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Abstract 11 

Countless brain imaging studies document “multiple-demand” (MD) regions co-activated 12 

by a broad domain of tasks, but with little consensus over exact anatomy and functional 13 

properties. To overcome these limitations, we use data from 449 subjects from the 14 

Human Connectome Project, with cortex of each individual parcellated using 15 

neurobiologically grounded multi-modal MRI features. In contrast to unfocused swathes 16 

of activation, the conjunction of three cognitive contrasts reveals a core of 10 widely 17 

distributed MD regions per hemisphere that are most strongly activated and functionally 18 

interconnected, surrounded by a penumbra of 17 further regions. Subcortically, MD 19 

activity is seen especially in the caudate and cerebellum. Comparison with canonical 20 

resting state networks shows MD regions concentrated in the fronto-parietal network but 21 

extending into three other networks. MD activations show modest relative task 22 

preferences accompanying strong co-recruitment. With precise anatomical delineation, 23 

we offer a basis for cumulative study of MD functions and their role in the assembly of 24 

flexible cognitive structures. 25 
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Introduction 30 

Thought and behavior can be conceptualized as complex cognitive structures within 31 

which simpler steps are combined to achieve an overall goal (Luria, 1966; Miller et al., 32 

1968; Newell, 1990). Each step or cognitive episode involves a rich combination of 33 

relevant external and internal inputs, computations, and outputs, assembled into the 34 

appropriate relations as dictated by current needs. A system capable of such behavior 35 

must be equipped with a flexible control structure that can appropriately select, modify 36 

and assemble each cognitive step on demand. 37 

In line with a system’s role in organizing complex cognition, selective damage to specific 38 

regions in the frontal and parietal cortex is associated with disorganized behavior (Luria, 39 

1966; Milner, 1963; Norman and Shallice, 1986), including significant losses in fluid 40 

intelligence (Duncan et al., 1995; Glascher et al., 2010; Roca et al., 2010; Warren et al., 41 

2014; Woolgar et al., 2018, 2010). Numerous functional neuroimaging studies converge 42 

on a similar set of frontal and parietal regions that are co-activated when performing a 43 

diverse range of cognitively demanding tasks, including selective attention, working 44 

memory, problem solving, response inhibition and much more (Cole and Schneider, 45 

2007; Duncan and Owen, 2000; Fedorenko et al., 2013; Hugdahl et al., 2015). We refer 46 

to this network of regions as the multiple-demand (MD) system, reflecting their co-47 

recruitment by multiple task demands (Duncan, 2013, 2010). MD activity is commonly 48 

seen in lateral and dorsomedial prefrontal cortex, in the anterior insula, and within and 49 

surrounding the intraparietal sulcus, with an accompanying activation often reported 50 

near the occipito-temporal border. Many resting-state fMRI (rfMRI) studies report a 51 

similar (but not identical as we will demonstrate) “fronto-parietal” network whose 52 

components show strongly correlated time series (Ji et al., 2019; Laumann et al., 2015; 53 

Power et al., 2011; Yeo et al., 2011), parts of which are proposed to act as 54 

communication hubs owing to their connectivity patterns with other cortical networks 55 

(Gordon et al., 2018; Power et al., 2013). Cortical MD regions are also associated with 56 

subcortical regions that are co-activated across multiple tasks and are strongly 57 

functionally connected with the MD cortex. Though much less studied, these are 58 

putatively distributed in restricted sub regions of the basal ganglia, thalamus and 59 

cerebellum (Buckner et al., 2011; Choi et al., 2016; Halassa and Kastner, 2017). 60 

In non-human primates, fMRI studies have identified a putative cortical MD network 61 

organized in anatomically similar and likely evolutionarily homologous regions (Ford et 62 

al., 2009; Mitchell et al., 2016; Premereur et al., 2018). Single-neuron studies in these 63 

regions reveal highly dynamic and adaptive neural activity patterns that encode many 64 

kinds of task-relevant information such as stimulus features, goals, actions, rules and 65 

rewards (Duncan, 2001; Miller and Cohen, 2001; Stokes et al., 2013). Further, these 66 

neurons are characterized by their mixed selectivity, i.e., activity driven by complex 67 

conjunctions of relevant stimuli, processes and task events (Fusi et al., 2016; Naya et 68 

al., 2017; Rigotti et al., 2013; Sigala et al., 2008). With access to many kinds of 69 

information, adaptive neural activity, and conjunctive coding of task-relevant 70 
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information, the MD system is well positioned to assemble the rich, integrated control 71 

structures of complex behavior (Duncan, 2013). Like a skeleton, the MD system is 72 

hypothesized to support the assembly of each task episode by integrating processing in 73 

multiple brain regions to access and bind the required information and cognitive 74 

operations (Dehaene et al., 1998; Desimone and Duncan, 1995; Miller and Cohen, 75 

2001; Norman and Shallice, 1986).  76 

While MD activity has been reported since the early days of human brain imaging 77 

(Duncan and Owen, 2000), there remains little consensus over core questions including 78 

the precise anatomy of MD regions, their differentiation from nearby regions with quite 79 

different functional properties, their functional specializations and their connectivity. In 80 

large part, we suggest, the lack of cumulative progress reflects the absence of a clear 81 

and detailed anatomy of MD activity, with results usually described in terms of large, 82 

loosely-defined regions such as “dorsolateral prefrontal cortex”. This lack in precise 83 

anatomy is the product of traditional fMRI analysis methods, based on volume-based 84 

registration methods in part driven by cortical folds, and the employment of substantial 85 

data smoothing that blurs the data. Coupled with the fact that cortical folds vary 86 

substantially across individuals, even in twins (Glasser et al., 2016b; Van Essen et al., 87 

2012), and functional areas often do not respect cortical folds (Amunts et al., 2000; 88 

Coalson et al., 2018), this has led to significant limitations in relating function to 89 

structure in the brain using traditional approaches. Region of interest (ROI) methods 90 

can be valuable in identifying individual differences in functional localization, but their 91 

definitions are typically based on statistical thresholds that do not necessarily conform 92 

to neurobiological criteria. Furthermore, for many questions there are no consensus 93 

ROIs, thus limiting comparison and integration of results across studies. 94 

To address these issues, we localized MD activity in relation to the recent state-of-the-95 

art multi-modal Human Connectome Project (HCP) parcellation of human cortex 96 

(Glasser et al., 2016a). The HCP cortical parcellation relies on high quality multimodal 97 

MRI features (cortical thickness, myelin content, rfMRI connectivity, task fMRI activity), 98 

along with surface-based analysis methods (Coalson et al., 2018; Glasser et al., 2016b, 99 

2013) and new areal-feature-based registration algorithms (Robinson et al., 2018, 100 

