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Abstract 18 

1. For bumble bees, colonies (not individual workers) are the functional unit of the population. 19 

Estimates of colony density are thus critical for understanding population distribution and 20 

trends of this important pollinator group. Yet, surveys of bumble bee colonies and other taxa 21 

with sessile life cycle states rarely account for imperfect detection.  22 

2. Here we demonstrate the use of mark-recapture methods to estimate the density of bumble 23 

bee colonies across the landscape using standardized survey protocols.  24 

3. We found that the probability of detecting colonies in standardized surveys varied 25 

considerably across space, through time, and among colonies.  26 

4. Using simulations, we also show that imperfect detection can obscure true variation in 27 

density among plots, or generate spurious variation in counts even when all plots have the 28 

same density. In both cases, we show that mark-recapture can be used to generate unbiased 29 

estimates of density, with relatively low search effort compared to conventional survey 30 

methods for bumble bee colonies.  31 

5. Our study illustrates the advantages of mark-recapture for optimizing survey protocols for 32 

species with cryptic and sessile life cycle stages, which will be a valuable tool in ongoing 33 

studies of pollinator nesting ecology. 34 

 35 

Key-words Bombus; closed population model; mark-recapture; monitoring; nesting habitat; 36 

occupancy  37 
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Introduction 38 

Measuring the size of natural populations is a primary goal of conservation monitoring 39 

and is often a prerequisite for management action or wildlife policy decisions (Williams et al.  40 

2002). Yet, estimating abundance and the factors that influence it can be challenging when 41 

organisms are difficult to detect. Accordingly, study designs and analyses that account for 42 

imperfect detection have a rich tradition in wildlife research (White and Burnham 1999; 43 

Williams et al.  2002; Kéry and Schaub 2012). Failure to account for imperfect detection of 44 

cryptic organisms can introduce both uncertainty and bias into population estimates, potentially 45 

leading to erroneous conclusions about population status and habitat requirements (Gu and 46 

Swihart 2004; Kéry and Schmidt 2008). 47 

In contrast to studies of mobile vertebrates, imperfect detection is rarely accounted for in 48 

population estimates for both invertebrates and taxa that are sessile or have a sessile life-cycle 49 

stage, including plants and ground-nesting animals (Kellner and Swihart 2014; Berberich et al. 50 

2016). Kellner and Swihart (2014) found that only 9.0% of invertebrate and 1.4% of plant 51 

population studies accounted for imperfect detection, compared to the mean of 23% across all 52 

taxa. This discrepancy potentially stems from the incorrect assumption that detection probability 53 

is inherently high in less mobile organisms. Yet, this assumption may be false if sessile 54 

organisms are rare, inconspicuous, or logistically difficult to survey. For example, in a long-term 55 

study of a 4.5 ha plot in Kansas, Slade et al. (2003) estimated that fewer than 4% of existing 56 

Mead’s milkweed plants were discovered in years without spring fires, and only 18% were 57 

discovered in years with spring burning. In a study of Baltimore Checkerspot butterfly 58 

demography, Brown et al. (2017) estimated the density of caterpillar aggregations on the 59 

landscape using mark-resight surveys. The detection probability ranged from 0.32 to 0.56 on 60 
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native Chelone glabra host plants, and from 0.17 to 0.25 on exotic Plantago lanceolata plants 61 

(L.M. Browne and E.E. Crone, pers. comm, from analyses in Brown et al. 2017). Surprisingly, 62 

Berberich et al. (2016) found that observers conducting one hour surveys for red wood ant nests 63 

in 60m x 60m plots failed to detect up to 40% of ant nests larger than 50cm. Thus, even for 64 

studies of sessile organisms, detection can be highly imperfect and systematically biased.  65 

Bumble bees are an important group of pollinators with a sessile life-cycle stage. After a 66 

queen bumble bee has established a colony and produced her first cohort or two of workers, she 67 

remains in the nest until the colony expires (Goulson 2010). Since colonies are the functional 68 

unit of the population for social insects such as bumble bees, studies of nesting habitat are 69 

particularly valuable for conservation planning. Yet, colonies are difficult to find, so relatively 70 

few studies have investigated the correlates of nest density compared to the numerous studies of 71 

habitat preference by foraging workers (but see examples in Harder 1986; Osborne et al. 2008; 72 

Waters et al. 2010; Lye et al. 2012; O’Connor et al.  2012, 2017). This disparity is problematic 73 

because workers are highly mobile, e.g., workers often forage up to 1 km from their colony 74 

(Greenleaf et al. 2007) and may be attracted to areas rich in floral resources. This decoupling of 75 

foraging and nesting sites potentially obscures the landscape drivers of population performance 76 

(Heard et al. 2007). Indeed, Herrmann et al. (2007) reported that bumble bee colony densities 77 

were uncorrelated with local worker densities across an agricultural landscape in Germany. 78 

