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ABSTRACT 19 

The gut microbiota plays a central role in modulating intestinal inflammation, but the 20 

identification of specific inflammation-associated microbes has remained elusive.  Here, we 21 

perform a meta-analysis on metagenomic data from 12 different studies of murine colitis 22 

triggered by a variety of genetic and environmental factors with the goal of finding bacterial 23 

taxonomic groups that can act as signatures of health or disease across studies, and that can be 24 

used to discriminate between healthy and diseased mice. We leveraged recent developments in 25 

16S analysis tools to identify amplicon sequence variants (ASVs) instead of the traditional 26 

Operational Taxonomic Units, and used the EZTaxon reference database that distinguishes 27 

between currently unnamed and uncharacterized 16S phylotypes. Random Forest model and 28 

differential abundance analysis were used to detect microbial signatures that could consistently 29 

differentiate healthy from diseased mice, and a 'dysbiosis index' was constructed from these.  30 

This dysbiosis index was able to correctly distinguish samples derived from inflamed and non-31 

inflamed mice in the majority of studies and significantly outperformed other frequently used 32 

metrics of dysbiosis including alpha-diversity, proteobacterial abundance, and the ratio of 33 

Bacteroidetes to Firmicutes.  10 of 12 bacteria we identify as associated with the diseased state 34 

are members of the order Bacteroidales, including several species from the abundant but poorly 35 

understood S24-7 family.  The implications of these findings are discussed. 36 

 37 

INTRODUCTION 38 

The human gut contains vast numbers of bacteria, viruses and fungi that collectively 39 

make up the gut microbiota, which plays a pivotal role in the host’s health (1). While the 40 

microbiome is important for fundamental host processes like digestion (2), metabolism (3) and 41 
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immune system development (4), changes in the microbiome, often termed dysbioses (5), have 42 

been linked to several diseases, including inflammatory bowel disease (IBD) (6). IBD is a group 43 

of relapsing and remitting inflammatory disorders that mainly manifest as Crohn’s disease or 44 

ulcerative colitis (7, 8). Human studies have mostly been retrospective cohort ones, which limits 45 

their utility in elucidating causal links between changes in the microbiome and disease onset. 46 

Regardless, understanding these changes remain important, especially if there is a particular 47 

“dysbiotic” microbiome, or microbiome members, associated with disease. Although 16S 48 

sequencing of the bacterial microbiota have allowed comprehensive investigations of such 49 

changes (9), inter-individual variability within studies, and a lack of standardized techniques 50 

across studies (differing extraction and sequencing protocols, 16S variable regions, analysis 51 

pipelines and taxonomic reference databases) hinders comparisons of large sample sets to find 52 

consistent microbial signatures of disease (10). In order to compare and synthesize results from 53 

different human studies, meta-analyses, starting from the original sequencing data, have been 54 

conducted, resulting in the discovery of consistent microbial signatures in IBD patients (11, 12). 55 

Such meta-analyses have significant potential for designing non-invasive sequencing based 56 

diagnostic tools for IBD onset (12). They also reveal interesting insights into the relationship 57 

between the microbiota and disease; for example, meta-analyses of microbiome studies 58 

investigating obesity and IBD suggest that although metrics like the Bacteroidetes to Firmicutes 59 

ratio and alpha diversity may be significant in some studies, they do not seem to be consistent 60 

across studies (11, 13). In spite of the contributions of human meta-analyses to clinical diagnosis 61 

and broad inferences, causal and mechanistic inference remains challenging. 62 

 To shed mechanistic insight on the link between IBD and the microbiota, murine models 63 

have been relied upon heavily (6, 14, 15). Yet, despite the professed advantages of 64 
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reproducibility and well-defined conditions, murine samples also seem to have significant inter-65 

individual variability, lack of standardization across studies, and sample sizes are often small 66 

(14, 16). Furthermore, there are multiple widely-used mouse models for IBD, including Dextran 67 

Sodium Sulfate (DSS) induced colitis, 2,4,6-trinitrobenzenesulfonic acid (TNBS) induced colitis, 68 

T-cell adoptive transfer, and Interleukin-10 deficiency (17, 18). Studies investigating the role of 69 

various immunomodulatory genes in IBD also often report changes in the microbiota (19, 20).  70 