2014), to parcellate human cortex into 360 regions (180 per hemisphere). Areal 101 

delineations were derived from overlapping multi-modal criteria, and areas were named 102 

using correspondence with the neuroanatomical literature where possible, bringing a 103 

consistent basis in neurobiology and potentially improved comparison with homologous 104 

regions in other species. 105 

We analyzed data from 449 HCP subjects, each having a defined individual-specific 106 

cortical parcellation. Combining data from 3 task contrasts that tap into working 107 

memory, relational reasoning, and arithmetic, we determined which areas show MD 108 

properties and examined their functional profiles, patterns of resting state connectivity, 109 

and relations to subcortical structures. Our results reveal an extended, largely 110 

symmetrical MD network of 27 cortical areas, distributed across frontal, parietal and 111 
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temporal lobes. We divide this extended MD system into a core of 10 regions most 112 

strongly activated and strongly interconnected, plus a surrounding penumbra, and we 113 

relate this functional division to canonical resting state networks also derived from HCP 114 

data (Ji et al., 2019). Across the extended MD system, activation profiles for our 3 task 115 

contrasts suggest a picture of substantial commonality, modulated by modest but highly 116 

significant functional differentiations. MD activation, and strong connectivity with the 117 

cortical MD core, are also identified in several subcortical regions. Our results define a 118 

highly specific, widely distributed and functionally interconnected MD system, which we 119 

suggest forms an integrating core for complex thought and behavior. 120 

Results 121 

We analyzed a cohort of 449 HCP subjects (for details on data acquisition and 122 

preprocessing see Methods sections 1-4). For our major analysis, each subject’s 123 

cerebral cortex was parcellated into 360 regions (180 per hemisphere) corresponding to 124 

the HCP Multi-Modal Parcellation (MMP) 1.0. Parcellation used an automated classifier 125 

to define the borders of each area based on learned features from multiple MRI 126 

modalities, including cortical thickness, myelin content, rfMRI connectivity and task fMRI 127 

activations (see Methods section 5). Subject-specific parcellation ensured that task 128 

and rest fMRI signals extracted from the defined areas would respect individual 129 

differences in their sizes, shapes and locations even in the case of subjects with 130 

atypical topologic arrangements. 131 

The analysis was based on three suitable fMRI contrasts available in the HCP data: 132 

working memory 2-back versus 0-back (WM 2bk>0bk), hard versus easy relational 133 

processing (Relational H>E), and math versus story (Math>Story). The first two are 134 

standard hard>easy contrasts as commonly used to define MD activity (Duncan and 135 

Owen, 2000; Fedorenko et al., 2013). Math>story was added because previous results 136 

show a strong MD-like activation pattern associated with arithmetic processing (Amalric 137 

and Dehaene, 2017, 2016). For working memory and relational processing, stimuli were 138 

visual, whereas for math>story, stimuli were auditory. 139 

Cortical organization of the MD system at the group level  140 

Before considering subject-specific areal analyses, we generated an overview of 141 

potential MD areas by calculating a group average MD map. For this, we simply 142 

averaged the group average beta maps of the 3 task contrasts and overlaid the 143 

resulting combined map on the HCP MMP 1.0 parcellation (Figure 1a; see also Figure 144 

S1 for each contrast separately). Group average maps were generated by aligning 145 

each subject’s multi-modal maps using areal-feature-based surface registration 146 

(MSMAll, Robinson et al 2014; 2018; see Methods section 4). MSMAll registration is 147 

not substantially driven by cortical folding patterns but instead utilizes myelin and 148 

connectivity features to significantly improve the alignment of areas across subjects, 149 

with peak probability overlaps reaching >90% for most areas (Coalson et al., 2018), 150 

thus allowing us to identify putative areas with MD properties. 151 
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Figure 1a shows the resulting overview. To allow a visual comparison, Figure 1b 152 

shows a previous MD group-average volumetric map, created by the conjunction of 7 153 

hard>easy task contrasts (Fedorenko et al., 2013). Though the two maps are similar, 154 

these data emphasize the improved definition obtained with the HCP data and surface-155 

based and areal-feature-based registration methods. On the lateral frontal surface are 156 

several clearly distinct activations that show strong bilateral symmetry, with surrounding 157 

inactive regions. Tight bands of MD activity are also identifiable in dorsomedial frontal 158 

cortex, along the depths of the intraparietal sulcus spreading up to the gyral surface, 159 

with an additional restricted region of MD activity in the dorsomedial parietal lobe. The 160 

MD region often reported at the occipito-temporal border is also clearly defined in 161 

posterior temporal cortex. Even based on these average data, the improved co-162 

registration of the HCP data allows clearer delineation of functional regions, as 163 

predicted by Coalson et al., 2018. Rather than broad, fuzzy swaths of MD activity, these 164 

data suggest a highly specific but anatomically distributed network of MD regions.  165 
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 166 

Figure 1. (a) Average of the 3 HCP group average task contrasts (WM 2bk>0bk, 167 

Relational H>E, Math>Story). Values are beta estimates. Black contours correspond to 168 

the HCP multi-modal parcellation MMP_1.0 (210V) areal borders. (b) MD map from 169 

Fedorenko et al. (2013) computed by averaging 7 hard>easy task contrasts (2mm 170 

smoothed). Values are t-statistics. Data available at http://balsa.wustl.edu/XXXX. 171 
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Definition of extended and core MD regions using subject-specific cortical 172 

parcellation 173 

We next analyzed mean activation values extracted from each subject-specific area. We 174 

averaged beta values across vertices within each area, yielding one value per area per 175 

subject. For each of our 3 behavioral contrasts, we identified areas with a significant 176 

positive difference across the group of 449 subjects (p<0.05, Bonferroni corrected for 177 

180 areas). To improve signal-to-noise ratio (SNR), we leveraged the symmetry 178 

between hemispheres (see Figure S2) and averaged areal activations across 179 

hemispheres. 180 

The conjunction of significant areas across the 3 contrasts revealed a set of twenty-181 

seven areas, which we will refer to as the extended MD system (Figure 2a; note that 182 

average activations from the two hemispheres are projected onto the left). The 183 

distribution of the areas closely matches the activations observed in Figure 1a and has 184 

broad similarity to previous characterizations of MD activity but with substantially 185 

improved anatomical precision and several novel findings. 186 

On the dorsal lateral frontal surface, we identify area i6-8 which is immediately anterior 187 

to area FEF (a common label given to activations in this region). i6-8 is a newly defined 188 

area in the HCP MMP1.0, in the transitional region between classical BA6 and BA8. 189 

Localization of MD activity in i6-8, rather than FEF, suggests distinctness from 190 

activations driven simply by eye movements in complex tasks. In the HCP MMP1.0, 191 

FEF is clearly defined as a distinct area from i6-8 based on several criteria including its 192 

anatomical location just anterior to the eye-related portion of the motor cortex and its 193 

strong functional connectivity with the LIP/VIP visual complex and the premotor eye field 194 

area (PEF) (Glasser et al., 2016). 195 

Near the frontal pole, we identify area a9-46v as a strongly active MD region, separated 196 

from the posterior region p9-46v. This separation confirms prior indications of a distinct 197 

anterior MD frontal region (see Figure 1b). Both a9-46v and p9-46v areas overlap with 198 

area 9-46v as delineated cyto-architectonically by Petrides and Pandya (1999) but here 199 

are separated into anterior and posterior portions by intervening areas that differ in their 200 

myelin and functional connectivity profiles (Glasser et al., 2016). Posterior to p9-46v is a 201 

further focus of activity in IFJp, with weaker activity in the surrounding regions 8C and 202 

6r. 203 

In the anterior insula, we identify AVI and an adjacent region of the frontal operculum, 204 

FOP5. AVI overlaps with superior portions of the architectonic area Iai of Öngür et al., 205 

2003 (see Glasser et al., 2016). Previous work has attempted to distinguish activity in 206 

the anterior insula from the adjacent frontal operculum, with the peak often near the 207 

junction of the two (Amiez et al., 2016). In our data, AVI is the more strongly activated. 208 

While previous characterizations of parietal MD activity have focused on the 209 

intraparietal sulcus, our results reveal a much more detailed picture, with strongest MD 210 

activation in regions of the intraparietal sulcus (IP1, IP2 and PFm), surrounded by the 211 
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relatively weaker MD areas dorsally (AIP, LIPd, MIP) and ventrally (PGs). On the dorso-212 

medial parietal surface, data have sometimes hinted at an additional MD region on the 213 

dorsomedial surface (see Figure 1b). Here we robustly identify the area POS2, a newly 214 

defined area in the MMP1.0 that differs from its neighbours in all major multi-modal 215 

criteria.  216 

On the lateral surface of the temporal lobe we identify two further areas, TE1m and 217 