A variety of methods have been used to estimate the density of bumble bee nests across 79 

landscapes. These methods have included “free searches” in which observers haphazardly search 80 

particular habitat types for nests (Harder 1986; O’Connor et al. 2012; Rao and Skyrm 2013; 81 

O’Connor et al. 2017), canine-assisted searches (Waters et al. 2010; O’Connor et al. 2012), and 82 

concentrated stationary observation of small plots by individual researchers or distributed citizen 83 
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science networks (Osborne et al. 2008; Lye et al. 2012). As an alternative to ground-based 84 

searches, molecular (i.e., genetic) analysis of foraging workers has also been used to infer nest 85 

density at large spatial scales (Darvill et al. 2004; Goulson et al. 2010). Other studies have 86 

inferred the relative density of nests across space based on the prevalence of spring prospecting 87 

behavior by newly emerged queens (Svensson et al. 2000; Kells and Goulson 2003; O’Connor et 88 

al. 2017). Combined, these studies have reported considerable variation in nest densities (range: 89 

0.1 to 50.1 nests· ha-1; Table 2 in Appendix 1), potentially owing to ecologically relevant 90 

differences across species, habitat types, and landscape configurations. However, O’Connor et al. 91 

(2012) also reported a 20-fold difference in the number of nests detected between fixed and free 92 

searches, indicating an extreme degree of variation in nest detection among survey strategies. 93 

Detection probability also often varies through time, across space, and between individuals 94 

(Anderson 2001; Kéry and Schaub 2012). Therefore, unaccounted differences in detection 95 

probability within and among studies could contribute to observed variation in nest density, 96 

limiting the ability to generalize across studies and resolve the true environmental correlates of 97 

bumble bee population abundance. 98 

Here, our objective was to generate unbiased estimates of bumble bee nest density using 99 

mark-recapture methods while simultaneously examining the factors that influence imperfect 100 

detection of nests. We first discuss the general application of closed-population modelling 101 

approaches to estimate the abundance of cryptic sessile organisms. We then review a classic 102 

catalogue of model structures that can be used to correct for systematic bias in detection 103 

probability, along with their specific relevance to our study of bumble bee nest density. We fit 104 

these models to empirical data and examine the consequences of imperfect nest detection in a 105 

field setting. Finally, we conduct a simulation to illustrate the (spurious) variability induced into 106 
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count data by imperfect detection, and to demonstrate that this approach can be usefully applied 107 

in cases where a large number of sites are only visited twice. Our study emphasizes the utility of 108 

mark-recapture approaches for examining the ecological correlates of nest density for social 109 

insects, and outlines a strategy for surveying bumble bee colonies with imperfect detection.   110 

Mark-recapture for estimating abundance with imperfect detection 111 

Closed population models can be used to estimate abundance while accounting for 112 

imperfect detection when the processes of birth, mortality, and movement do not alter the 113 

number of individuals in plots over the course of a study (i.e., when the population is 114 

“demographically closed” across the sampling period). For sessile organisms, this assumption is 115 

satisfied when birth and death processes are unlikely to occur across the sampling period. 116 

Individuals can also be censored if they are known to have died during the sampling period.  117 

Otis et al. (1978) outlined a classic catalogue of model structures that can be used to 118 

examine drivers of variation in detection probability for closed populations. We adopt this 119 

framework for our analysis of bumble bee nests to demonstrate how these models can be applied 120 

to studies of sessile organisms and to link our specific study system to a well-defined body of 121 

mark-recapture research. Mathematical descriptions of each model are presented in Table 1. 122 

The simplest model, ��, estimates a single detection probability that is common across 123 

all nests and sampling occasions. In reality, individuals may differ in their probability of being 124 

detected, a phenomenon known as individual heterogeneity. Consequently, the model �� 125 

estimates both a mean and variance in detection probabilities across nests (i.e., individual 126 

random effects). In our study of bumble bee nests, this could be due to unmeasured differences in 127 

the worker activity level or the location of nests that increase the probability particular nests will 128 

be detected. Similarly, the model �� estimates a mean detection probability across nests and a 129 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/518407doi: bioRxiv preprint 

https://doi.org/10.1101/518407
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

 

variance in detection associated with visits (i.e., a temporal random effect). For bumble bees, this 130 

is could be due to temporal variation in colony size, ambient temperature (which potentially 131 

affects activity level), or seasonal changes in vegetation within plots that alter the probability 132 

nests will be detected on each visit. The model �� described by Otis et al. (1978) accounts for a 133 

discrete behavioral change in organisms that affects their individual detection in subsequent 134 

marking occasions, commonly referred to as “trap-shyness” or “trap-happiness”. In studies of 135 

sessile organisms, rather than behavioral changes of the study organisms themselves, this 136 

response can plausibly occur if the vegetation surrounding focal organisms becomes trampled by 137 

researchers or if researchers remember the location of individuals (in this case, nests) they have 138 

previously located. Either of these scenarios would result in different detection probabilities for 139 

initial and subsequent capture events in studies of sessile organisms.  140 

Although not explicitly described by Otis et al. (1978), fixed effects of explicit covariates 141 

can also be incorporated to examine the drivers of variation in detection probability (Kéry and 142 

