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Abstract

Data cleaning is an important first step in most statistical analyses, including efforts to map

the genetic loci that contribute to variation in quantitative traits. Here we illustrate approaches to

quality control and cleaning of array-based genotyping data for multiparent populations

(experimental crosses derived from more than two founder strains), using MegaMUGA array data

from a set of 291 from Diversity Outbred (DO) mice. Our approach employs data visualizations

that can reveal problems at the level of individual mice or with individual SNP markers. We find

that the proportion of missing genotypes for each mouse is an effective indicator of sample

quality. We use microarray probe intensities for SNPs on the X and Y chromosomes to confirm

the sex of each mouse, and we use the proportion of matching SNP genotypes between pairs of

mice to detect sample duplicates. We use a hidden Markov model (HMM) reconstruction of the

founder haplotype mosaic across each mouse genome to estimate the number of crossovers and to

identify potential genotyping errors. To evaluate marker quality, we find that missing data and

genotyping error rates are the most effective diagnostics. We also examine the SNP genotype

frequencies with markers grouped according to their minor allele frequency in the founder strains.

For markers with high apparent error rates, a scatterplot of the allele-specific probe intensities can

reveal the underlying cause of incorrect genotype calls. The decision to include or exclude

low-quality samples can have a significant impact on the mapping results for a given study. We

find that the impact of low-quality markers on a given study is often minimal, but reporting

problematic markers can improve the utility of the genotyping array across many studies.
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Introduction

Data cleaning is a critical first step in analyses to map quantitative trait loci (QTL).

Genotyping errors and especially the inclusion of poor quality or erroneously labeled samples can

reduce the power to detect QTL. Despite its importance, relatively little has been written about the

data cleaning process. Lincoln and Lander (1992) discussed the detection of genotyping errors in

genetic map construction. Broman and Sen (2009, Ch. 3) discussed data cleaning more broadly,

in biparental crosses. Morgan (2015), in presenting the R package argyle for quality control for

SNP genotyping arrays, emphasized consideration of the amount of missing genotypes, frequency

of heterozygotes, and the distribution of array intensities. Here we address data cleaning with an

emphasis on multiparent populations and array-based genotyping.

Multiparent populations are experimental crosses derived from more than two founder strains.

They have become a popular tool for complex trait genetics in experimental organisms. Examples

include heterogeneous stock (Mott et al. 2000; Mott and Flint 2002), MAGIC lines (Cavanagh

et al. 2008; Kover et al. 2009), the Collaborative Cross (Churchill et al. 2004), and Diversity

Outbred mice (Churchill et al. 2012; Svenson et al. 2012). Genotype data cleaning is more

difficult in multiparent populations as individual SNP markers are generally limited to two alleles

and thus multiple marker genotypes are required to uniquely identify the founder strain origins at

any locus.

We illustrate our process for cleaning genotype data using MegaMUGA SNP array data

(Morgan et al. 2016) on 291 Diversity Outbred (DO) mice. The SNP probe selection for this and

other MUGA platforms has been optimized to distinguish among the founder haplotypes of the

DO. A key principle that guides our approach to data cleaning is to think about what might have
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gone wrong, and how it might be revealed in the data. We visualize the data in many ways, and

when we see something unexpected, we try to determine the underlying cause.
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Material and Methods

Mice and genotypes

We consider genotype data for 291 Diversity Outbred (DO) mice, including 99 mice from

generation 8 and 192 mice from generation 11. These are a subset of the mice considered in Gatti

et al. (2017).

The mice were genotyped using the MegaMUGA SNP array (Morgan et al. 2016), which

includes 77,808 markers. The genotyping was performed at Neogen (Lincoln, NE). Genotype

calls using pairs of nucleotides A, C, G, and T were converted to genotypes AA, AB, BB, with A

denoting the allele that was most frequent among the eight founder strains (assigned arbitrarily

when the two alleles were equally frequent).

Statistical methods

Analyses were conducted in R (R Core Team 2018) and with R/qtl2 (Broman et al. 2019).

Most of the statistical analyses involves visualization of summary statistics.

To reconstruct the genomes of the DO mice, we use a hidden Markov model (see Broman and

Sen 2009, App. D). The transition probabilities for DO mice were taken from Broman (2012b),

which uses the results of Broman (2012a). We used the genetic map from Cox et al. (2009),

assumed a genotyping error rate of 0.2%, and used the Carter-Falconer map function (Carter and

Falconer 1951). The HMM provides a probability for each possible 36-state diplotype at each

marker for each mouse. The term diplotype refers to a pair of founder haplotypes. The 36

diplotypes consist of 8 homozygotes and 28 heterozygotes.