TE1p. In many previous studies, fronto-parietal MD activity has been accompanied by a 218 

similar region of activity in temporo-occipital cortex (e.g. Fedorenko et al., 2013). In 219 

many cases, a reasonable interpretation would be higher visual activity, reflecting the 220 

visual materials of most imaging studies. In the current study, however, the arithmetic 221 

task was auditorily presented, while the other two contrasts were visual, suggesting a 222 

genuine MD region.  223 

In Figure 1a, the dorso-medial frontal activation spans the border between 8BM/SCEF. 224 

In the individual-subject analysis, however, SCEF was not significantly activated across 225 

all 3 contrasts. We thus investigated whether the activation indeed spans the border 226 

between the two areas. For each subject, we divided each of the two areas into 10 227 

equal segments along their anterior to posterior extent. Figure 2b shows that activation 228 

in this region starts to build up midway along SCEF, peaks at the border and is 229 

sustained throughout 8BM. We then tested whether each segment would survive as an 230 

extended MD region on its own. Indeed, all 8BM segments (except for the one most 231 

anterior segment on the left hemisphere) survived, whereas only the anterior 2 232 

segments of SCEF were statistically significant (Figure 2b; see Figure S3 for further 233 

independent evidence of heterogeneity around the 8BM/SCEF border). Based on these 234 

results, for subsequent analyses we combined the statistically significant segments of 235 

8BM and SCEF into a single ‘area’ labelled 8BM/SCEF. 236 

To further identify the most active areas within the extended MD system, for each 237 

contrast we identified areas with activation stronger than the mean across the full set of 238 

27 regions (one sample t-test, p<0.05, Bonferroni correction for the 27 extended MD 239 

areas). Seven areas were significant in all three contrasts: i6-8, p9-46v, a9-46v, 240 

combined 8BM/SCEF area (see below), AVI, IP2 and IP1. Three more areas were 241 

significant in two of the three contrasts (Figure 2c): IFJp (relational processing and 242 

math), 8C and PFm (working memory and relational processing). We refer to this group 243 

of areas as the core MD system, with remaining areas of the extended MD system 244 

termed the MD penumbra. 245 

Overall, these results identify an extended set of domain-general MD regions. The 246 

precise subject-specific areal definitions allowed the identification of several novel areas 247 

and improved localization of previously known ones. In the following sections, we further 248 

explore the functional properties of core and penumbra regions.  249 
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 250 

Figure 2. (a) The extended MD system: conjunction of significant areas across 3 251 

functional contrasts. Areal colors reflect average betas across the 3 contrasts. Data are 252 

averaged across hemispheres, and for illustration projected here onto the left. (b) 253 

Pattern of activity in regions SCEF (posterior) and 8BM (anterior), divided into posterior 254 

to anterior segments. Grey bar indicates 8BM/SCEF border. Orange indicates segments 255 

that are part of the extended MD system when activity from both hemispheres is 256 

combined (i.e. segments with activity significantly above zero in all 3 behavioral 257 

contrasts). Red indicates one additional segment that survives as part of the extended 258 
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MD system when activity from each hemisphere is tested separately. (c) The core MD 259 

system: areas with activity estimates that were significantly higher than the mean 260 

activity of all extended MD areas in all 3 contrasts (yellow) and 2 out of 3 contrasts 261 

(orange). Data available at http://balsa.wustl.edu/XXXX.  262 
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Functional connectivity of the multiple-demand cortex and its relation to resting-263 

state networks 264 

Next we investigated functional connectivity patterns within the MD network and in 265 

relation to the rest of the brain using resting state fMRI data (1 hour per subject). A 266 

functional connectivity (FC) matrix for each subject was calculated (180x180 areas per 267 

hemisphere; full correlation of spatial ICA+FIX and temporal ICA-cleaned time series; 268 

see Methods section 7). In this analysis, for ease of calculation we retained the 269 

original 8BM and SCEF areas, considering only 8BM as core and SCEF as penumbra. 270 

Figure 3a shows the group average connectivity matrix for the extended MD system, 271 

separated into core and penumbra. Despite their wide spatial separation, core MD 272 

areas show stronger functional connectivity with each other than with the penumbra. To 273 

test the robustness of these patterns, for each subject we calculated mean values for 6 274 

different types of cortical connections and compared them using multiple paired sample 275 

t-tests (Figure 3b; see Methods section 7). In both hemispheres, functional 276 

connectivity between core MD regions was significantly stronger than both their 277 

connectivity with the penumbra (left t(448)= 93.1, right t(448)= 79.4), and the internal 278 

penumbra connectivity (left t(448)= 79.4, right t(448)= 66.3). Mean connectivity of both 279 

core and penumbra MD areas with the remainder of the brain were near zero. 280 

We next investigated the spatial similarity between the MD network defined from our 281 

conjunction of 3 task contrasts and canonical fMRI resting state networks. For this 282 

purpose, we utilized the recent Cole-Anticevic Brain Network Parcellation (CAB-NP) 283 

which analyzed resting state data from 337 HCP subjects and identified network 284 

communities across HCP MMP1.0 areas (Ji et al., 2019). A comparison of the extended 285 

MD and the CAB-NP network parcellation (Figure 4a) suggests points of both 286 

convergence and divergence. Strikingly, all core MD areas lie within the fronto-parietal 287 

network (FPN) of CAB-NP (Figure 4a, top left). In contrast, penumbra MD areas 288 

occupy portions of four networks: FPN, cingulo-opercular network (CON), dorsal 289 

attention network (DAN) and the default mode network (DMN) (Figure 4a, top right). 290 

Importantly, examination of the whole CAB-NP FPN network shows most but not all 291 

areas within the MD core or penumbra (left FPN: 10 core, 10 penumbra, 8 non-MD; 292 

right FPN: 10 core, 8 penumbra, 4 non-MD) (Figure 4a, bottom).  293 

To emphasize the central role of core MD, we again compared different connectivity 294 

subgroups (Figure 4b; paired sample t-tests, p<0.05, Bonferroni corrected). Within the 295 

FPN, we found that connections between core MD regions stand out strikingly in their 296 

strength relative to their connectivity with other FPN regions (core-core with core-297 

penumbra: left t(448)= 60.8, right t(448)= 41.6; and core-core with core-non-MD FPN 298 

regions: left t(448)= 87.7, right t(448)= 80.1). Further within the FPN, core-penumbra 299 

connections are stronger than core-non-MD connections (left t(448)= 57.7, right t(448)= 300 

72.4). Second, we examined connectivity of core MD regions, all lying within FPN, to 301 

penumbra and non-MD regions within each of DAN, CON and DMN. The results again 302 

highlight a consistent pattern of stronger connectivity between core and penumbra MD 303 
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regions vs core and non-MD regions within each of the three networks (DAN (left 304 

t(448)= 46.5, right t(448)= 41.1), CON (left t(448)= 36.3, right t(448)= 42.3) and DMN 305 

(left t(448)= 67.9, right t(448)= 86.1) (Figure 4b). 306 

While these results show substantial overlap between MD and FPN – especially for MD 307 

core – they also indicate additional structure revealed by the FC data. Connectivity is 308 

especially strong between regions within the extended MD system, and strongest 309 

between core regions within the canonical FPN. Strong functional connectivity, 310 

especially for the core, suggests a suitable architecture for widespread integration of 311 

distributed brain states.  312 
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 313 