Schaub 2012). These can include age or size of the organism, habitat covariates, or explicit 143 

temporal covariates (e.g., to examine temporal trends in detection). In our study, four of the eight 144 

models included explicit covariates affecting detection of bumble bee nests. Towards this goal, 145 

we constructed a model that included different detection probabilities for each survey plot 146 

(�����; see Study Site in Methods section below), and three models that included effects of 147 

vegetation height above the nest (�	
�), hour of the day at which plots were surveyed (����), 148 

and ambient air temperature during the survey (��
��). Our objective was to demonstrate how 149 

these effects could be incorporated to generate deeper insights into the processes influencing nest 150 

abundance surveys, rather than to exhaustively examine the diverse suite of (potentially 151 

interacting) factors that influence nest detection.  152 
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Methods 153 

Study Site  154 

We conducted searches for bumble bee nests in three survey plots located at Appleton 155 

Farms (42.65°N, 70.86°W) in Ipswich, Massachusetts. Each plot was approximately 3000 m2 in 156 

area and not used for agriculture, although each plot is mowed annually to prevent succession. 157 

Two plots were adjacent to one another, while the third plot was located approximately 1,000 158 

meters away. Primary vegetation cover in each plot consisted of a variety of grasses, sedges 159 

(Carex spp.), perennial forbs (e.g., Plantago lanceolata, Linaria vulgaris, Lotus corniculatus, 160 

Solidago spp., Asclepias spp.), and ericaceous shrubs (e.g., Vaccinium angustifolium, Rubus 161 

spp.). Each plot was bordered by a hedgerow of trees or forest, and the surrounding landscape 162 

was mixed agriculture (pasture and hay fields) and natural areas (forest and wet meadows).  163 

Data Collection 164 

Each plot was visited repeatedly in July and August of 2017, after bumble bee colonies 165 

had produced several cohorts of workers, between 6:30 am and 7:30 pm, though the majority of 166 

nest surveys took place in the morning. Searches were conducted independently by eight 167 

different investigators, several of whom surveyed each plot multiple times. Each plot was 168 

surveyed for two hours between 12-16 times, for a total effort of 24-32 survey hours per plot. 169 

During each survey, searchers moved slowly through the plot looking for bumble bee activity 170 

that might indicate the presence of nest (i.e., workers quickly descending to the ground, slowly 171 

ascending from the ground, or conducting circular navigation flight behavior). Upon locating a 172 

bumble bee nest, searchers placed an inconspicuous, numbered identifier next to the nest 173 

entrance and recorded the nest location, identity, and whether the nest had been previously 174 

located either by themselves or by other searchers. For each located nest, we recorded the height 175 
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of the tallest vegetation immediately above the nest entrance, which could affect searcher ability 176 

to detect bumble bee movement near nest entrances. We extracted hourly ambient air 177 

temperature measurements during each survey from the nearest weather station (approx. 9.5 km 178 

away); ambient air temperature could affect bumble bee metabolism and nest activity, which 179 

could influence our ability to detect nests. Finally, we also recorded the time of day of each 180 

survey, as bumble bee activity varies throughout the day (Kwon and Saeed 2003). 181 

Statistical Methods 182 

The foundation of mark-recapture approaches is the encounter histories of individuals (in this 183 

case bumble bee colonies) that are generated from repeated surveys of plots. Closed population 184 

models assume the abundance of individuals within each plot does not change across sampling 185 

periods; thus, variation in the number of individuals detected across repeated surveys is caused 186 

entirely by observation error.  The goal of closed population models is to estimate detection 187 

probability (�) of individuals along with the spatial, temporal, and/or individual-level factors that 188 

influence it. Once the factors that influence detection probability are estimated, the observed 189 

count of individuals can be corrected to generate an unbiased estimate of the true number of 190 

individuals present at a site.  191 

Successful detection of the individual � during each survey � occurs with some 192 

probability  ��,� and the probability of not detecting the individual is 1 � ��,�. An encounter 193 

history of ‘0110’ implies the individual was detected on the second and third survey of the plot 194 

and not detected on the first and fourth survey. The entire encounter history ‘0110’ for individual 195 

