth rates to be a function of environmental conditions (e.g., temperature) and the resource

landscape, it is not clear how information would be included the species interaction terms. However, these

models allow positive and negative species interactions to be explored straighforwardly. Consumer-resource

models explicitly include the interaction between the resource landscape and consumers, but at the expense

of introducing more explicit mechanism, and therefore more choices in the way interactions are

implemented. Including positive interactions through the production of resources has led to new predictions

regarding the stability of communities (Butler & O’Dwyer, 2018), indicating that incorporating resource

exchange may be important for understanding the dynamics of real communities. However, we don’t know

how sensitive these results may be to the precise way consumption and exchange are formulated. Here, we

argue that incorporating metabolism more explicitly into consumer-resource dynamics will allow us to

explain a broader range of community dynamics and natural phenomena, with less ambiguity in the

functional form of interactions, and these metabolic rates may also reveal how environmental conditions

like temperature which can change metabolic rates contribute to species dynamics.

In including these processes, we reformulated the classical consumer-resource model to independently

include resource uptake, internal metabolic rates, and byproduct export. As such, our model is more

complex than the Lotka-Volterra equations but not as complex as a full multi-species flux balance analysis.

We found that when internal metabolic dynamics are included in addition to uptake two common models

of resource limitation (Liebig’s Law and multiplicative co-limitation) appear in particular limits of the
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internal reaction rates. In this model, we also make predictions for the functional form of the production of

metabolic byproducts, and we balance the requirements for growth, energy, storage, and export. We

further expand our model to include a second species which uses the metabolic byproduct of the first

species. In this metabolically-informed approach to consumer-resource models both species interactions

(competitive and mutualistic) and resource use efficiency are emergent properties of the system. In

addition, we show how internal metabolic reaction rates and the resource landscape determine species

dynamics and equilibria. We find that the metabolic rates can change when resources are metabolically

limiting, and therefore our model shows how how metabolic rates and the resource landscape change the

interactions between cross-feeding species. We further show that, if interacting species have different

metabolic rates, species and resource equilibria can change while maintaining the competitive and

facilitative interactions among species. We propose that when extended more broadly, this approach will

lead to mechanistic predictions for the role of positive interactions along stress gradients (Callaway &

Walker, 1997; Brooker & Callaghan, 1998), the ability of species interactions to stabilize or de-stabilize

communities (Butler & O’Dwyer, 2018; Allesina & Tang, 2012), and the mechanisms underlying

biodiversity ecosystem function relationships (Duffy et al., 2007; Flynn et al., 2011; Cardinale et al., 2012).

In short, we propose that metabolically-informed consumer-resource dynamics will provide a platform to

explore the consequences of cooperative and competitive interactions across environmental contexts.
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Methods

Solution for Polynomial Equations We can solve the single-species polynomial equations (Eq. 4) for

internal resource concentrations to obtain:

M1 =
k1 − k2

2λ1
− λ2

2β
+

1

2λ1
F (β, k1, k2)

M2 =
k2 − k1

2λ2
− λ1

2β
+

1

2λ2
F (β, k1, k2), (12)

while biomass production is given by

νbio =
λ1λ2
2β
− F (β, k1, k2)

2
+
k1 + k2

2
, (13)

where F (β, k1, k2) =

√(
k1 + k2 + λ1λ2

β

)2
− 4k1k2 depends on uptake, export, and reaction rates.

Limits of the general set of equations

We now solve Eq. 5 for two limits. The first limit is where β is large relative to the other rates,

M1 '
k1 − k2 + |k1 − k2|

2λ1
+
λ2
2β

(
k1 + k2
|k1 − k2|

− 1

)
+O(1/β2)

M2 '
k2 − k1 + |k1 − k2|

2λ2
+
λ1
2β

(
k1 + k2
|k1 − k2|

− 1

)
+O(1/β2)

ν1 = λ1M1

ν2 = λ2M2

ν3 = νbio ' min(k1, k2) +O(1/β) (14)

Note that we have to keep the O(1/β) terms for M1 and M2, because for at least one of the two

15

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 11, 2019. ; https://doi.org/10.1101/518449doi: bioRxiv preprint 

https://doi.org/10.1101/518449
http://creativecommons.org/licenses/by/4.0/


(depending on whether k1 > k2 or k1 < k2) the O(1) term vanishes in this limit of fast reaction rate β.