To estimate the number of crossovers in each individual, we inferred the 36-state diplotype at
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each locus as the state with maximum marginal probability, provided that it was > 0.5. In cases

where all diplotypes had probability < 0.5, the diplotype state was treated as missing. We then

calculated the minimum number of crossovers consistent with these inferred diplotypes.

To identify potential genotyping errors, we calculated the genotyping error LOD scores of

Lincoln and Lander (1992), by first converting the 36-state diplotype probabilities to 3-state SNP

genotype probabilities, using the SNP genotypes in the eight founder strains. We then used the

observed SNP genotype to calculate the error LOD score as in equation 1b of Lincoln and Lander

(1992).

To obtain predicted SNP genotypes for each DO mouse, we collapsed the predicted 36-state

diplotypes to 3-state SNP genotypes using the SNP genotypes in the founders. The predicted

genotypes can differ from the observed genotypes due to the smoothing effects of the HMM

haplotype reconstruction.

Data and software availability

The raw genotype data are available at FigShare

(https://doi.org/10.6084/m9.figshare.7359542.v1). They are also available in

the R/qtl2 input format at https://github.com/rqtl/qtl2data.

The SNP genotypes for the founder strains are at FigShare,

https://doi.org/10.6084/m9.figshare.5404750.v2. We used annotations for

the MegaMUGA genotyping array from https://github.com/kbroman/MUGAarrays.

R/qtl2 is available at https://kbroman.org/qtl2 and at GitHub,

https://github.com/rqtl/qtl2. The custom R scripts used for our analyses and to

create the figures are at GitHub (https://github.com/kbroman/Paper_MPPdiag).
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Results

We consider data from a population of 291 Diversity Outbred (DO) mice (Gatti et al. 2017),

including 99 mice from generation 8 and 192 mice from generation 11. There are 150 females

and 141 males. The mice were genotyped with the MegaMUGA array, which includes 77,808

markers, but we focus on the 69,339 markers that are polymorphic among the eight founder

strains.

Sample diagnostics

Missing data: Our first step in genotype data diagnostics is to look at the proportion of missing

genotypes in each mouse, as this is a key indicator of sample quality. Samples with a high

proportion of missing genotypes are likely low quality.

The percent missing genotypes by mouse are displayed in Figure 1. The bulk of mice are

missing very little data, but there are 24 mice with >2% missing genotypes, including nine mice

with ≥20% missing. The mice with high rates of missing genotypes will show up as outliers for

many of the diagnostics below. The problem samples are clustered within a common batch, which

may indicate a problem with sample processing.

Verify sex:

To verify the sexes of the mice, we could look at the proportion of heterozygous genotype

calls on the X chromosome. However, with array-based genotypes, it is most informative to look

at the probe intensities for SNPs on the X and Y chromosomes.

In Figure 2, we display a scatterplot of the average intensity for the 30 Y chromosome

markers vs the average intensity for 2,058 X chromosome markers. Each point is a mouse, with
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Figure 1 Percent missing genotypes by mouse. The nine mice with ≥20% missing genotypes are
labeled with their sample identifiers.

the males in purple and the females in green. We omitted eighteen markers on the X chromosome

that did not show a clear sex difference in allele intensities.

There is a distinct cluster of male mice in the upper-left (low X chromosome intensity and

high Y chromosome intensity) and a cluster of female mice in the lower-right (high X

chromosome intensity and low Y chromosome intensity). However, M377 was labeled male but

appears within the female cluster in the lower right, and so is likely female. Also, F386 is labeled

female but appears in the lower-left, with reduced X chromosome intensity. This is likely an XO

female. Other outliers in Figure 2 are mice with high rates of missing genotypes, including the

nine mice with ≥ 20% missing genotypes, which are labeled in orange.