The existing literature mostly consists of descriptions of microbiota changes associated 71 

with colitis in various mice models (19, 21, 22), with only some assessing colitogenic potential 72 

of particular microbiotas, or honing in on particular microbes (23, 24). The lack of 73 

standardization prevents meaningful comparison of the changes reported, and the question 74 

remains as to whether there are any consistent markers of inflammation in mice models. Reviews 75 

published have been descriptive (25, 26). Since there is little overlap between the human and 76 

murine microbiota, host-specific analysis is paramount (27). In the context of a poorly 77 

catalogued murine microbiota with limited cultured isolates (28), identification of a microbial 78 

signature can help focus isolation efforts and mechanistic studies on the best microbial 79 

candidates for further research in mouse models.  80 

Here we report a meta-analysis of 12 studies/datasets that utilize 16S sequencing to 81 

describe a link between development of colitis and changes in the microbiota in murine models. 82 

We aimed to find bacterial taxonomic groups that are consistent signatures of health and disease 83 

across studies, and that can be used to discriminate between healthy and diseased mice. We only 84 

included studies whose raw 16S sequencing read files were available and thus were able to 85 

standardize the analysis and directly compare the studies. We leveraged recent developments in 86 

16S analysis tools to identify amplicon sequence variants (ASVs) instead of the traditional 87 
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Operational Taxonomic Units (OTUs) (29), and used the EZTaxon reference database that 88 

distinguishes between currently unnamed and uncharacterized 16S phylotypes (30). We used a 89 

Random Forest model and differential abundance analysis to detect any consistent microbial 90 

signatures that differentiate healthy from diseased mice, and constructed a “dysbiosis index” 91 

from these. Finally, since alpha diversity, Bacteroidetes-to-Firmicutes (BF) ratio and 92 

Proteobacteria levels are often used as markers of microbiome health, we investigated the utility 93 

of these in discriminating colitic from healthy samples (11, 13, 31). 94 

 95 

RESULTS 96 

Study Search, Inclusion and Data Aggregation 97 

To identify studies that investigated the murine intestinal microbiota in the context of 98 

intestinal inflammation, we conducted a systematic search of NCBI PubMed for articles that 99 

contained terms relating to microbiota, intestinal inflammation and murine models in the title and 100 

abstract, published between 2012 and 2016, and was not a review. We followed the preferred 101 

reporting items for systematic reviews and meta-analyses (PRISMA) guidelines to limit 102 

inclusion bias (32). We screened the title and abstracts of 816 articles yielded by the search for 103 

eligibility, and obtained 2 additional studies from knowledge of published literature and our own 104 

currently unpublished dataset (Martin A. et al. unpublished) (819 total); 79 full-text articles were 105 

then assessed; 44 were retained to be checked for data availability; 10 had publicly available data 106 

and 2 provided access by the time of publication (19–22, 33–39) (Table 1, Fig 1). 107 

Search terms and screening and inclusion strategy are outlined in Methods. Briefly, we 108 

looked for studies that did a 16S sequence-based analysis of non-synthetic murine microbiota in 109 

various IBD models before and after onset of colitis. We excluded infection-based inflammation 110 
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and samples administered antibiotics as these are likely to have changes that go well beyond 111 

colitis associated ones. Studies that only assessed microbiota before inflammation onset were 112 

excluded because we were interested in a microbial signature associated with the onset of colitis, 113 

rather than a microbiota that is associated with increased susceptibility to colitis. 114 

Selection of relevant samples within the 12 studies yielded 601 samples, of which 434 115 

were healthy and 167 had colitis. We used a standardized custom data-processing pipeline to 116 

detect Amplicon Sequence Variants (ASVs) using the DADA2 algorithm that leverages quality 117 

information from sequence reads for sequence inference. Taxonomy was assigned using a 118 

custom script and the EZTaxon database to be able to distinguish and name currently uncultured, 119 

but sequenced, phylotypes. Only classified taxons were kept and after filtering for rare taxa and 120 

merging datasets, we obtained 1558 unique taxonomic groups (detailed methods in Materials and 121 

Methods).  122 

 123 

Beta Diversity 124 

Beta diversity, the between-sample diversity, can provide insight as to whether mice with 125 

colitis have a different microbial community structure compared to healthy mice (40). We 126 

calculated the Bray-Curtis distances (41) between samples and used Principal Coordinates 127 

Analysis (PCoA) to visualize the microbial communities. Plotting the samples on the first three 128 

coordinates suggested that samples tended to cluster by study more than by disease status (Fig 129 