Figure 3. Functional connectivity (FC) of the MD system. (a) FC (Pearson correlation) 314 

across the MD system. Regions of the extended MD system are separated into core 315 

and penumbra, with regions within each set ordered by mean activation (beta) across 316 

our 3 functional contrasts. Note the strength of core MD connectivity (lower left box) vs 317 

penumbra connectivity (upper right box). (b) Statistical comparison (paired sample t-318 

test) between different groups of connections. Lines highlight a statistically significant 319 

difference (p < 0.05, Bonferroni corrected for 30 comparisons). Data available at 320 

http://balsa.wustl.edu/XXXX  321 
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 322 

Figure 4. MD system and resting state networks (a) Resting state network assignments 323 

from the Cole-Anticevic Brain-wide Network Parcellation (CAB-NP; Ji et al., 2018) for 324 

the core (left) and penumbra (middle) MD areas, compared to the whole CAB-NP 325 

fronto-parietal network (FPN). (b) Statistical comparison (paired sample t-test) of 326 

connection types for each CAB-NP network. Data available at 327 

http://balsa.wustl.edu/XXXX  328 
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Task profiles across the multiple-demand cortex 329 

By definition, every MD area showed a significant positive result in each of our 3 330 

behavioral contrasts. Across areas, nevertheless, we explored relative preferences for 331 

one contrast over another. To evaluate this quantitatively, Figure 5a shows the mean 332 

response of each area (averaged across hemispheres) for each contrast. 333 

Predominantly, the picture is one of consistency. For nearly all areas, activation was 334 

strongest for the math>story contrast, and weakest for hard>easy relational processing. 335 

Against this general background, however, there was also differentiation between 336 

profiles, with varying patterns of peaks and troughs. 337 

To test the robustness of these patterns, we compared activation profiles in two 338 

independent groups of subjects (210P and 210V, the parcellation and validation groups, 339 

respectively, used to create the HCP MMP1.0 in Glasser et al., 2016), constructed to 340 

avoid shared family membership. As shown in Figure 5b, the activation profile for each 341 

contrast is almost identical for the two groups. Figure 5c quantifies this by correlating 342 

activity profiles (in Figure 5b) for the two subject groups. Very high correlations on the 343 

diagonal (r > 0.98) highlight how the precise pattern of activation for a given contrast is 344 

very stable when averaged over many individuals. Off-diagonal correlations are much 345 

lower (r=~0.5-0.6). Although all tasks engage all MD areas, there remains considerable 346 

and highly consistent inter-areal diversity in precise activation patterns. 347 

To illustrate this inter-areal diversity between the three contrasts, we plotted the 348 

normalized profile for each contrast (line plots in Figure 5d). For each contrast and 349 

each subject, we z-scored activations across MD regions, then averaged the z-scores 350 

across subjects. For each region, bar heights (Figure 5d, bottom) show the standard 351 

deviation of these normalized z-scores across tasks, separately calculated for each 352 

subject and then averaged over subjects. Bars were also colored to highlight the relative 353 

task preferences (see Figure 5e, where the same colors are projected onto the cortical 354 

surface).  355 

The results reveal a diversity of relative task preferences across the extended MD 356 

network. Relative preference for relational reasoning (green) occurs in a cluster of 357 

anterior frontal areas inferior to the core region a9-46v, as well as in 8C. Dorsal frontal 358 

regions (e.g. i6-8 and s6-8) show relative preference for working memory, whereas 359 

dorsal parietal regions (AIP/LIPd/MIP, and POS2) show relative preference for math. 360 

Other relative preferences occur across most regions. Despite relative consistency 361 

across the entire extended MD network – with the strongest activation for Math>Story, 362 

and weakest for relational processing – there is also clear evidence of relative functional 363 

specialization, with each area showing modest but consistent relative preference for one 364 

contrast over another.365 
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Figure 5. Task profiles across the MD system. (a) Raw activation estimates (betas) for 367 

each contrast. Areas are sorted from left to right according to the strength of their MD 368 

response (average across the 3 contrasts). Error bars represent SEM. Core MD areal 369 

labels are colored in orange (survived in all 3 contrasts) and red (survived in 2 out of 3 370 

contrasts). (b) Task profiles for two independent groups of subjects (210P and 210V). 371 

(c) Correlation of task profiles between groups. (d) Normalized task profiles across the 372 

MD system as line plots. Bar heights represent between-task standard deviation, 373 

separately calculated for each subject and averaged over subjects. Bar colors indicate 374 

relative preferences between tasks. Color wheel indicates red for working memory 375 

(WM), green for relational processing (Rel), and blue for math. Intermediate colors show 376 

mixed preferences. Brighter and darker colors reflect stronger and weaker MD 377 

activation, respectively. (e) Cortical projection of the RGB color weighted normalized 378 

task profiles. Data available at http://balsa.wustl.edu/XXXX  379 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 10, 2019. ; https://doi.org/10.1101/517599doi: bioRxiv preprint 

https://doi.org/10.1101/517599
http://creativecommons.org/licenses/by-nc/4.0/


Page 18 of 44 
 

Subcortical components of the multiple-demand system 380 

To identify the subcortical components of the MD system we used the same 3 381 

behavioral contrasts used for cortical areas. Each subcortical structure was segmented 382 

separately for every subject (see Methods section 4), thus avoiding mixing signals 383 

from nearby structures or white matter. For each structure, we first identified the 384 

significantly activated voxels for each contrast separately (one sample t-test, FDR 385 

corrected for each structure separately, p<0.05) and then identified the conjunction of 386 

significant voxels across the three contrasts. This revealed activation regions bilaterally 387 

mainly in the caudate nucleus and cerebellum. Caudate activation peaked in the head 388 

and spread into the body (Figure 6a, left panel). Cerebellar activation included 389 

separate medial and lateral portions of crus I and II (on dorsal and ventral lateral 390 

surface) (Figure 6a, right panel). Activations appear to be largely symmetrical across 391 

hemispheres. 392 

We identified two additional small regions in the thalamus bilaterally (antero-medial 393 

portion) and the anterior portion of the right globus pallidus (Figure 6a). Interestingly, 394 

larger bilateral portions of the thalamus (anterior dorso-medial), putamen (dorso-395 

anterior/mid portion) and globus pallidus (dorso-anterior portion) were significantly 396 

activated in only two contrasts (working memory and math) and were deactivated in the 397 

relational processing contrast. 398 

In a parallel analysis using resting state data, we aimed to identify the subcortical voxels 399 

showing significant functional connectivity with the cortical core MD areas. For this 400 

analysis we used the group average dense FC matrix for half of the subjects (210V 401 

group) (see Methods section 7). Figure 6b shows the statistically significant 402 

subcortical voxels (FDR corrected, p<0.05). The patterns follow closely the task-403 

identified regions in the caudate nucleus and cerebellum bilaterally. In addition, FC 404 

analysis identified significant voxels in bilateral portions of the thalamus (anterior dorso-405 

medial), putamen (dorso-anterior/mid portion) and globus pallidus (dorso-anterior 406 

portion), similar to the regions activated in the working memory and math contrasts.  407 

We were able to further compare the MD cerebellar regions with the fronto-parietal 408 

network (FPN) identified by resting state data from two studies: Bucker et al 2011 (7 409 

networks parcellation results from 1000 subjects) and CAB-NP (Ji et al., 2018; results 410 

from 339 HCP subjects). Figure 6b (right panel) illustrates the strong similarity 411 

between the FPNs from both studies and the cerebellar MD hotspots in crus I and II. 412 