For sex inference, the SNP probe intensities give better separation of the two sexes than

heterozygosity on the X chromosome (Figure S1), and they enable us to distinguish between

males and XO females. We could also, potentially, identify XXY males, who would have high

average intensities on both sex chromosomes.
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Figure 2 Average SNP microarray intensity for markers on the Y chromosome versus that for
markers on the X chromosome, for each mouse. Mice that were nominally male are in purple,
while females are in green. Samples with ≥ 20% missing genotypes are labeled in orange. Two
other samples of interest are labeled in black: F386 which appears to be XO, and M377 which was
nominally male but appears to be XX.
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Sample duplicates: We look for potential sample duplicates by calculating the proportion of

matching SNP genotypes for each pair of samples. The nine samples with ≥ 20% missing

genotypes look quite different from others, and also show some chance similarities

(Supplementary Figure S2A). If we omit those samples (Supplementary Figure S2B), we find that

the bulk of pairs share around 50% of genotypes (shifted slightly below 50%; the median is

46.6%). The probability of unrelated individuals sharing the same genotypes at a marker is

determined by the SNP minor allele frequency. The average proportion of sharing is a property of

both the population structure and the array probe selection strategy. A small proportion of pairs

(179 pairs, or 0.4%) share a bit more, at around 67.1%. These likely represent siblings.

Two pairs have almost perfectly matching SNP genotypes. Mice M283 and M292 have

matching genotypes at all except one of the 69,025 markers at which they were both genotyped.

Mice M377 and F409 have matching genotypes at all except 36 of the 68,291 markers at which

they were both genotyped. Note that the second pair includes M377 which was seen in Figure 2 to

have mislabeled sex.

These two pairs are clear duplicates. We are looking for a separation between the normal

sharing between mice and the duplicates, and (having excluded samples with ≥ 20% missing

genotypes), these are the only pairs with >76% matching genotypes. These unintended sample

duplicates provide an estimate of the genotyping error rate, which looks to be well under

1/10,000.

We will omit one mouse from each pair, for the purpose of illustrating our genotype quality

control analyses. For the M377/F409 pair, it seems clear that the sample corresponds to F409,

since it is a female. But for M283/M292, we can not tell which is the correct label. For later QTL

analyses we would likely wish to omit both samples, but for this illustration we will just omit the
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Figure 3 Distribution of array intensities after a log10(x + 1) transformation. A: Kernel density
estimates of the array intensity distribution. Samples with >9% missing genotype data are in pink;
samples with 2.5 – 5% missing genotype data are in blue; the remaining samples are in gray. B:
Scatterplot of the 1st percentile versus the 99th percentile.

second one, M292.

If the data included genome-scale phenotypes with strong genetic signals, such as gene

expression data, we would at this point look further for possible sample mix-ups (Westra et al.

2011; Broman et al. 2015), but we will not do so here.

SNP probe intensities: The distribution of probe intensities on the genotyping array can be a

useful indicator of problem samples. In Figure 3A, we display density estimates of the array

intensities for each of the 289 samples, after a log10(x+ 1) transformation. We highlight the

arrays corresponding to samples with appreciable missing genotypes. The nine samples with ≥

20% missing data are highlighted in orange; their array intensities are shifted to the left and have

a long right tail. There are three samples with ∼9% missing data (in pink); they show a much

broader distribution of array intensities. There are eight samples with 2.5–5% missing genotypes

(in blue); many of these have a spike of intensities near 0.
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In Figure 3B, we display a scatterplot of the 1st and 99th percentiles of the log array

intensities, in an attempt to summarize the pattern seen in the densities in Figure 3A. Most of the

samples with high rates of missing genotypes are outliers. We label one sample (F326) which has

≥20% missing genotypes but has an array intensity distribution that is not as extreme as the other

samples with ≥20% missing genotypes.

SNP genotype frequencies: The SNP genotype frequency distribution across all markers within

an animal can be a useful diagnostic. For example, sample contamination can lead to excess

heterozygotes. In DO mice, we split the SNP markers into four groups, based on the minor allele

frequency (MAF) in the eight founder strains. To do so, we consider only the 68,357 with

complete founder genotypes. (For 982 of the polymorphic markers, at least one of the founders

has missing genotype.)

To display the genotype frequencies, we use a ternary plot, which makes use of the fact that

for any point within an equilateral triangle, the sum of the distances to the three sides is constant.

And so the trinomial SNP genotype frequencies for an individual may be represented by a point in

the triangle, with the distance to the lower edge being the frequency of heterozygotes, and the

distances to the left and right edges being the frequencies of the two homozygotes.

As seen in Figure 4, the DO mice form tight clusters with very similar SNP genotype

frequencies, except for a few samples that show high heterozygosity, which are among the

samples with high rates of missing genotype data. Another potential outlier is F313, which shows

somewhat reduced heterozygosity in SNPs with MAF = 3/8 or 1/2.