2a, b). However, a Permutational Analysis of Variance (PERMANOVA) (42) suggested that 130 

microbiome composition differed by both disease status and study (p < 0.001). Furthermore, 131 

within each study, PERMANOVA revealed significant differences due to disease status in all 132 

except one study (Fig S1). Visually, within each study, disease status often provided a stark 133 
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differentiation in PCoA plots, which was not replicated in the pooled data. However, the 134 

significant PERMANOVA result suggested the possibility of differences between communities 135 

based on disease status, across studies. 136 

 137 

Alpha Diversity 138 

Alpha diversity, the diversity of the microbiome within each sample, is regularly 139 

investigated as a marker of “health” in both human and mouse studies. While individual studies 140 

have found associations between reduced alpha diversity and obesity and IBD in humans, meta-141 

analyses have found the evidence for such relationships to be weak (13, 43). Another oft-used, 142 

yet inconsistent, within-sample marker is the ratio of Bacteroidetes to Firmicutes ratio. Lastly, a 143 

bloom of Proteobacteria has also been associated with dysbiosis. We investigated the utility of 144 

using these markers in discriminating between healthy and diseased mice.  145 

In our meta-analysis, we do not find a consistent relationship between alpha diversity and 146 

colitis in mice. Seven of the 11 studies had significant differences in the Shannon index (H) 147 

between healthy and diseased mice, with 5 having higher values of H (lower diversity) in 148 

healthy, and 2 having higher diversity in healthy (Fig 3a). Similarly, there was no consistent 149 

relationship between colitis and the Bacteroidetes to Firmicutes ratio; 2 studies had a 150 

significantly lower ratio in healthy, while 2 had a significantly higher ratio in healthy (Fig 3b). 151 

Finally, there was also no consistent relationships between disease status and the relative 152 

abundance of Proteobacteria (Fig 3c). For all three measures, the pooled data did not show a 153 

significant difference between the healthy and diseased mice when tested using random effects 154 

models (p > 0.05).  155 

 156 
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Random Forest Models 157 

Given the significant PERMANOVA results, inconsistent alpha diversity metrics, and the 158 

success of statistical learning techniques in previous studies, we hypothesized that a random 159 

forest model would be able to discriminate between diseased and healthy mice (12, 43, 44). A 160 

random forest model works by building hundreds of decision trees, with a cut-off value 161 

(abundance) for a particular feature (taxon) being selected at each split to maximize the correct 162 

classification of the outcome (disease status) among the samples being used for training. For a 163 

new sample, the trees are used to classify it as diseased or healthy (45). Model performance in 164 

discrimination can be summarized using the area under the receiver operating curve (AUROC), 165 

with 0.5 being as good as random, and 1 being perfect prediction. We built a cross-validated 166 

random forest model on a randomly selected 70% of the samples, which yielded an AUROC of 167 

0.975. When this model was used to predict the remaining 30% of the samples, the AUROC was 168 

0.972, suggesting a lack of overfitting and the presence of a detectable microbial signature of 169 

disease across studies included in this analysis (Fig 4a). 170 

To test the generalizability of this approach and whether the individual studies 171 

contributed complementary or unique information, we conducted a leave-one-out analysis. One 172 

by one, each study was left out, and the samples left out were predicted using a random forest 173 

classifier trained on the remaining set of samples (“n-1”). Furthermore, we assessed the cross-174 

validated performance of the “n-1” classifiers, as well as that of models trained on the study left 175 

out and tested on the “n-1” set. The performance of the models varied greatly depending on 176 

which study was left out, as measured by the AUROC (Fig 4b). Samples from Lamas et al. (35), 177 

Laubitz et al. (19), and Yeom et al. (22) were perfectly predicted by models trained on all other 178 

samples, suggesting that they contained “overlapping” information. All other scenarios had 179 
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performance worse than the full model, with the Whitfield-Cargile et al. (36) samples having 180 

AUROC less than 0.5 (0.268). The worse-than-random prediction of the Whitefield-Cargile et al. 181 

samples suggests that it contributes information that runs counter to those in the other studies.  182 