Due to the lack of individually defined nuclei within each subcortical structure, we 413 

measured the degree of overlap between the task vs rest identified MD regions, within 414 

each structure, at the group average level. Almost all task-identified MD voxels in 415 

caudate, cerebellum and thalamus (except right thalamus) were also detected in the 416 

resting state data. Thus, together, task and rest fMRI data converge on identifying a 417 

strongly connected subcortical domain related to the cortical MD core. 418 
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Figure 6. Subcortical MD components. (a) Left: Conjunction of significant voxels across 420 

the three tasks. Right: Cerebellar activity is projected on a flat cerebellum with lines 421 

representing anatomical borders (Diedrichsen and Zotow, 2015). (b) Left: Subcortical 422 

voxels with significant connections to the cortical core MD areas. Right: (top) Cerebellar 423 

MD connectivity projected on a flat map. (middle) FPN from Buckner et al. (2011). 424 

(bottom) FPN from Ji et al. (2018). (c) Percentage of task MD voxels also identified by 425 

resting connectivity with MD core. Data available at http://balsa.wustl.edu/XXXX  426 
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Discussion  427 

In this study, we used the HCP MMP1.0 cortical parcellation, based on neurobiologically 428 

grounded multi-modal MRI features, to demonstrate that diverse cognitive tasks from 429 

different sensory modalities engage a widely distributed multiple-demand (MD) network 430 

of relatively few areas, in the frontal, parietal and temporal cortices. We identified a set 431 

of core regions, characterized by their strong activation and interconnectivity, 432 

surrounded by a penumbra, with relatively weaker activations and interconnectivity. We 433 

also isolated a set of localized subcortical MD regions, especially in the caudate nucleus 434 

and cerebellum, which share strong connectivity with the cortical core MD. 435 

Our use of subject-specific cortical parcellation provides compelling evidence for the 436 

existence of highly specific MD regions in the human brain. The improved anatomical 437 

precision offered by the HCP methods disclosed novel findings regarding the 438 

anatomical and functional organization of the MD network, as well as the functional 439 

connectivity of its components.  440 

Why should the brain contain this precise network of MD regions, co-activated during 441 

many cognitive activities? On the one hand, MD regions are strongly interconnected, 442 

with a widespread and broadly consistent activity profile across tasks. On the other, 443 

they are differentiated, with quantitative differences between tasks in precise activity 444 

profile. We suggest that this picture is consistent with a system engaged in large-scale 445 

integration of brain activity. Within the extended MD system, we propose that the core 446 

regions, most strongly active and interconnected, lie at the heart of information 447 

integration and exchange. Surrounding penumbra regions, with their connectivity into 448 

multiple cortical networks, feed diverse information into the core. Across the entire MD 449 

system, co-activation reflects information integration and exchange, while modest 450 

functional preferences reflect differential connectivity and information access. Together, 451 

these properties allow MD regions, with associated subcortical regions, to build 452 

cognitive structures suited to any current task. These proposals are developed and 453 

extended in the following sections. 454 

Broad anatomical distribution and relative functional preferences 455 

Our data delineate a highly specific MD network, with core and penumbra components 456 

widely distributed across the cortex. Compared to previous data, our results clarify 457 

several aspects of this distributed MD pattern.  458 

One such clarification concerns activations in the posterior dorsal prefrontal cortex, 459 

often seen in prior work (see Figure 1b) in a region close to the FEF. With the 460 

increased spatial specificity of the current data, we show that MD activation is localized 461 

anterior and dorsal to the FEF, including regions i6-8 (core) and s6-8. These results 462 

strongly suggest that MD activation is distinct from activations driven simply by eye 463 

movements in complex tasks. Both i6-8 and s6-8 show strongest preference for the WM 464 

contrast. 465 
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Near the frontal pole, we localized MD activation in one core region (a9-46v) and 5 466 

surrounding penumbra regions. There has been much debate concerning an anterior-467 

posterior gradient of activation on the lateral frontal surface. On the one hand, many 468 

tasks produce activation near to the frontal pole, suggesting an MD-like pattern 469 

(Ramnani and Owen, 2004). On the other, many studies suggest selective activity in 470 

this region, for example associated with abstract reasoning (Bunge et al., 2005; 471 

Christoff et al., 2009) or hierarchically-organized cognitive control (Badre, 2008; Badre 472 

and Nee, 2018). Our results show that a9-46v is almost as strongly co-activated as 473 

more posterior core regions, arguing against a simple gradient of activation. Its adjacent 474 

penumbra regions (a47r, p47r) also show clear MD activation but with relative functional 475 

preference for the abstract relational reasoning task, matching previous reports of 476 

reasoning activation in this region.  477 

The combined 8BM/SCEF MD area on the medial frontal surface showed the least 478 

functional preference (Figure 5d). Our findings show MD activation rising to and 479 

peaking at the border between 8BM and SCEF, with similar patterns also visible in other 480 

task contrasts and fine-grained analysis of functional connectivity (Figure S3). In our 481 

group-average map, hints of task activation near areal borders can also be seen at the 482 

borders of 8C/IFJp and POS2/7Pm (Figure 1a). Though detailed analysis of these 483 

functional transitions is beyond our scope here, it is possible that here too MD activation 484 

peaks near areal borders. Borders between these areas were defined using robust 485 

multiple overlapping functional, architectural and/or topological criteria (Glasser et al., 486 

2016a). Thus, we speculate that our data may reflect close interaction between areas 487 

sharing the border, reflecting the general principle of spatial proximity between brain 488 

regions that are in close communication. 489 

Previously, many studies have revealed a band of occipito-temporal activation 490 

accompanying activation of fronto-parietal MD regions (see Figure 1b). As most tasks 491 

used in these studies have been visual, a plausible interpretation might be top-down 492 

input into higher visual areas.  In our data we identified two penumbra regions, TE1m 493 

and TE1p, in posterior temporal cortex. Since these regions were activated by the 494 

auditory as well as the visual contrasts, the interpretation of top-down input into higher 495 

visual areas is less plausible. The location of these regions midway between higher 496 

visual areas, auditory areas and language and sematic areas (Fedorenko et al., 2011; 497 

Pobric et al., 2007; Visser et al., 2010) suggests a genuine MD region, situated to 498 

integrate higher visual, auditory and semantic/language processing. Similar to previous 499 

findings in Broca’s area (see Fedorenko et al., 2012), these data highlight an MD area 500 

with close proximity to language regions. 501 

Previous studies employing math tasks identify an MD-like pattern that is commonly 502 

interpreted as a domain-specific “math network” (Amalric and Dehaene, 2017). Our 503 

results show that the math contrast engages all extended MD regions, but with relative 504 

preferences among dorsal parietal areas (AIP, LIPd, MIP; and POS2 on the medial 505 
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surface) and dorsal frontal region IFJp. We note that in our data, math preferences are 506 

potentially confounded with auditory preferences (Michalka et al., 2015). 507 

Very likely, relative functional specializations reflect differential anatomical connections. 508 