Counts of crossovers: Another important diagnostic is to estimate the number of crossovers,

genome-wide, in each mouse. Problem samples may exhibit excessive crossovers. In some cases,

a sample may exhibit fewer crossovers than expected.
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Figure 4 SNP genotype frequencies by mouse, for SNPs split by their minor allele frequency
(MAF) in the eight founder strains. Trinomial probabilities are represented by points in an equilat-
eral triangle using the distances to the three sides. Pink points indicate the expected distributions.
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To estimate crossovers, we first reconstruct the diplotypes across the genome for each of the

DO mice. We use a hidden Markov model (HMM) to calculate the probability of each of the 36

possible diplotypes (8 homozygotes plus 28 heterozygotes) at each genotyped SNP, given the

multipoint SNP genotype data, with allowance for genotyping errors (Supplementary Figure S3).

Figure S3A shows the inferred diplotypes across the genome for a single DO mouse, and Figure

S3B shows the detailed diplotype probabilities for that mouse, along one chromosome.

There are a number of different methods for estimating the number of crossovers in a DO

genome. We are using the simplest: at each genotyped SNP, pick the most probable diplotype

(provided that it has probability at least 50%) and then calculate the minimal number of

crossovers that are consistent with that set of predicted diplotypes.

The estimated numbers of crossovers for each DO mouse is shown in Figure 5, with points

colored according to their generation. The mice in generation 8 have an average of 304

crossovers, while those in generation 11 have an average of 357 crossovers.

We have excluded the nine mice with ≥ 20% missing genotypes. They all show > 500

crossovers, and the mice with > 50% missing genotypes show > 2000 crossovers. This is further

evidence that these samples should be omitted.

There are no other apparent outliers, in the numbers of crossovers. But note the importance of

taking account of generation number.

Genotyping error rates: The diplotype reconstructions offer the opportunity to identify likely

SNP genotyping errors. To identify likely errors, we calculate the genotyping error LOD scores

described by Lincoln and Lander (1992). For each SNP marker in each DO mouse, we use the

founder strains’ SNP genotypes to collapse our 36-state diplotype probabilities to three-state SNP

genotype probabilities. We then compare the predicted SNP genotypes based on the haplotype
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Figure 5 Estimated number of crossovers in each mouse. Colors of the points indicate the two
groups of DO mice (generations 8 and 11). Mice with ≥ 20% missing genotypes are excluded.

reconstruction with the observed SNP genotypes, and we calculate a LOD score statistic that

measures the evidence for an individual SNP genotype being in error.

We generally focus on error LOD scores >2, which is a reasonably conservative threshold on

potential errors. The estimated error rate in each mouse, with this criterion, is shown in Figure 6.

The nine mice with ≥ 20% missing genotypes all have estimated genotyping error rates > 1%.

Three mice have error rates in the range 0.5–1.0%, and these all showed ∼9% missing genotypes.

The next-highest estimated error rate is 0.4% for mouse M398, which had shown about 5%

missing genotypes. The error rates for the other mice are extremely small. The median rate is just

7.8 in 10,000.

In summary, the nine mice with ≥ 20% missing genotypes also showed excessive crossovers

and high rates of apparent genotyping errors. We will omit these from further analyses. Three

mice with 5–10% missing genotypes showed slightly elevated genotyping error rates but no

excess of crossovers. We chose to not omit them.
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Figure 6 Estimated percent genotyping errors for each mouse. The rates are very small; the median
is just 7.8 in 10,000.

The factors that impact the decision to omit samples will vary from study to study and may

also depend on the aims of the analysis. Samples that are clearly outliers will likely have a

negative impact on mapping power and precision. It is not uncommon for some samples to fall

into a gray area where the quality is less than ideal but, based on the number of predicted

crossovers, the diplotype reconstruction appears to be reliable. The impact on power of omitting

these samples may be greater if the sample size is already small.

Marker diagnostics

We now turn to the markers, to identify poorly behaved ones. As with the samples, we can

look at the percent missing data, estimated rates of genotyping errors, and the genotype

frequencies. Ultimately, we want to look at scatterplots of the allele-specific probe intensities for

the SNPs, which are most informative of problems, but with 77,808 markers, we cannot inspect

all of them, and so we use the other measures to help narrow our search. Throughout these
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Figure 7 Estimated percent genotyping errors vs. percent missing genotypes by marker. Errors
defined by genotyping error LOD score > 2. The vast majority of markers showed no apparent
errors.

analyses, we will focus on the 280 mice with < 20% missing genotypes.