� therefore occurs with probability �1 � ��,�	 
 ��,� 
 ��,� 
 �1 � ��,��.  The actual encounter 196 

history (i.e., the observed sequence of 0’s and 1’s) is assumed to arise from a series of Bernoulli 197 
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trials.  Additionally, a link function can be used to model the influence of covariates on detection 198 

probability, analogous to a logistic regression.   199 

We fit the series of closed population models described in Table 1 using the empirical nest 200 

encounter histories generated by our repeated surveys of plots. We fit models using Bayesian 201 

methods, outlined by Kéry and Schaub (2012, ch 6); though we note that such models can also 202 

be fit in a frequentist framework using maximum likelihood approaches. Bayesian analysis 203 

allows for random effects to be easily incorporated, for nests to be right-censored part way 204 

through the study (e.g., if a nest was known to have failed, which violates an assumption of 205 

closed population models), and for uncertainty in parameter estimates to be easily propagated to 206 

the model output. The Bayesian implementation of closed population models uses an additional 207 

technique called “data augmentation” to estimate the true number of individuals in a plot, based 208 

on the number of nests actually detected and their estimated detection probabilities (see Kéry and 209 

Schaub 2012, ch. 6; Royle and Dorazio 2008, section 5.6 for further discussion of this technique; 210 

also see our implementation of this approach in Supplementary Material 1).   211 

Simulation Study 212 

The methods described above demonstrate the application of a mark-recapture approach 213 

to the study of sessile insect life cycle stages when detection is highly imperfect.  However, to 214 

further illustrate the value of this approach, we conducted a simulation to illustrate a second (and 215 

converse) problem of failing to account for imperfect detection: imperfect detection generates 216 

spurious sampling variability in counts, even when no variation exists. This simulation was also 217 

used to examine whether the models we used would converge with only two visits (the minimum 218 

number of visits required for mark-recapture) if a larger number of plots had been surveyed. We 219 

simulated 40 hypothetical plots, each containing exactly 5 bumble bee nests. We used a fixed 220 
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detection probability of 0.30 for all nests (approximately equal to the mean detection probability 221 

we estimated; see Results section and Fig. 1a). We then simulated the number of nests observed 222 

on a single visit to each plot by drawing from a binomial distribution with 5 trials for each plot 223 

(i.e., one for each nest).  We used this simulation to evaluate 1) the degree of spurious variability 224 

introduced into counts simply by imperfect detection, and 2) whether the closed population 225 

mark-recapture approach could correct for this spurious variability with only two visits to each 226 

plot. 227 

To facilitate the straightforward application of this analytical toolkit to other studies of 228 

sessile insect life cycle stages, we include full encounter history data, covariate data, and 229 

commented R code for Bayesian analysis and simulations as Supplementary Materials 1-9.  Data 230 

management and simulations were conducted in R version 3.4.4 and Bayesian analysis was 231 

conducted in JAGS using the jagsUI library in R (Kellner 2018).  232 

 233 

Results 234 

We located 18 bumble bee nests across the three survey plots (10, 5, and 3 nests in each 235 

plot, respectively). All nests were constructed by Bombus impatiens, except for one that was 236 

constructed by B. bimaculatus. We used all nests for subsequent analysis. The number of nests 237 

located on single visits to each of the three plots ranged from 0 to 6, 0 to 3, and 0 to 3 for each 238 

plot, respectively. The three plots were searched 11, 16, and 14 times by at least 6 different 239 

observers. 240 

Model results – patterns in nest detection 241 

The mean detection probability of nests based on the intercept-only model (��) was 0.30 242 

(95% credible interval [CRI] = 0.24 - 0.36; Fig. 1a). A model that included heterogeneity in p 243 
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across nests (��) suggested that nests differed in their individual detection probabilities, with a 244 

median posterior estimate for p of 0.26 (95% CRI = 0.11 to 0.37) and standard deviation (on the 245 

logit scale) of 0.79 (95% CRI = 0.14 to 1.84; Fig. 1b). Similarly, a model that included 246 

heterogeneity in p across visits (��) indicated that detection probability varied through time with 247 

a median p of 0.27 (95% CRI = 0.20 to 0.38) and standard deviation (on the logit scale) of 0.67 248 

(95% CRI = 0.10 to 1.29; Fig. 1b). We note that there was substantial uncertainty associated with 249 

estimates of both individual and temporal random effects, as is common for random effect 250 

models fit to relatively sparse data (Kéry and Schaub 2012). 251 

There was weak evidence for different detection probabilities between the first and 252 

subsequent capture occasions (Fig. 1c). Thus, nests were not more likely to be detected after their 253 

initial discovery. 254 

 A model including different detection probabilities for nests within each survey plot 255 

(�����) indicated nest detectability varied systematically across plots (Fig. 1d). Under this 256 

model, median estimates of detection probabilities in each plot were 0.36 (95% CRI = 0.27 to 257 