Potential reasons for this are considered in the discussion. Assessing from the opposite direction, 183 

we also found great variability in the performance of models trained on one study and used to 184 

predict the rest. None of these had very high AUROC values, which is likely due to small sample 185 

sizes within each study. Indeed, He et al., Corsi et al. and Yeom et al. had few samples, and 186 

poorly predicted other studies. On the other hand, Lamas et al. performed well even with small 187 

sample sizes. Despite this variability, we found that removing one study did not change the 188 

overall model performance, as assessed by repeated cross-validation, with AUROC values 189 

staying consistently around 0.9 (Fig 5).   190 

 191 

Variable Selection and “Dysbiosis” Index 192 

As the overall random forest model had a robust predictive performance, we wanted to 193 

identify the taxons that contributed to this predictive power. To do this, we used the Boruta 194 

feature selection algorithm. This algorithm creates random probes (i.e. taxons with shuffled 195 

abundance values across samples), and tests their performance relative to the true features (i.e. 196 

taxons with observed abundance values). An iterative process retains only the taxons that are 197 

significantly better at prediction than their random counterparts (46). The algorithm yielded 184 198 

taxons that were confirmed as being important for disease status prediction, out of the total 1558 199 

tested (Supplementary Table 1). Ninety-eight of these had a higher mean abundance in mice 200 

with colitis (colitis-associated taxons), while 86 had a higher mean abundance in healthy mice 201 

(health-associated taxons). To narrow this list further in order to identify relevant taxons that 202 
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were the most prevalent, we only included ones that were present in half or more healthy (if 203 

health-associated) or colitis samples (if colitis-associated). This filtering retained 33 taxons, 12 204 

of which were colitis-associated, and 21 of which were health-associated (Table 2).  205 

Most of the microbes (10 of 12) associated with the diseased state were members of the 206 

order Bacteroidales, including several species from the abundant but poorly understood S24-7 207 

family.  However, microbes associated with the healthy state also included members of the order 208 

Bacteroidales (8 of 21) along with a number of Firmicutes (12 of 21 including Lactobacilli and 209 

Clostridia sp.) and one Actinobacteria (Bifidobacteria).  These findings loosely align with the 210 

notion that there may be a bias towards a greater abundance of Firmicutes in the non-diseased 211 

state, and that Lactobacilli and Bifidobacteria may be markers of gut health (e.g. both are 212 

marketed as probiotics).  As it relates to how different Bacteroidales species respond to 213 

inflammation and dysbiosis, however, there is clearly much that remains to be understood. 214 

We hypothesized that the combined information contained in the relative abundances of 215 

this list of taxons was more relevant for disease status than the Shannon index, BF ratio or 216 

abundance of any one taxon. Thus, we created a “dysbiosis index”, which is the log transformed 217 

ratio of the relative abundances of colitis-associated taxa to health-associated taxa. When 218 

dysbiosis index values was calculated for each sample, we found significantly higher values for 219 

colitis samples in 8 studies (t-test, p < 0.05). Two of the remaining had higher, non-significant 220 

mean values for mice with colitis, while one had a significantly higher value for healthy samples 221 

(Fig 6).  A random effects model for the pooled data, with study as the random effect, indicated 222 

that mice with colitis had significantly higher dysbiosis index values, suggesting that this was a 223 

much better indicator of disease status than the other metrics (Shannon diversity index, B/F ratio, 224 

proteobacterial abundance) tested above. 225 
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 226 

DISCUSSION 227 

Animal models, especially murine models, have been extensively used in research to 228 

understand human health and disease. For IBD in particular, a multitude of chemically induced, 229 

cell-transfer, and genetic models in mice have been used to understand aspects of intestinal 230 

immunology (18). More recently, there has been increasing interest in how the gut microbiota 231 

plays an important role in the onset of IBD in humans and colitis in these murine models. The 232 

prevalence of IBD in human populations and its murky etiology, combined with breakthroughs 233 

in microbiome research techniques, has fostered a plethora of studies investigating the role of the 234 

gut microbiota in this disease. Thus, these studies not only represent a potential for 235 

understanding the causes of IBD, but also the role of the microbiome more generally (47). Since 236 

it is difficult to interrogate causality and mechanisms of disease onset in humans, murine models 237 

provide such work, despite differences in some anatomical features, dietary habits and the 238 

microbiota.  239 

In studying complex systems like microbiomes, where there are a nearly endless number 240 

of dimensions to be explored in terms of both membership and abundance, summary statistics 241 

that enable comparison along one dimension are often attractive. Alpha diversity metrics aim to 242 

summarize information regarding the how many members are present, as well as how evenly 243 

their abundances are distributed. Here we test the Shannon diversity index and find that even 244 

though individual studies can have significant results, they are not consistently in the same 245 

direction, and in the pooled data, there is no significant evidence of a relationship. Similarly, the 246 

BF ratio and Proteobacteria levels were also found to be inconsistent markers of gut health. 247 