Missing data and genotyping errors: We start by studying the amount of missing data at each

marker, as well as estimated genotyping error rates (based on genotyping error LOD scores > 2).

A scatterplot of estimated error rate vs. percent missing data is shown in Figure 7.

The vast majority of markers have virtually no missing data: Of the 69,339 informative

markers, 41,931 have no missing data, and 64,003 are missing < 2%. However, as seen in

Figure 7, there are a number of markers with appreciable missing data: 1,216 are missing > 10%.

Similarly, the vast majority of markers have virtually no genotypes with error LOD score > 2,

including 66,623 markers with no apparent errors. But 624 markers have estimated error rates >

2%, including 190 markers with estimated error rates > 10%. The thirteen markers with error

rates > 50% are highlighted in Figure 7.

While it may not be apparent in Figure 7, there is a reasonably strong relationship between
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missing data and error rate: Markers with larger amounts of missing data tend to have higher

genotyping error rates. For example, the mean error rate for markers with < 2% missing data is 3

per 10,000, while the mean error rate for markers with ≥ 20% missing data is 5%, about 190

times higher.

SNP genotype frequencies: The genotype frequencies at the markers are displayed in Figure 8,

with markers split according to their minor allele frequency (MAF) among the 8 founder strains.

The majority of markers conform reasonably well to our expectation. The most striking departure

is that there are 22 markers with MAF=1/8 in the founders but where the minor allele in the DO

mice is > 40%. The majority of these markers (19/22) are from a region on chromosome 2, 70 –

105 Mbp, where the WSB allele exhibits meiotic drive (Didion et al. 2016).

There are also a number of SNPs with MAF = 3/8 or 4/8 in the founder strains that have

reduced frequency of heterozygotes. For example, there are 46 SNPs with MAF = 4/8 in the

founders but heterozygosity < 0.25. Most of these SNPs (37) have ≥ 10% missing data or ≥ 10%

genotyping errors, or both. Of the remaining nine markers, all but one are on chromosome 2, in

the region with high WSB allele frequency.

SNP allele intensities: The most important diagnostic for SNP quality is a scatterplot of the

allele-specific probe intensities. This is particularly informative when colored by both the

observed genotype and by the predicted genotype giving the multipoint SNP information. The

SNP allele intensities for a set of four SNPs are displayed in Figure 9. Each point is a single DO

mouse; in the left panels, the points are colored by the observed genotype, with yellow and blue

corresponding to the two homozygotes, green the heterozygote, and gray being missing. In the

right panels, the points are colored by the predicted genotypes given the multipoint SNP

information. Figures 9A and 9B correspond to a well-behaved SNP. The three genotype groups
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Figure 8 SNP genotype frequencies by marker, with SNPs split by their minor allele frequency
(MAF) in the eight founder strains. Trinomial probabilities are represented by points in an equilat-
eral triangle using the distances to the three sides. Pink points indicate the expected distributions.
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form tight, well-separated clusters, and the observed and predicted genotypes match. (Additional

examples of well-behaved markers are shown in Supplementary Figure S4.)

Figures 9C and 9D correspond to a SNP where there is an additional cluster of genotypes, and

where the genotype calling algorithm assigned it to the wrong genotype. At this particular SNP,

there is a cluster of genotypes that were called homozygotes for the major allele but that are really

heterozygotes. This is an example of a variable intensity oligonucleotide (VINO; Didion et al.

2012), where there is an additional SNP within the probe that leads to reduced intensity of one

allele. For this particular SNP, the founder strains 129Sv/ImJ and PWK/PhJ appear to have null

alleles for the array probe (data not shown). Additional examples of this type of SNP are shown

in Supplementary Figure S5.

Figures 9E and 9F correspond to a SNP where the genotype calling algorithm made a clear

mistake. There are three well-defined clusters of genotypes, but one of the homozygotes got

called as a heterozygote: the cluster is green in Figure 9E but yellow (and gray, for missing) in

Figure 9F. Figures 9G and 9H correspond to another example of a poorly called SNP, where two

of the genotype clusters are not well separated, and the genotype calling algorithm made a

mistake in identifying the clusters. Supplementary Figures S6 and S7 show additional examples

of mistakes in the genotype calling, either because the genotype clusters are arranged horizontally

or are not well separated. Figure S8 contains additional examples of particularly ugly SNPs.