0.45), 0.23 (95% CRI = 0.14 to 0.33), and 0.26 (95% CRI = 0.15 to 0.41). The probability that 258 

detection probability was greater for nests in plot 1 than plot 2 was 0.98 (calculated directly from 259 

posterior probability distributions). 260 

We then constructed a series of models to examine effects of specific covariates on p. 261 

Height of vegetation above the nest entrance did not have a strong effect on p (standardized 262 

effect of vegetation height from �	
� = 0.02; 95% CRI = -0.02 to 0.06; Fig. 1e). However, p 263 

declined strongly throughout the day during sampling times (standardized effect of hour from 264 

���� = -0.68; 95% CRI = -1.25 to -0.25; Fig. 1e) and was negatively correlated with ambient 265 
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air temperature during the survey (standardized effect of air temperature from ��
�� = -0.38; 266 

95% CRI = -0.69 to -0.09; Fig. 1e).   267 

Model results – nest abundance 268 

Across all eight models, median estimates of nest abundance were in close agreement. 269 

All models estimated approximately 10, 5, and 3 nests in each of the three plots, respectively 270 

(Fig. 2). The corresponding median estimate of nest density in each plot was therefore 33.3, 16.7, 271 

and 10 nests·ha-1. Consequently, on single surveys of each plot, we located approximately 0-60% 272 

of the nests in plots 1 and 2, and 0-100% of the nests in plot 3. 273 

However, even with our large number of repeated searches (11-16 per survey plot), there 274 

was a high probability that undiscovered nests remained in each plot at the end of our study (Fig. 275 

2; note range of credible intervals). For example, while the median estimate of total nest 276 

abundance from model �� was 18 (equal to the number of nests we located), the 95% credible 277 

interval was 18 to 20, and the probability that the true abundance was greater than 18 was 0.25. 278 

Notably, the credible intervals for estimates from model �� were wide relative to other models. 279 

This reflects two important features of individual heterogeneity: 1) a fraction of nests have 280 

extremely low detection probabilities and it is difficult to estimate how many remained 281 

undetected, and 2) the existing amount of heterogeneity is difficult to estimate, especially with 282 

low sample sizes (see Fig. 1b). 283 

Given that our counts of bumble bee nests were subject to substantial observation error, 284 

we performed an additional analysis to illustrate how imperfect detection can obscure large 285 

differences in the density of colonies among plots. We  randomly selected nest counts from 286 

single surveys to each plot, calculated the resulting rank order of nest densities, and compared 287 

them to our estimates from mark-recapture models. We repeated this process 1000 times. This 288 
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analysis revealed that based on single visits to each field, the incorrect rank-order of density 289 

between plots arises 70% of the time despite large differences in the relative density of nests in 290 

each plot. Strikingly, the incorrect rank order between plots 1 and 3 arises 17% of the time, 291 

despite a three-fold difference in estimated nest density between these two plots (33.3 vs 10 292 

nests·ha-1). Next, to quantify the effort needed to reliably estimate differences in nest density 293 

between plots, we sequentially re-fit model M0 for different numbers of visits. With our small 294 

number of plots and so few nests initially detected, the model would not converge with only 2 295 

visits to each plot. This also occurred when models were fit with maximum likelihood in 296 

program MARK instead of using Bayesian methods. The model converged with 3 visits to each 297 

plot, but uncertainty associated with abundance estimates was extremely large (Fig. 3). After 5 298 

visits to each plot, clear differences in abundance between plots 1 and 3 were apparent. As 299 

expected, uncertainty in estimates continued to decline as the number of surveys increased.  300 

Simulation results – correcting spurious variation in nest abundance 301 

Our final simulation illustrates the sampling variability induced into count data even 302 

when detection rates are fixed at 0.3. We then used this simulation to examine whether this 303 

spurious source of variability could be corrected by visiting each plot only twice if a larger 304 

number of plots were visited. Despite the true presence of exactly 5 nests in each of the 40 305 

simulated plots (Fig. 4; solid black line), the number of nests detected per plot ranged from 0 to 4 306 

with a mean of 1.51 and standard deviation across plots of 0.95 (Fig. 4, dashed line and dots). 307 

Thus, based on a single visit to each plot, there is considerable (but spurious) variation in nest 308 

abundance across the 40 plots. We then simulated a second visit to each plot, fit mark-recapture 309 

model �� to the resulting encounter histories, and estimated the number of nests in each plot 310 

while accounting for imperfect detection. The model successfully converged with only 2 visits to 311 
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each plot and the credible intervals (Fig. 4; gray ribbons) overlapped the true abundance in every 312 

plot. The model �� therefore correctly indicates weak evidence for variation in abundance 313 

among the 40 simulated plots, despite the high degree of variation in nest counts from a single 314 

survey. Thus, for larger sample sizes of plots, two to three visits to each may be sufficient in 315 

estimating nest densities.   316 

 317 

Discussion 318 

Our study is the first to apply mark-recapture methods to estimate the density of bumble bee 319 

nests, which represent a critical and understudied life cycle stage for this important pollinator 320 

group. In our study, single surveys of bumble bee nest abundance were subject to considerable 321 

bias and observation error, owing to imperfect detection. On average, we only detected 30% of 322 

existing nests on each 2-hour survey of a 0.3 ha plot, and we show that the low detection 323 

probability on single surveys can introduce substantial and spurious variation into counts (Fig. 324 