While putative homologous MD regions in macaques (Mitchell et al., 2016) share many 509 

anatomical connections, each also has its own unique fingerprint of connections to and 510 

from other brain regions (Markov et al., 2014; Petrides and Pandya, 1999). 511 

Acknowledging the current inadequacy of accurate cross-species mapping, these 512 

studies portray a picture of a strongly physically interconnected MD system, with its sub 513 

regions differentially connected to other brain areas.  514 

On this view, different MD regions are well placed to access different kinds of 515 

information. Different tasks, emphasizing different kinds of information lead to partial 516 

functional specializations. However, as an integrated cognitive episode is formed, its 517 

different contents must be integrated and bound to their functional roles. The rich 518 

interconnections between MD regions offer a clear substrate for information exchange 519 

and integration.  520 

MD cortex and resting state networks 521 

In this study we identified the extended MD system using a conjunction of three task 522 
contrasts. Using MD regions identified from task data, we proceeded to demonstrate 523 

strong within-network functional connectivity at rest. As expected, our analysis of resting 524 
state data shows much convergence with canonical functional networks derived from 525 

the same data (Ji et al., 2019). Within these canonical networks, however, we find 526 
additional fine-grained structure. MD core regions constitute a subset of areas within the 527 
canonical FPN that are distinguished by especially strong mutual connectivity. This 528 

strong connectivity occurs despite wide anatomical separation. In contrast to this core, 529 

penumbra regions are distributed across several canonical networks. Again, compared 530 
to other regions within those networks, they are distinguished by especially strong 531 
connectivity with the MD core. These results support the picture of MD regions as a 532 

strong communication skeleton, with penumbra regions in particular drawing together 533 
information from several distinct large-scale networks. 534 

This conclusion is reminiscent of extensive recent work using network science 535 
approaches (e.g., graph theory) to identify putative cortical communication hubs 536 
(Bassett and Sporns, 2017; Bertolero et al., 2018; Petersen and Sporns, 2015; Sporns, 537 
2014). In this graph theoretic approach, hubs are defined by broad connectivity and/or 538 

spatial proximity to multiple cortical networks. Typically they include a set of regions 539 
resembling the current MD system, but also others including the temporo-parietal 540 

junction, extensive regions of the mid- and posterior cingulate and more (Gordon et al., 541 
2018; Power et al., 2013). These connectional findings are broadly consistent with our 542 

proposal that MD regions act as an integrative skeleton for cognitive activity, but leave 543 
open the question of precise relations between the MD pattern, defined with converging 544 
task contrasts, and the definition of hubs based solely on functional connectivity. 545 
Because hubs are defined by connectivity with multiple cortical networks, their 546 
identification depends on the granularity with which these networks are separated. Such 547 
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limitations do not apply to definition of MD regions based on converging task contrasts. 548 

Further work may help to contrast the functional role of MD regions relative to hubs 549 
defined by connectivity but not showing robust activation across multiple diverse tasks. 550 

Unique connectivity between MD regions can also be revealed by recent work using 551 
temporal ICA (tICA), which generates components that are temporally independent 552 
(Glasser et al., 2018a; see also Van Essen and Glasser, 2018). We were able to identify 553 

at least one rest and one task tICA component with strong spatial similarity (whole brain 554 
absolute Pearson correlation r= 0.74 and 0.76 respectively) to the group average MD 555 
map from figure 1a (Figure S4). These results demonstrate that the use of automated 556 
methods such as tICA has the potential to identify a richer set of brain states, both in 557 
rest and task, by imposing temporal but not spatial constraints on the derived 558 

components. 559 

Subcortical MD regions 560 

Our data reveal several subcortical MD regions with strong functional connectivity with 561 

the cortical MD core. First is the head of the caudate nucleus, also associated with a 562 

smaller region in the anterior globus pallidus. In nonhuman primates, the anterior 563 

portion of the caudate receives projections from all prefrontal regions (Averbeck et al., 564 

2014). Tracer studies have established that the dorso-lateral prefrontal, dorso-medial 565 

prefrontal and parietal cortices, in addition to strong cortico-cortical interconnections, 566 

also share converging projections to the caudate, mainly targeting its head, as well as to 567 

the globus pallidus (Alexander et al., 1986; Choi et al., 2016; Haber, 2003; Hampson et 568 

al., 2006; Kemp and Powell, 1970; Middleton and Strick, 2000; Yeterian and Pandya, 569 

1991). Within the striatum, overlap in the projection zones of nearby cortical areas may 570 

in part be mediated by interdigitating dendrites and axons that cross functional 571 

boundaries (Averbeck et al., 2014; Haber, 2003). These anatomical findings are 572 

consistent with the identified MD activations in the head of the caudate and strongly 573 

support its putative role in information integration. 574 

We also identified distributed MD regions in the cerebellum. Tracer studies identify 575 

polysynaptic connections between the prefrontal cortex and the lateral portions of crus I 576 

and II as well as vermal lobules VII and IX (see Buckner, 2013 and Ramnani, 2006), 577 

largely overlapping with our MD cerebellar regions. In addition, previous studies have 578 

implicated similar cerebellar regions in several aspects of complex cognitive activity 579 

(King et al., 2018) as well as encoding task-relevant information (Balsters et al., 2013). 580 

Importantly, MD cerebellar regions do not overlap with motor-related regions 581 

(Diedrichsen and Zotow, 2015). Not surprisingly, there is strong overlap between the 582 

cerebellar regions identified here, by converging task contrasts and strong connectivity 583 

to the MD cortical core, and the FPN-related cerebellar network defined in previous 584 

studies (Buckner et al., 2011; Ji et al., 2019). Importantly, the cerebellar MD regions 585 

were identified by connections with the more spatially restricted cortical MD core in 586 

comparison with the cortical FPN, further suggesting a central role for the cortical MD 587 

core. 588 
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We also identified putative MD regions in the anterior portion of the thalamus. In this 589 

case, small regions identified from our conjunction of task contrasts compare with a 590 

larger region identified using resting state connectivity. The connectivity identified 591 

thalamic regions are in line with the findings of numerous studies reporting strong 592 

anatomical and functional connectivity between thalamic nuclei (especially medio-dorsal 593 

portions) and fronto-parietal cortices (Haber, 2003; Halassa and Kastner, 2017). The 594 

notably small task-identified parietal MD region reflects deactivation of the majority of 595 

parietal cortex in relational reasoning. 596 

Further work at higher field MRI strength (e.g., 7T) may help clarify the role of these and 597 

other subcortical regions associated with the cortical MD system. Meanwhile, in 598 

agreement with known anatomy, our data suggest extensive cortical-subcortical 599 

interaction in control of complex cognitive activity. 600 

Creating the structure of complex cognition 601 

In behavior and thought, the richness of even a simple cognitive event, and the precise 602 

relations that must be established between different components of that event, call for a 603 

widely-connected system, able to access any kind of cognitive content. Our data 604 

highlight several properties that suit the MD system to construct complex cognitive 605 

episodes. The MD system is made up of regions that are widely dispersed anatomically, 606 

yet tightly functionally connected and co-recruited by tasks of many different kinds. Our 607 

data identify a core, with the strongest pattern of widespread recruitment and 608 

connectivity, supported by a surrounding penumbra.  609 

Owing to their differential anatomical and functional connections, different MD regions 610 

may be preferentially recruited during tasks with different contents. However, their 611 

strong interconnectedness likely allow different information to become quickly integrated 612 

and exchanged, leading to a dominant pattern of co-activation. Extensive MD 613 

connections to other regions also suggest a broad role in coordinating brain activity in 614 

service of the task at hand. This proposal conforms with the finding that the MD system, 615 

among different brain networks, is the most striking in changing its global brain 616 

connectivity during different task states (Cole et al., 2013). 617 

The ability of the MD system to dynamically and broadly represent many kinds of 618 

information is supported by numerous human fMRI studies employing multi-variate 619 

pattern analysis (MVPA), as well as electrophysiological studies in animals (Miller and 620 