Thus, while these one-dimensional metrics have the advantage of simplicity, they should be 248 
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employed with caution. Moreover, universal generalizations linking a diverse ecosystem to 249 

health may be unwarranted in this context. 250 

Another frequently accepted principle is that the functional features of the microbiota can 251 

be usefully predicted from 16S level phylogenetic analysis at the family or genus level. Here, 252 

again, our study urges caution. While our analysis flagged an increase in specific Bacteroidales 253 

during inflammation as a common feature, other closely related Bacteroidales were reduced. Of 254 

particular interest are members of the S24-7 family, which are abundant members of the gut 255 

microbiota and yet are understudied and poorly understood and may play an important role in the 256 

resilience of the microbiota in the face of different abiotic stresses including osmotic-induced 257 

diarrhea (48). Given that different members of the S24-7 family were associated with either the 258 

disease or healthy state, the assumption that there is functional similarity between microbes at 259 

the phylum, family, or even genus level is an oversimplification that may prevent a more 260 

nuanced and complete understanding of the specific forces that shape the membership/abundance 261 

of gut microbial communities.   262 

When analyzing high-dimensional data, the use of statistical learning techniques can be 263 

useful to “pick out” patterns that are not immediately observable – even from highly 264 

heterogenous datasets derived from different studies across multiple animal facilities.  The 265 

results of our leave-one-out analyses indeed highlights the heterogeneity that exists between each 266 

of the studies.  Given the relatively limited scope of our analysis, we were greatly encouraged by 267 

the very high predictive performance of our combined random forest model, which may suggest 268 

that there may indeed be some ‘universal’ microbial signatures that enable us to discriminate 269 

between healthy and diseased samples across multiple unrelated studies.  It would be interesting 270 

to investigate what factors contribute to the observed heterogeneity between some studies, 271 
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especially after having relatively stringent inclusion criteria.  This would only be feasible, 272 

however, if a much greater number of studies with available data and large samples sizes became 273 

available.   274 

We note that one study chosen (Whitfield-Cargile) was a distinct outlier in our analysis 275 

from the other eleven studies.  Unlike the other genetic and chemical models of dysbiosis 276 

included in this meta-analysis, the NSAID-induced inflammation in the Whitfield-Cargile study 277 

largely manifests in the distal jejunum and ileum and less the large intestine (i.e. it is not a true 278 

“colitis” per se).  Furthermore, the trigger of dysbiosis used in that study, the NSAID 279 

indomethacin, is itself an anti-inflammatory agent that inhibits cyclooxygenase enzymes – which 280 

would further change the nature of the resulting inflammation. This indicates that care must be 281 

taken when comparing studies that may be superficially similar, but that have important 282 

differences in their underlying mechanisms or locations within the host.  Accordingly, we 283 

believe the fact that the Whitfield-Cargile study performed differently than the other studies, 284 

indicates that the dysbiosis index derived from our meta-analysis is robust and able to distinguish 285 

colitis from other types of intestinal pathology. 286 

The vast differences in the composition of the human and murine microbiota mean that 287 

translation between the two cannot be made directly in terms of individual microbes. On one 288 

hand, this means that it might require considerable effort in order to find any potential human 289 

counterpart of murine microbes causally implicated in colitis. On the other hand, this has meant 290 

that efforts to catalog the human gut microbiome has not helped much with cataloging the 291 

murine microbiome and robust human meta-analyses to synthesize evidence on the IBD-292 

microbiome interaction cannot be readily used to guide future studies in mouse models.  293 
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In this context, the meta-analysis of animal studies can be useful. Generally, such studies are 294 

conducted for preclinical animal trials to select robust candidates for clinical trials, and prevent 295 

excessive replication (49, 50). However, animal meta-analyses can also play a valuable role in 296 

guiding research avenues in murine models of complex systems like microbiomes that are often 297 

studied at a macro-level, without a systematic approach to investigating host-microbe or 298 

microbe-microbe interactions at a micro level. In our meta-analysis, we find that simple metrics 299 

to summarize microbial diversity and composition may not be consistent; we also identify a 300 

microbial signature of disease that is relatively robust across studies, and report a list of microbes 301 

that may be good candidates for focused isolation and characterization efforts. 302 