4). Thus, in order to understand the nesting ecology and monitoring requirements of bumble 325 

bees, imperfect detection of nests must be properly accounted for.  326 

Our estimate of detection probability is well within the range of reported rates for surveys of 327 

other sessile organisms: 0.01 to 1.0 in plants (Chen et al. 2013; Kellner and Swihart 2014), 0.17 328 

to 0.60 for insect nests (Berberich et al. 2016; Brown et al. 2017), and 0.09 to 0.93 for patches of 329 

freshwater mussels (Reid 2016). These studies use mark-recapture approaches to improve 330 

estimates of density or occupancy on the landscape for sessile organisms that are not perfectly 331 

detectable, and our study adds bumble bees to this list of taxa.  332 

The range of bumble bee nest densities we detected are comparable to those reported in 333 

Osborne et al. (2008), who used intensive fixed searches by citizen science volunteers to count 334 
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nests in UK gardens and countryside habitats. Of our three plots, the highest density we detected 335 

was 33.3 nests·ha-1, similar to hedgerow (29.5 nests·ha-1), garden (35.8 nests·ha-1), and fence line 336 

(37.2 nests·ha-1) habitats reported in Osborne et al. (2008). Notably, Cumber (1953) is the only 337 

other study to report higher nest densities than these; his estimate of 48.6 nests·ha-1 was based on 338 

intensive free searches of a refuse dump in England. Conversely, our lowest density plot 339 

contained 10 nests·ha-1, which is similar to the density of 10.9 nests·ha-1 reported in Harder 340 

(1986) who intensively surveyed a successional field in Ontario, Canada. This estimate is also 341 

similar to the lowest densities in Osborne (10.8 nests·ha-1 in woodland and 11.4 nests·ha-1 in 342 

short grassland habitat). Therefore, our three plots seem to have captured the range of nest 343 

densities observed in other studies, if we restrict these studies to those with intensive search 344 

effort and extremely high detection probabilities. 345 

Other studies have reported far lower nest densities than those in our study or those in 346 

Osborne et al. (2008), Cumber (1953), and Harder (1986). However, comparisons among studies 347 

are ultimately hampered by differences in survey efforts, and thus, differences in detection error. 348 

For example, low-intensity free searches by researchers or volunteers produced estimates of nest 349 

density ranging from 1.4 to 3.6 nests·ha-1 similar to the range of nest densities discovered by 350 

bumble bee “sniffer dogs” (O’Connor et al.  2012, 2017). Both of these studies acknowledge that 351 

detection error is likely substantial for these methods. Molecular studies also typically yield 352 

estimates of nest density that are 1-2 orders of magnitude lower than intensive ground-based 353 

searches (range: 0.13 to 1.9 nests·ha-1; Supplement 2). Several molecular studies have used ad-354 

hoc approaches to account for imperfect detection, but these approaches likely under-estimate 355 

the true nest density (Goulson et al. 2010). Molecular methods also integrate habitat quality over 356 

larger spatial extents than ground-based surveys, and likely incorporate areas that are unsuitable 357 
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for nesting (e.g., water bodies). Formal mark-recapture approaches are necessary to understand 358 

the degree to which variation in nest density between studies is driven by ecologically relevant 359 

factors (e.g., variation in habitat quality, differences in spatial scale at which studies occur) 360 

versus unresolved differences in imperfect detection. 361 

In addition to estimating overall probability of nest detection, we found that nest detection 362 

declined when surveys were conducted later in the day and in warmer temperatures (Fig. 1e). 363 

Based on estimates from model ����, mean detection probability during 6 am surveys was 0.40 364 