Cohen, 2001; Stokes et al., 2013; see Woolgar et al., 2016 for a comprehensive review 621 

of MVPA studies). In putative monkey MD regions, many studies identify neurons with 622 

mixed selectivity, allowing integration of specific stimuli and specific task contexts 623 

(Genovesio et al., 2016; Naya et al., 2017; Parthasarathy et al., 2017; Rigotti et al., 624 

2013; Stokes et al., 2013). Conjunctive coding/mixed selectivity is likely critical in 625 

assembling the correct structured relations between the component parts of a cognitive 626 

episode (Duncan, 2013; Rigotti et al., 2013).  627 
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For cumulative progress in understanding brain activity, a basic step is definition of an 628 

accepted set of component regions. In the case of MD activity, progress has been slow 629 

because we lack such a precise definition, leading to many thousands of studies 630 

showing similar activity patterns, but little agreement over questions such as functional 631 

similarity/differentiation.  Based on the HCP multi-modal parcellation, our work defines a 632 

precise network of core MD regions and their surrounding penumbra, and establishes a 633 

pattern of widespread co-recruitment, relative functional differentiation, and strong 634 

connectivity. Precisely specified MD regions provide a basis for detailed functional 635 

investigation, cross-reference between studies, and identification of cross-species 636 

homologs. With these results, we lay the groundwork for a new phase in understanding 637 

one of the brain’s most important, best-known but least understood functional networks. 638 

639 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 10, 2019. ; https://doi.org/10.1101/517599doi: bioRxiv preprint 

https://doi.org/10.1101/517599
http://creativecommons.org/licenses/by-nc/4.0/


Page 27 of 44 
 

Methods 640 

1. Subjects 641 

The analyzed dataset consisted of 449 healthy volunteers from the Human Connectome 642 

Project (HCP) S500 release. Subjects were recruited from Washington University (St. 643 

Louis, MO) and the surrounding area (186 males, 263 females, with age ranges (22-25 644 

n=69; 26-30 n=208; 31-35 n= 169; 36+ n=3). Informed consent was obtained from each 645 

subject as approved by the institutional review board at Washington University at St. 646 

Louis. 647 

2. Image Acquisition 648 

MRI acquisition protocols have been previously described (Glasser et al., 2013; Smith 649 

et al., 2013; Uǧurbil et al., 2013). All 449 subjects underwent the following scans: 650 

structural (at least one T1w and one T2w scan), rfMRI (4 runs X 15 minutes), and task 651 

fMRI (7 tasks, 46.6 minutes total). Images were acquired using a customized 3T 652 

Siemens ‘Connectom’ scanner having a 100mT/m SC72 gradient insert and using a 653 

standard Siemens 32-channel RF receive head coil. At least one 3D T1w MPRAGE and 654 

one 3D T2w SPACE image were acquired at 0.7 mm isotropic resolution. Whole brain 655 

rfMRI and task fMRI data were acquired using identical multi-band EPI sequence 656 

parameters of 2 mm isotropic resolution with a TR=720 ms. Spin echo phase reversed 657 

images were acquired during the fMRI scanning sessions to enable accurate cross-658 

modal registrations of the T2w and fMRI images to the T1w image in each subject 659 

(standard dual gradient echo fieldmaps were acquired to correct T1w and T2w images 660 

for readout distortion). Additionally, the spin echo field maps acquired during the fMRI 661 

session (with matched geometry and echo spacing to the gradient echo fMRI data) were 662 

used to compute a more accurate fMRI bias field correction and to segment regions of 663 

gradient echo signal loss. 664 

3. Task Paradigms 665 

Each subject performed 7 tasks in the scanner over two sessions. In the current study 666 

we analyzed data from 3 tasks: working memory (performed in session 1), 667 

math/language and relational processing (performed in session 2). Subjects performed 668 

2 runs of each task. The following task details are adapted from Barch et al. (2013) on 669 

HCP fMRI tasks. 670 

Working Memory: Each run consisted of 8 task blocks (10 trials of 2.5 s each, for 25 s) 671 

and 4 fixation blocks (15 s each). Within each run, 4 blocks used a 2-back working 672 

memory task (respond ‘target’ whenever the current stimulus was the same as the one 673 

two back) and the other 4 used a 0-back working memory task (a target cue was 674 

presented at the start of each block, and a ‘target’ response was required to any 675 

presentation of that stimulus during the block). A 2.5 s cue indicated the task type (and 676 

target for 0-back) at the start of the block. On each trial, the stimulus was presented for 677 

2 s, followed by a 500 ms ITI. In each block there were 2 targets, and (in the case of the 678 
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2-back task) 2–3 non-target lures (repeated items in the wrong n-back position, either 1-679 

back or 3-back). Stimuli consisted of pictures of faces, places, tools and body parts; 680 

within each run, the 4 different stimulus types were presented in separate blocks. 681 

Subjects had to respond to non-targets using a middle finger press and to targets using 682 

an index finger press. 683 

Math/language: Each run consisted of 4 blocks of a math task interleaved with 4 blocks 684 

of a story task. The lengths of the blocks varied (average of approximately 30 s), but the 685 

task was designed so that the math task blocks matched the length of the story task 686 

blocks, with some additional math trials at the end of the task to complete the 3.8 min 687 

run as needed. The math task required subjects to complete addition and subtraction 688 

problems, auditorily presented. Each trial had a problem of the form “X + Y =” or “X – Y 689 

=”, followed by two choices. The subjects pushed a button to select either the first or the 690 

second answer. Problems were adapted to maintain a similar level of difficulty across 691 

subjects. The story blocks presented subjects with brief auditory stories (5–9 sentences) 692 

adapted from Aesop's fables, followed by a 2-alternative forced choice question that 693 

asked the subjects about the topic of the story. The example provided in the original 694 

Binder paper (p. 1466) is “For example, after a story about an eagle that saves a man 695 

who had done him a favor, subjects were asked, ‘That was about revenge or 696 

reciprocity?’”. For more details on the task, see Binder et al. (2011). 697 

Relational Processing: Stimuli were drawn from a set of 6 different shapes filled with 1 698 

of 6 different textures. In the hard condition, subjects were presented with 2 pairs of 699 

objects, with one pair at the top of the screen and the other pair at the bottom of the 700 

screen. They were told that they should first decide what dimension(s) differed across 701 

the top pair of objects (shape or texture) and then they should decide whether the 702 

bottom pair of objects also differed along the same dimension(s) (e.g., if the top pair 703 

differs only in shape, does the bottom pair also differ only in shape?). In the easy 704 

condition, subjects were shown two objects at the top of the screen and one object at 705 

the bottom of the screen, and a word in the middle of the screen (either “shape” or 706 

“texture”). They were told to decide whether the bottom object matched either of the top 707 

two objects on that dimension (e.g., if the word is “shape”, is the bottom object the same 708 

shape as either of the top two objects?). For the hard condition, stimuli were presented 709 

for 3500 ms, with a 500 ms ITI, with four trials per block. In the easy condition, stimuli 710 

were presented for 2800 ms, with a 400 ms ITI, with 5 trials per block. Each type of 711 

block (hard or easy) lasted a total of 18 s. In each of the two runs of this task, there 712 

were 3 hard blocks, 3 easy blocks and 3 16 s fixation blocks. 713 

4. Data preprocessing 714 

Data were preprocessed using the HCP’s minimal preprocessing pipelines (Glasser et 715 

al., 2013). Briefly, for each subject, structural images (T1w and T2w) were corrected for 716 

spatial distortions and used for accurate extraction of cortical surfaces and subcortical 717 

structures. To align subcortical structures across subjects, structural images were 718 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 10, 2019. ; https://doi.org/10.1101/517599doi: bioRxiv preprint 

https://doi.org/10.1101/517599
http://creativecommons.org/licenses/by-nc/4.0/


Page 29 of 44 
 

registered using non-linear volume registration to Montreal Neurological Institute (MNI) 719 

space. 720 

Functional images (rest and task) were corrected for spatial distortions, motion 721 

corrected, and mapped from volume to surface space using ribbon-constrained volume 722 

to surface mapping. Subcortical data were also projected to the set of extracted 723 

subcortical structure voxels and combined with the surface data to form the standard 724 