Most importantly, through the quantitative synthesis of published literature, we identified 303 

a number of organisms that seem to be consistently associated with health or disease in murine 304 

models of IBD. The colitis-associated microbes are likely to be good candidates for screening in 305 

mono-association or infection studies, whereas the healthy-associated ones are likely to be good 306 

candidates for probiotic studies. Many of the identified strains are phylotypes that are yet to be 307 

isolated. In a rapidly evolving field where mice microbiomes have been under increasing 308 

attention for systematic approaches to cataloguing and strain isolation, this study provides a tool 309 

that can be used to prioritize efforts.  310 

Finally, our experience suggests that trying to standardize microbiome studies and make 311 

the data publicly accessible is of paramount importance. One of the main time-consuming steps 312 

in our analysis was the custom processing of datasets generated by a diversity of sequencing 313 

approaches, and the resolution of our taxonomic classification was limited by the diversity of 314 

16S primers used. While we identified 44 studies of interest for the meta-analysis, we were only 315 

able to obtain data from 12, suggesting that only a small fraction of published sequencing data is 316 
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actually deposited in a publicly accessible system. Journal policies on data-sharing can help 317 

rectify this. 318 

 319 

METHODS 320 

Study Search and Inclusion 321 

To identify studies that investigated the murine intestinal microbiota in the context of 322 

intestinal inflammation, we conducted a systematic search of NCBI PubMed for articles that 323 

contained terms relating to microbiota, intestinal inflammation and murine models in the title and 324 

abstract, published between 2012 and 2016, and was not a review. We followed the preferred 325 

reporting items for systematic reviews and meta-analyses (PRISMA) guidelines to limit 326 

inclusion bias (51). The detailed search term was: “((microbiota[Title/Abstract] OR 327 

microbiome[Title/Abstract]) AND (colitis[Title/Abstract] OR (inflammation[Title/Abstract] 328 

AND (mucosa*[Title/Abstract] OR epitheli*[Title/Abstract] OR colon*[Title/Abstract] OR 329 

gut[Title/Abstract] OR intestin*[Title/Abstract])))) AND ("2012/01/01"[PDAT] : 330 

"2016/12/30"[PDAT]) AND (mice[Title/Abstract] OR mouse[Title/Abstract] OR 331 

murine[Title/Abstract]) NOT review[Publication Type]”. We screened the title and abstracts of 332 

816 articles yielded by the search for eligibility. In addition, we obtained three studies from 333 

knowledge of published literature, and a currently unpublished dataset of an IL-10 knockout 334 

model of colitis from a collaborator.  335 

Seventy-nine full-text articles were then assessed, and 44 were retained to be checked for 336 

data availability. Ten studies had read files accessible in Sequence Read Archive, European 337 

Nucleotide Archive, MG-RAST or personal collaboration; 32 studies had no publicly available 338 

data or metadata, and only two provided access to data by the time of publication after contact. 339 
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Studies were excluded if they: did not do a 16S sequence-based analysis of the microbiome; used 340 

a synthetic microbiota (e.g. Altered Schaedler Flora, humanized); only had outcomes of low-341 

grade inflammation or aging associated “inflammaging”; used pathogenic infection for 342 

inflammation; used bacterial treatment (e.g. probiotics); used antibiotic treatment; used non-343 

murine models; did not have an outcome of colonic inflammation; did not have non-colitis 344 

controls; was not a primary article; or that failed to assess the microbiota before onset of 345 

inflammation. We had the final exclusion criteria because many studies aim to answer the 346 

question of whether a particular microbiota is associated with increased susceptibility to colitis; 347 

however, we were interested in a microbial signature associated with the onset of colitis. We 348 

retained articles if they contained a subset of samples that were eligible, contingent on non-349 

colitis controls being present. Within the included studies, we excluded any samples that met 350 

relevant exclusion criteria outlined above (e.g. low-grade inflammation, antibiotic treatment).  351 

 352 

Data Processing 353 

 For each study, we used a standardized bioinformatics pipeline to generate counts for 354 

taxonomic groups. Quality filtering criteria was determined on a study-by-study basis depending 355 

on the sequencing platform used and inspection of read quality (52, 53). Reads were filtered and 356 

resolved to amplicon sequence variants (ASVs) using the DADA2 pipeline. The advantage of 357 

using DADA2 over traditional clustering methods is that it resolves differences of as little as one 358 

nucleotide to determine exact sequences based on an error model for the sequencing run (54). 359 