The second limit is where β is small relative to the other rates,

M1 '
k1
λ1
− βk1k2

λ21λ2
+O(β2)

M2 '
k2
λ2
− βk1k2

λ1λ22
+O(β2)

ν1 = λ1M1

ν2 = λ2M2

ν3 = νbio ' β
k1k2
λ1λ2

+O(β2) (15)

0.1 Internal Equilibrium in Two-Species Model

For the two-species model (Eqs. 9 & 10), we assume that all resources can be secreted from both

consumers, but to simplify the model slightly we will assume that the specific export rates are equal, λ,

broadly consistent with passive diffusion across sufficiently similar cell wall types. Based on these

assumptions, we can solve for internal equilibrium in both cell types to obtain:

νbio,1 =
λ2

2β1
− F (β1, k11, k21)

2
+
k11 + k21

2

νbio,2 =
λ2

2β2
− F (β2, k12, k32)

2
+
k12 + k32

2
, (16)

where, similarly to the one species case, the function F (x, a, b) =

√(
a+ b+ λ2

x

)2 − 4ab.
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J. B. (2013). Ecological modeling from time-series inference: insight into dynamics and stability of

intestinal microbiota. PLoS computational biology, 9, e1003388.

Sterner, R. W. & Elser, J. J. (2002). Ecological stoichiometry: the biology of elements from molecules to the

biosphere. Princeton University Press, Princeton, NJ.

Tasoff, J., Mee, M. T. & Wang, H. H. (2015). An economic framework of microbial trade. PLoS ONE, 10,

1–20.

Terry, J. C. D., Morris, R. J. & Bonsall, M. B. (2017). Trophic interaction modifications: an empirical and

theoretical framework. Ecology Letters, 20, 1219–1230.

Tilman, D. (1977). Resource competition between plankton algae: an experimental and theoretical

approach. Ecology, 58, 338–348.

21

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 11, 2019. ; https://doi.org/10.1101/518449doi: bioRxiv preprint 

https://doi.org/10.1101/518449
http://creativecommons.org/licenses/by/4.0/


Tilman, D. (1980). Resources: a graphical-mechanistic approach to competition and predation. The

American Naturalist, 116, 362–393.

Tilman, D. (1987). The Importance of the Mechanisms of Interspecific Competition. The American

Naturalist, 129, 769–774.

Tilman, D., Kilham, S. S. & Kilham, P. (1982). Phytoplankton community ecology: the role of limiting

nutrients. Annual Review of Ecology and Systematics, 13, 349–372.

Vellend, M. (2010). Conceptual synthesis in community ecology. The Quarterly review of biology, 85,

183–206.

Vellend, M. (2016). The theory of ecological communities. Princeton University Press. ISBN 978069116484.

Volterra, V. (1926). Fluctuations in the Abundance of a Species considered Mathematically. Nature, 118,

558–560.

von Liebig, J. F. & Gregory, W. (1842). Animal chemistry: or, Organic chemistry in its application to

physiology and pathology. John Owen.

Xiao, Y., Angulo, M. T., Friedman, J., Waldor, M. K., Weiss, S. T. & Liu, Y.-Y. (2017). Mapping the

ecological networks of microbial communities. Nature Communications, 8, 2042.

Zelezniak, A., Andrejev, S., Ponomarova, O., Mende, D. R., Bork, P. & Patil, K. R. (2015). Metabolic

dependencies drive species co-occurrence in diverse microbial communities. Proceedings of the National

Academy of Sciences, 112, 6449–6454.
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Figure 1: Conceptual Model. To demonstrate our metabolically informed consumer-resource model we

used fermentation as a prototype. Fermentation is an anaerobic—usually sugar consuming—metabolic

lifestyle, and is the primary anaerobic energy-producing reaction for many microorganisms (Gottschalk,

1986). A signature of fermentation is that it results in byproducts such as organic acids, alcohols, and/or

gases, which are produced due to the incomplete resource oxidation during the energy producing reactions.