Effects of data cleaning

High-density SNP data are sufficiently redundant that the presence of a small number of

poorly behaved SNPs should have little influence on the results. The hidden Markov model used

to reconstruct the DO genomes allows for the presence of genotyping errors and so should smooth
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H

Figure 9 Allele intensity plots for four SNPs. In the left panels, points are colored according to the
genotype calls, with yellow and blue being the two homozygotes and green being the heterozygote;
gray points were not called. In the right panels, points are colored by the inferred SNP genotypes,
given the multipoint marker data and the founders’ genotypes; gray points could not be inferred.
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over the problem markers. But it is worth checking: if we omit the most poorly behaved markers,

how much will the diplotype probabilities change?

Of the 69,339 informative markers, we omitted 325 markers with estimated genotyping error

rate > 5%, using a threshold of 2 on the genotyping error LOD score to define a presumed error.

We then re-calculated the 36-state diplotype probabilities for all mice.

For each mouse at each marker, we take the sum of the absolute differences between the

diplotype probabilities, before and after data cleaning, as a measure of change. This takes values

between 0 and 2, with 2 indicating that a complete different set of diplotypes have positive

probabilities, after the data cleaning.

There are few changes in the diplotype probabilities. Of the 69,339 markers × 280

individuals, there are just 6,048 sites where the sum of the absolute differences was >1, and just

1,798 where it was >1.5. To illustrate the types of changes that are seen, Supplementary

Figure S9 shows the diplotype probabilities, before and after omitting 325 bad markers, for three

individuals on chromosome 9. In each case, an apparent recombinant segment gets removed.
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Discussion

Our approach to cleaning genotype data is built around a series of diagnostic visualizations

that can help us to identify problematic samples and markers. Identifying problem samples

(mix-ups and low quality samples) is arguably the most important outcome of data cleaning. A

small number of incorrect samples can impact the power of QTL mapping whereas poorly

performing markers generally have little impact on diplotype reconstructions.

The simplest diagnostic for sample quality, the amount of missing data by individual, is also

highly effective. In addition to high rates of missing data, low quality samples will display higher

rates of genotype calling errors, unexpectedly high numbers of predicted crossover events, and

unusual allele frequencies. It is important to verify that samples are not duplicated and that the

correct sex is assigned to individuals because these problem will not be captured in other quality

control diagnostics.

The proportion of missing data is also a good diagnostic for SNP marker quality. Additional

diagnostics include genotyping frequencies, and the estimated proportion of genotyping errors.

In the data we used as an illustration, with 291 DO mice from generations 8 and 11, there were

a set of nine samples with ≥ 20% missing genotypes. These also showed excessive crossovers

and high genotyping error rates and should be omitted from any analyses. There were also two

apparent sample duplicates (one being a male/female pair), and one apparent XO female. Finally,

there were four samples with higher-than-normal amounts of missing data and genotyping errors,

but these samples looked okay otherwise and probably do not need to be omitted. Decisions about

which samples to include or omit should be based on the likely impact on mapping analysis and

may depend on factors such as the sample size and the extent and quality of phenotyping data.
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Verifying sex and identifying sample duplicates are two steps towards identifying sample

mix-ups. If there are phenotypes with strong genetic effects, such as coat color, they may be

useful to identify further mix-ups. Particularly useful in this regard are genome-scale phenotype

data such as gene expression data, whether by microarrays or RNA-seq, which can perfectly

identify individuals (Westra et al. 2011). With gene expression data on multiple tissues, identified

mix-ups can potentially be corrected (Broman et al. 2015).

The vast majority of markers appeared well behaved, but we also found a number of markers

with a high proportion of apparent genotyping errors. Omitting these markers had small and

relatively isolated effects on the diplotype probabilities. Our approach for identifying problem

markers relied on our diplotype reconstructions, and so we may be missing some badly behaved

SNPs, and the SNPs we miss may be the ones with the greatest influence on results. But if the

overall SNP density is high, and the proportion of badly behaved SNPs is low, our approach

should provide reasonable results. While poor quality markers may have little impact on any

given study, identifying and annotating these markers may impact other studies that use the same

array platform.

We have not discussed the problem of cleaning phenotype data, but this is also important. We

would focus on data visualizations, including histograms, plots of traits by time of measurement

and/or by mouse identifiers, and scatterplots of traits against one another. These plots may reveal

typographical errors in the data or inconsistencies in measurement units. They may also indicate

the need for phenotype transformations (such as logarithm or square-root), or they may reveal

important batch effects or other covariates that should be taken into account in analyses.