Resolved paired-end sequences were merged where applicable, chimeras removed and a RSV-360 

abundance tables built (equivalent to OTU-tables).  361 
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RSVs were assigned microbial taxonomies using a custom R script (55). Sequences were 362 

searched against the EZTaxon database (January 2017 Update) (30) using vsearch (56) and 363 

assigned the taxonomy (up to species level) of the highest identity match >97%. Tied hits were 364 

assigned ambiguous classification (e.g. Shigella/Escherichia). Use of EZTaxon allows 365 

classification of uncultured bacteria because it has unique identifiers assigned to manually 366 

curated phylotypes. RSVs classified as “Streptophyta” at phylum level were filtered out. RSV 367 

counts were standardized by calculating relative abundances. Within each study, RSVs that did 368 

not make up more than 0.2% of the community in at least one sample, as well as taxonomic 369 

groups that were detectable in only one sample, were removed. 370 

To enable merging of datasets from different studies, that used different 16S regions, 371 

RSVs unclassified at the species level were removed. Next, RSV abundance tables were 372 

collapsed to the highest taxonomic resolution possible (e.g. x/y from one study was collapsed 373 

into x/y/z group if another study could not resolve between x/y/z). Data handling, merging and 374 

filtering was done using the phyloseq package (57). 375 

 376 

Alpha and Beta Diversity Analysis 377 

For each sample, we estimated the Shannon diversity index using the vegan package (58), 378 

as well as the ratio of Bacteroidetes abundance to Firmicutes abundance (BF ratio). Following 379 

normalizing transformations, t-tests were used to detect significant differences between healthy 380 

and mice with colitis, within each study. For the pooled data, a linear random effects model 381 

(implemented using the lme4 package (59)) with random slopes and intercepts was used to 382 

determine if there was a statistically significant association between the measures and disease 383 

status.  384 
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Diversity across samples was investigated using Principal Coordinates Analysis (PCoA) 385 

and permutational analysis of variance (PERMANOVA) (adonis function; 999 permutations) 386 

using the vegan package. This was done separately for each study, as well as the pooled data.  387 

 388 

Random Forest Models 389 

A random forest (RF) model was built with the pooled data using the caret package (60) 390 

(10-fold cross validated, repeated 5 times; 250 trees), and area under the receiver operating 391 

characteristic curve (AUROC) was sued to assess model performance in discriminating healthy 392 

from diseased mice. To investigate the generalizability of using RF models, we conducted a 393 

leave-one-out analysis, repeatedly building models on data from n-1 studies, and testing model 394 

performance in predicting the study left out, using AUROC. 395 

 396 

Variable Selection and “Dysbiosis” Index 397 

To identify which taxonomic groups are most important in discriminating between 398 

healthy and diseased mice within a random forest framework, the Boruta feature selection 399 

algorithm was used with 500 runs using the Boruta package (46). Next, the selected taxa were 400 

labelled as being associated with healthy or diseased status based on whether they had higher 401 

mean abundance in healthy or diseased mice, respectively (statistical significance not 402 

considered). This labelled list was pruned to contain only taxa present in 50% of diseased or 403 

healthy mice. The dysbiosis index was calculated by log transforming the ratio of the colitis-404 

associated taxa to the health-associated taxa. 405 
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 As with the alpha diversity metrics, within each study, t-tests were used to determine the 406 

utility of the index in discriminating between healthy and diseased mice, and a similar random 407 

effects model was used for the pooled data. 408 

 All data was visualized using the ggplot2 package (61).  409 

 410 
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 573 

FIG 1: Flow diagram of literature search and review for inclusion in meta-analysis, represented 574 

according to PRISMA guidelines.  575 
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 576 

FIG 2: Principle Coordinates Analysis (PCoA) plots depicting the relationships between sample 577 

microbial compositions along the first three principal coordinates. Colored points and the 578 

associated ellipses distinguish between the different studies/datasets (A) or disease status (B).   579 
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 580 

FIG 3: Boxplots of commonly used diversity and composition metrics. From left, each panel 581 

shows distribution and statistical significance of Shannon Diversity Index, Bacteroidetes-582 

Firmicutes Ratio and Relative Abundance of Proteobacteria, within each study and for pooled 583 

samples. Blue represents healthy samples and red represents colitic samples. * = p < 0.05, ** = p 584 

< 0.01, *** = p < 0.001.   585 
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 586 

 587 

FIG 4: Receiver-Operator Curves demonstrating predictive performance of Random Forest 588 

Models, with Area-Under the Curves (AUC) reported. (A) shows cross-validated performance on 589 

training set consisting of a random 70% of all samples (blue) and performance on remaining 590 