Homolactic fermentation, the simplest type of fermentation, results in the incomplete oxidation of glucose.

The inputs are one glucose and two phosphate molecules, and the products are two lactate molecules. This

energy producing reaction yields a net two ATP per glucose. Here, we show the detailed chemical reactions

involved with homolactic fermentation. First, glycolysis is used to turn one molecule of glucose into two

pyruvate molecules. At this stage, the pyruvate can either be used for biomass, or it can be fermented into

lactate. In our model, glucose and phosphate enter the cell at uptake rates ki, biomass is generated at rate

βM1M2, and the metabolic byproduct, lactate, is exported from the cell at rate ν3.
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Figure 2: Single Species Simulation. We used numerical simulations of our single-species model to

determine how the resource landscape changes population dynamics. A & B: In the limit where β is high

relative to other rates (Eq. 6), we recover Liebig’s Law of the Minimum. Consumer abundance saturates,

but the final abundance depends on the inflow rate, ρi, of the more limiting resource. When the inflow of

R2 (ρ2) is lower than the inflow of R1 (ρ1), R2 becomes depleted. At saturation, R1 is in excess while R2 is

limiting (A). Changes in the inflow rates alters the final abundance (B), but the final abundance will

always be determined by the more limiting resource. When ρ1 = 100 (blue) the final abundance will

increase until ρ2 = 100, and when ρ1 = 108 (red) the final abundance will increase until ρ2 = 108. In

contrast, in the limit where β is low relative to other rates (Eq. 7), we recover multiplicative co-limitation.

Consumer abundance still saturates, albite at a lower final abundance given the same resource inflow rates

and with a growth lag-phase (C). As consumer abundance increases, both R1 and R2 are depleted. In

addition, the final abundance increases as inflow rates increase (D). When ρ1 = 100 (blue) the final

abundance will continue to increase past ρ2 = 100, and when ρ1 = 108 (red) the final abundance will

continue to increase past ρ2 = 108.
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Figure 3: Two Species with the Same Metabolic Rates. We simulated species dynamics in the

two-species model with equal internal metabolic rates, βi. In this model, two species compete for a shared

resource (R2), but species N1 also consumes R1 and produces R3 as a metabolic byproduct which is

consumed by species N2. When metabolic rates are high, species abundances saturate and species can

coexist provided the appropriate resource conditions (A). When the shared resource inflow rate (ρ2) is

higher than the inflow rate of R1 (ρ2), then the two species can coexist at a relatively high abundance

because N1 is more limited by its exclusive resource (R1). However, when ρ1 is higher than ρ2 (i.e.,

ρ1/ρ2 > 1), then N1 can outcompete N2 for the shared resource (R2) and the final abundance of N2 will be

greatly reduced. Even when the inflow rate of the shared resource is increased (ρ2 = 100vs80), the final

abundance of N2 does not increase when ρ1/ρ2 > 1. When metabolic rates are low, species still

coexistence, but the range of coexistence is greatly expanded (B). While the final abundance of N2 still

decreases as the resource inflow ratio (ρ1/ρ2) approaches 1, it does not decrease at the same rate and the

final abundance remains relatively high even when the resource inflow ratio is 1. In this simulation, the

resource inflow ratio needs to be greater than 1.5 before N1 outcompetes N2 and N2 becomes rare.
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Figure 4: Two Species with Different Metabolic Rates. We simulated species dynamics in the

two-species model where the species have different internal metabolic rates, βi. In this model, one of the

species has high and the other low metabolic rates compared to the other rates in the model. The species

compete for R2, and species N1 consumes R1 and produces R3 which is used by species N2. When N1 has

the higher metabolic rate, the species dynamics are similar and the coexistence conditions are identical to

the model where both species have high metabolic rates (A). However, there are now two important

differences. First, N2 (gray line) has a growth lag-phase. Second, both R1 and R2 are now depleted as the

population abundance saturates. When N2 has the higher metabolic rates, the coexistence conditions are

drastically different (B). N1 and N2 have growth lag-phases, and R2 and R3 are now the depleted

resources. In addition, both species coexist at a final abundance determined only by the shared resource

inflow rate (ρ2) across all resource inflow rates (ρ1/ρ2) tested.
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