CIFTI grayordinates space. Data were smoothed by a 2mm FWHM kernel in the 725 

grayordinate space that avoids mixing data across gyral banks for surface data and 726 

avoids mixing areal borders for subcortical data. Rest and task fMRI data were 727 

additionally identically cleaned up for spatially specific noise using spatial ICA+FIX 728 

(Salimi-Khorshidi et al., 2014) and global structured noise using temporal ICA (Glasser 729 

et al., 2018). 730 

For accurate cross-subject registration of cortical surfaces, a multi-modal surface 731 

matching (MSM) algorithm (Robinson et al., 2014) was used to optimize the alignment 732 

of cortical areas based on features from different modalities. MSMSulc (‘sulc’: cortical 733 

folds average convexity) was used to initialize MSMAll, which then utilized myelin, 734 

resting state network (RSN) and rfMRI visuotopic maps. Myelin maps were computed 735 

using the ratio of T1w/T2w images (Glasser et al., 2014; Glasser and Van Essen, 2011). 736 

Individual subject RSN maps were calculated using a weighted regression method 737 

(Glasser et al., 2016a).  738 

5. HCP multi-modal parcellation and areal classifier 739 

The HCP multi-modal parcellation map (MMP) 1.0 (Glasser et al., 2016) was first 740 

created using a semi-automated approach utilizing the group average maps of multiple 741 

modalities (cortical thickness, myelin, resting state functional connectivity, and task 742 

activations). For each modality, the gradient was computed as the 1st spatial derivative 743 

along the cortical surface; ridges were local regions with the highest value and thus the 744 

most sudden change in a feature. Overlapping gradient ridges across modalities were 745 

used to draw putative areal borders with manual initialization and algorithmic 746 

refinement. Defined areas were reviewed by neuroanatomists, compared whenever 747 

possible to previously identified areas in the literature, and labelled. This resulted in 748 

defining 180 areas per hemisphere. A multi-modal areal classifier was then developed 749 

for automated definition of areas in each subject using the multi-modal feature maps. 750 

The classifier was trained, tested and validated on independent groups of subjects from 751 

the same 449 cohort used in this study (Glasser et al., 2016a). 752 

6. Task fMRI analysis 753 

Task fMRI analysis steps are detailed in Barch et al. (2013). Briefly, autocorrelation was 754 

estimated using FSL’s FILM on the surface. Activity estimates were computed for the 755 

preprocessed functional time series from each run using a general linear model (GLM) 756 

implemented in FSL’s FILM (Woolrich et al., 2001). For the working memory task, 8 757 

regressors were used - one for each type of stimulus in each of the N-back conditions. 758 
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Each predictor covered the period from the onset of the cue to the offset of the final trial 759 

(27.5 s). For the math task, 2 regressors were used. The math regressor covered the 760 

duration of a set of math questions designed to roughly match the duration of the story 761 

blocks. The story regressor covered the variable duration of a short story, question, and 762 

response period (~30 s). For the relational processing task, two regressors were used, 763 

each covering the duration of 18 s composed of four trials for the hard condition and five 764 

trials for the easy condition. In each case, linear contrasts of these predictors were 765 

computed to estimate effects of interest: WM 2bk>0bk, Relational H>E, and 766 

Math>Story. 767 

All regressors were convolved with a canonical hemodynamic response function and its 768 

temporal derivative. The time series and the GLM design were temporally filtered with a 769 

Gaussian-weighted linear highpass filter with a cutoff of 200 seconds. Finally, the time 770 

series was prewhitened within FILM to correct for autocorrelations in the fMRI data. 771 

Surface-based autocorrelation estimate smoothing was incorporated into FSL's FILM at 772 

a sigma of 5mm. Fixed-effects analyses were conducted using FSL’s FEAT to estimate 773 

the average effects across runs within each subject. 774 

For further analysis of effect sizes, beta ‘cope’ maps was performed using custom built 775 

MATLAB scripts after moving the data from the CIFTI file format to the MATLAB 776 

workspace. Activity estimates on the surface vertices were averaged across vertices 777 

that shared the same areal label for each subject. Unless mentioned otherwise, 778 

parametric statistical tests (one-sample and paired sample t-tests) were used. 779 

7. rfMRI Functional connectivity analysis 780 

For each subject, a ‘parcellated’ FC map was computed by averaging the time series 781 

across cortical vertices that shared the same areal label and correlating the average 782 

time series giving a 360x360 FC matrix for each subject. 783 

For comparison of connection types (Figure 3b, d), connectivities for each subject were 784 

simply averaged across each group of areas following r-to-z transformation. 785 

For subcortical analysis, the group average dense FC map for the 210V subjects group 786 

was used for the identification of subcortical voxels. For each subcortical voxel, an 787 

average connectivity to the cortical MD core was obtained by first calculating 788 

connectivity to each core area (after averaging across each area’s vertices), and then 789 

averaging these connectivities following r-to-z transformation. A permutation testing 790 

approach (100,000 permutations) was used to identify the significant voxels by building 791 

a null distribution for each voxel based on its FC estimate to sets of 10 random brain 792 

areas. A voxel was determined as significantly connected to the MD system when its FC 793 

estimate was in the top 97.5th percentile.  794 
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Data availability.  [upon acceptance] Data used for generating each of the imaging-795 

based figures [will be] made available by the BALSA database. Selecting the URL at the 796 

end of each figure will link to a BALSA page that allows downloading of a scene file plus 797 

associated data files; opening the scene file in Connectome Workbench will recapitulate 798 

the exact configuration of data and annotations as displayed in the figure.  799 
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Supplementary Figures 814 

 815 

 816 

Figure S1. Contrast maps for each task.  817 
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 818 

 819 

Figure S2. Extended MD for each hemisphere. Group average responses for the MD 820 

areas of both hemispheres. First row: average of the 3 HCP contrasts. Second row: 821 

Working memory. Third row: Relational reasoning. Fourth row: Math>story. Error bars 822 

are SEMs.  823 
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 824 

 825 

Figure S3. 8BM/SCEF border. (a) Group average responses for two HCP contrasts 826 

across the 8BM/SCEF border, Reward>Baseline and Theory of Mind (TOM)>Baseline, 827 

showing a similar pattern of build up within SCEF reaching a peak near the 8BM/SCEF 828 

border. (b) Functional connectivity maps for seeds (210V map, left hemisphere) along 829 

an antero-posterior gradient for the left 8BM/SCEF areas. Arrows mark the seed related 830 

to each column’s maps. Note how the seed in row 4 is in SCEF near the 8BM/SCEF 831 

border and still shows an MD like connectivity pattern, especially the strong connectivity 832 

to i6-8. More posterior seeds in SCEF show a markedly different pattern with strong 833 

connectivity to FEF. Color scale is Pearson correlation (r). 834 
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 835 

Figure S4. MD and temporal ICA. Most correlated temporal ICA components (from 836 

Glasser et al., 2018a) with MD average map. Top: rest tICA component 12. Bottom: 837 

task tICA component 4.  838 
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