We used R (R Core Team 2018) and R/qtl2 (Broman et al. 2019) throughout this work.

Another important R package for genotype diagnostics is argyle (Morgan 2015), which provides a
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variety of diagnostics for SNP genotyping arrays.

We focused on data visualizations to diagnose potential problems, and that is the central tool

for data cleaning. Make lots of graphs, focusing on graphs that will reveal anticipated problems

but also following up on anything unexpected: Is it a problem with the data, a problem with the

sample, or a quirk of biology? Is it ignorable or fixable? What effect might it have on later

results? We find interactive data visualizations, such as with R/qtlcharts (Broman 2015), useful in

these efforts, particularly for identifying outlier samples in scatterplots.

While we have focused on DO mice, our approach could be applied more generally, to other

multiparent populations. The key summary statistics are the proportion of missing genotypes, the

average probe intensities for SNPs on the X and Y chromosomes, the proportion of heterozygous

SNPs, the estimated number of crossovers, and the estimated genotyping error rate.
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Figure S1 Proportion of heterozygous SNPs on the X chromosome versus the average microarray
intensity for markers on the X chromosome, for each mouse. Mice that were nominally male are in
purple, while females are in green. Samples with ≥ 20% missing data are labeled in orange. Two
other samples of interest are labeled in black: F386 which appears to be XO, and M377 which was
nominally male but appears to be XX.
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Figure S2 Distribution of percent matching genotypes for pairs of mice. A: all samples. B: samples
with < 20% missing genotypes. Tick marks below the histograms indicate the values for individual
pairs.
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Figure S3 Illustration of genome reconstruction. A: Inferred diplotype across the genome for
mouse F413, with an arbitrary choice of phase. (For example, if there is a region of homozygosity,
the haplotypes above can be swapped relative to the haplotypes below.) White indicates unknown
(no diplotype had probability >0.5). B: Heat map of the diplotype probabilities for mouse F413
along chromosome 16. Only diplotypes that achieved probability > 0.25 are shown.
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Figure S4 Allele intensity plots for examples of well-behaved SNPs. In the left panels, points
are colored according to the genotype calls, with yellow and blue being the two homozygotes and
green being the heterozygote; gray points were not called. In the right panels, points are colored by
the inferred SNP genotypes, given the multipoint marker data and the founders’ genotypes; gray
points could not be inferred.
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Figure S5 Allele intensity plots for examples of SNPs with an additional genotype cluster. In
the left panels, points are colored according to the genotype calls, with yellow and blue being
the two homozygotes and green being the heterozygote; gray points were not called. In the right
panels, points are colored by the inferred SNP genotypes, given the multipoint marker data and the
founders’ genotypes; gray points could not be inferred.
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Figure S6 Allele intensity plots for examples of SNPs that are error-prone due to clusters oriented
horizontally. In the left panels, points are colored according to the genotype calls, with yellow and
blue being the two homozygotes and green being the heterozygote; gray points were not called.
In the right panels, points are colored by the inferred SNP genotypes, given the multipoint marker
data and the founders’ genotypes; gray points could not be inferred.
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Figure S7 Allele intensity plots for examples of SNPs that have been poorly called. In the left
panels, points are colored according to the genotype calls, with yellow and blue being the two
homozygotes and green being the heterozygote; gray points were not called. In the right pan-
els, points are colored by the inferred SNP genotypes, given the multipoint marker data and the
founders’ genotypes; gray points could not be inferred.
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Figure S8 Allele intensity plots for examples of SNPs that are particularly ugly. In the left panels,
points are colored according to the genotype calls, with yellow and blue being the two homozy-
gotes and green being the heterozygote; gray points were not called. In the right panels, points
are colored by the inferred SNP genotypes, given the multipoint marker data and the founders’
genotypes; gray points could not be inferred.
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Figure S9 Bivariate heatmaps displaying diplotype probabilities before and after omitting badly
behaved markers, for three selected individuals on chromosome 9. Probabilities before and after
omitting markers are shown in white/blue and white/red color scales, respectively. Only diplotypes
that achieved probability > 0.25 are shown. Dark purple indicates the probability was high both
before and after data cleaning, blue indicates high before data cleaning but low after, and red
indicates low before but high after.
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