(95% CRI = 0.31 to 0.50), but was only 0.05 (95% CRI = 0.01 to 0.17) for surveys initiated at 6 365 

pm. This result is consistent with Kwon and Saeed (2003) who found that colony traffic and 366 

foraging activity of Bombus terrestris declined throughout the day and when temperatures were 367 

warmer. Similarly, Couvillon et al. (2010) reported that workers of all sizes conducted fewer 368 

foraging trips in warmer temperatures. Thus, the results of our mark-recapture estimate of 369 

detection probability are broadly consistent with prior knowledge of bumble bee foraging 370 

ecology, and suggest that variation in forager behavior is a likely driver of differences in 371 

detectability. 372 

Although we did not measure them in our study, other factors could also influence colony 373 

activity, and in turn, the probability that nests are detected on a given survey. For example, larger 374 

colonies have higher traffic at nest entrances (Kwon and Saeed 2003) and are therefore likely to 375 

be more detectable. Colony size, in turn, depends on floral resources available throughout the 376 

season (Williams et al. 2012; Crone and Williams 2016). Thus, detection of nests may differ 377 

between high and low quality habitat owing to systematic differences in colony size. Here, we 378 

found evidence for systematic differences in nest detection across our three survey plots. Plot 1 379 

had the highest nest density (33.3 nests·ha-1), and simultaneously, detection was highest for nests 380 
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in this plot (Fig. 1d). Mark-recapture approaches can correct for these spatio-temporal biases in 381 

detection probability, which in turn, improve comparisons of abundance within and between 382 

studies. 383 

Population monitoring schemes will often have multiple objectives, in addition to generating 384 

reliable estimates of population size (e.g., sampling large numbers of individuals to assess body 385 

condition, biochemistry, or disease status; monitoring behavior of individual animals in different 386 

environmental contexts). For rare or highly cryptic species, intensive surveys over a small area 387 

may be required to generate reliable estimates of local abundance, but yield few individuals for 388 

further detailed study. In the case of bumble bees, intensive fixed searches of small plots are 389 

considered sufficient to detect all existing nests and therefore reliably estimate nest density 390 

(Osborne et al., 2008; O’Connor et al. , 2012). However, intensive fixed searches are inefficient 391 

when a large number of nests are desired (e.g., for examining microsite characteristics associated 392 

with nests, or for studying workers at nest entrances) and are logistically challenging to 393 

implement over large areas without distributed citizen science networks (Osborne et al. 2008; 394 

Lye et al. 2012). We were able to locate a high number of nests, generate precise estimates of 395 

abundance with only 5-6 surveys in each of our 3 plots (Fig. 3a), and produce relatively unbiased 396 

estimates with an even smaller number of surveys at a larger number of sites (Fig 4). This 397 

equates to much lower search effort than typical intensive fixed searches, while simultaneously 398 

locating nests at a comparable rate to low-intensity free searches (O’Connor et al. 2012). Our 399 

study illustrates the advantage of mark-recapture for optimizing survey protocols for cryptic and 400 

sessile organisms. Further research in this area will be valuable in illuminating the ecological 401 

drivers of pollinator nesting ecology, a critical but understudied subject.  402 

 403 
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Figures 512 

 513 

Fig. 1 Effects on bumble bee nest detection probability from closed population models (n = 18 514 

nests). Points represent median estimate of effect from Bayesian posterior distributions; lines 515 

represent 95% credible intervals 516 
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 517 

Fig. 2 Estimated abundance of nests in each of the three survey plots (with associated 95% 518 

Bayesian credible intervals) based on each of the eight closed population models and all survey 519 

data  520 
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 521 

Fig. 3 Estimated nests in each plot and associated mean detection probability from closed 522 

population models, based on model M0 after different numbers of visits to each plot. Points 523 

represent median estimates from Bayesian posterior distribution; lines denote associated 95% 524 

credible intervals  525 
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 526 

Fig. 4 Results of a simulation with 40 survey plots, each with exactly 5 nests, and each nest with 527 

a 0.3 probability of detection on a single visit. Black dashed lines and black dots represent counts 528 

on a single visit to each plot. Gray lines and dots depict estimates based on a closed population 529 

model with 2 visits to each plot. Gray ribbon indicates 95% credible intervals for estimates in 530 

each plot. Thick solid line is true number of nests in each plot (n = 5)  531 
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Tables 532 

Table 1 Classic closed population model structures used in our study to examine variation in the 533 

probability of detecting bumble bee nests. ��,� refers to the detection probability of nest i on survey t, 534 

and ��  refer to various fitted model coefficients 535 

 536 

 537 

# Model 
Abbrev. 

Model Name Formula Description 

1 �� Intercept-only �����	��,�
 � �� Constant value of p across all i 
nests and t visits 

 
Models with Random Effects 

2 ��  Individual 
heterogeneity 

�����	��,�
 � �� � � 

with �~�������0, �����	 � 

Random effect for p among i 
nests 

3 �
  Temporal 
heterogeneity 

�����	��,�
 � �� � � 

with �~�������0, �����
	 � 

Random effect for p among t 
visits 

 
Models with Categorical Covariates 

5 ��  Capture/recapture 
effect 

�����	��,�
 � �� �  � � ������,� p differs between initial capture 
and subsequent recaptures (where 
������,� is an indicator variable 
set to 0 until initial capture, 1 
after initial capture) 

4 �����  Plot effect �����	��,�
 � �� �  � � ����� p differs among survey plots (i.e., 
group effect) 

Models with Continuous Covariates 

6 ���� Veg. height  �����	��,�
 � �� �  � � ����  p depends on vegetation height 
above the nest entrance 

7 �����  Hour of day �����	��,�
 � �� �  � � ����� p depends on the time of day the 
survey was conducted 

8 ����� Air temperature �����	��,�
 � �� �  � � �����  p is affected by air temperature 
during the survey 

 538 

  539 
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Appendix 1  540 

Table 2 Summary of previous studies that estimated bumble bee nest density, with description of 541 

methods used, study region, species detected, habitat types associated with density estimates, 542 

area searched, and estimated density. Note that search area does not apply to molecular methods 543 

as nest density is inferred from genetic relatedness between workers and estimates of worker 544 

foraging range  545 

Study Method 
Study 
Region 

Species 
Detected Habitat Type 

Search 
area 
(ha) 

Density 
(nests·ha-1) 

Osborne et al. 2008 Fixed Search UK Multiple 
Grassland 
<10 cm 0.44 11.4 

Osborne et al. 2008 Fixed Search UK Multiple 
Grassland 
>10 cm 0.75 14.6 

Osborne et al. 2008 Fixed Search UK Multiple Woodland 0.19 10.8 

Osborne et al. 2008 Fixed Search UK Multiple Fence line 0.16 37.2 

Osborne et al. 2008 Fixed Search UK Multiple Hedgerow 0.41 29.5 

Osborne et al. 2008 Fixed Search UK Multiple Woodland edge 0.25 19.9 

Osborne et al. 2008 Fixed Search UK Multiple Lrg Garden  0.89 34.9 

Osborne et al. 2008 Fixed Search UK Multiple Med Garden 1.13 31.9 

Osborne et al. 2008 Fixed Search UK Multiple Sm Garden 0.40 50.4 

Osborne et al. 2008 Fixed Search UK Multiple Garden (all) 2.43 35.8 

O'Connor et al. 2012 Fixed Search UK Multiple Woodland 0.14 27.8 

O'Connor et al. 2012 Detection Dog UK Multiple Woodland 6.94 1.41 

O'Connor et al. 2012 Free Search UK Multiple Woodland 6.94 1.44 

O'Connor et al. 2017 Free Search UK Multiple Grassland 5.00 3.6 

O'Connor et al. 2017 Free Search UK Multiple Woodland 5.00 3 

Cumber 1953 Free Search UK Multiple Refuse dump 0.80 48.6 

Darvill et al. 2004 Molecular UK B. pascuorum Forest/farmland NA 1.9 

Knight et al. 2005 Molecular UK B. pascuorum Farmland NA 0.3 

Knight et al. 2009 Molecular UK B. pascuorum Farmland NA 1.7 

Darvill et al. 2004 Molecular UK B. terrestris Forest/farmland NA 0.13 

Knight et al. 2005 Molecular UK B. terrestris Farmland NA 0.3 

Knight et al. 2005 Molecular UK B. lapidarius Farmland NA 1.2 

Knight et al. 2005 Molecular UK B. pratorum Farmland NA 0.3 

Waters et al. 2010 Sniffer Dog UK B. muscorum Upland Heath NA 0.5 

Waters et al. 2010 Sniffer Dog UK Multiple Lowland Heath NA 0.27 
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Waters et al. 2010 Sniffer Dog UK Multiple Machair NA 2.13 

Waters et al. 2010 Sniffer Dog UK  Multiple Dune NA 1.47 

Rao and Skyrm 
2013 Free Search USA  B. nevadensis Crop field NA 18.8 

Rao and Strange 
2012 Molecular USA  

B. 
vosnesenskii Crop field NA 0.76 

Harder 1986 Free Search CAN Multiple Old field 3.20 10.93 

 546 

Description of supplementary information 547 

Supplementary material 1: R code used to examine variation in the probability of detecting 548 

bumble bee nests using bayesian closed population models and generate Fig. 1 and Fig. 2 549 

 550 

Supplementary material 2: R code used to demonstrate that imperfect detection can obscure 551 

differences in colony density among plots and generate Fig. 3 552 

 553 

Supplementary material 3: R code used to estimate bumblebee populations for simulated mark-554 

recapture data and generate Fig. 4 555 

 556 

Supplementary material 4: Capture histories for 10 bumble bee nests for survey plot 1  557 

 558 

Supplementary material 5: Capture histories for 5 bumble bee nests for survey plot 2  559 

 560 

Supplementary material 6: Capture histories for 3 bumble bee nests for survey plot 3 561 

 562 

Supplementary material 7: Covariate data for each nest, including the height of the tallest 563 

vegetation immediately above the nest entrance 564 

 565 
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Supplementary material 8: Hourly ambient air temperature measurements during each survey 566 

from the nearest weather station  567 

 568 
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