30% of samples in the testing set (red). (B) shows performance of models trained on (n-1) 591 

studies on the study that was left out. Each color-shape and name in the legend refers to the study 592 

that was left out of, and predicted by, the model.   593 
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 594 

FIG 5: Summary of model performances in terms of Area Under the Receiver-Operator Curve 595 

(AUROC) and characteristics for each study. The top line (green) shows cross-validated 596 

performance of model when the named study was left out (e.g.  for first panel, cross-validated 597 

AUROC for model with all studies except Berry et al.). The second line (blue) shows 598 
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performance of model trained on named study on predicting all other studies (for first panel, 599 

AUROC for model trained on Berry et al. and tested on all studies except Berry et al.). The third 600 

line (red) shows performance of model trained on all studies except the named one, on predicting 601 

the named one (for first panel, AUROC for model trained on all studies except Berry et al. and 602 

tested on Berry et al.). 603 

 604 

  605 
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 606 

FIG 6: Boxplots showing distribution and statistical significance of “dysbiosis index” within 607 

each study and for pooled samples. Blue represents healthy samples and red represents colitic 608 

samples. * = p < 0.05, ** = p < 0.01, *** = p < 0.001. 609 
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Study, 
Year Title Colitis Model Mouse 

Strains 
DNA 
extraction Region Platform Biological 

Source 
Sample 
counts Data Source 

Jacobs et al. 
201719 

Microbial, 
metabolomic, and 
immunologic 
dynamics in a 
relapsing genetic 
mouse model of 
colitis induced by 
T-synthase 
deficiency. 

Tsyn mice 
(C1galt1 or T-
synthase 
deleted) 

C57BL/6 

MO Bio 
PowerSoil 
DNA 
Isolation Kit 

V4 Illumina 
HiSeq 

Intestinal 
lavage 
and wash 

54 Healthy 
33 Colitis 

Public, 
PRJNA318692 

Chassaing 
et al. 201520 

Dietary emulsifiers 
impact the mouse 
gut microbiota 
promoting colitis 
and metabolic 
syndrome. 

Dietary 
emulsifiers in 
IL10-/- mice 

C57BL/6 

MO Bio 
PowerSoil 
DNA 
Isolation Kit 

V4 Illumina 
MiSeq 

Fecal 
Samples 

175 
Healthy 
9 Colitis 

Public, 
PRJEB8035 

Laubitz et 
al. 201621 

Reduced Epithelial 
Na+/H+ Exchange 
Drives Gut 
Microbial 
Dysbiosis and 
Promotes 
Inflammatory 
Response in T 
Cell-Mediated 
Murine Colitis. 

NHE3-/-, 
Rag2-/- 129S6/SvEv 

Beads + 
Proteinase, 
Phenol-
chloroform 

V4 Illumina 
MiSeq 

Fecal 
Samples 

76 Healthy 
16 Colitis 

Public, 
10.17605/ 
OSF.IO/UWFAP 

Yeom et al. 
201622 

Sasa quelpaertensis 
leaf extract 
regulates microbial 
dysbiosis by 
modulating the 
composition and 

DSS C57BL/6 Fast DNA 
SPIN Kits V1-V3 Roche 

454 
Fecal 
samples 

6 Healthy 
6 Colitis 

Public, 
PRJEB13815 
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diversity of the 
microbiota in 
dextran sulfate 
sodium-induced 
colitis mice. 

Lamas et al. 
201632 

CARD9 impacts 
colitis by altering 
gut microbiota 
metabolism of 
tryptophan into 
aryl hydrocarbon 
receptor ligands. 

DSS in 
CARD9-/- 
mice 

C57BL/6J 
Beads in 
FastPrep, 
isopropanol. 

V3-V4 Illumina 
MiSeq 

Fecal 
samples 

6 Healthy 
9 Colitis 

Public, 
PRJEB9079 

Whitfield-
Cargile et 
al. 201633 

The microbiota-
derived metabolite 
indole decreases 
mucosal 
inflammation and 
injury in a murine 
model of NSAID 
enteropathy. 

NSAID 
(indomethacin) C57BL/6J 

MO Bio 
PowerSoil 
DNA 
Isolation Kit 

V4 Illumina 
MiSeq 

Fecal 
samples 

33 Healthy 
3 Colitis 

Public, 
PRJNA290483 

Martin, 
unpublished 

Experiments 
showing IL10-/- 
deletion caused 
spontaneous colitis 
in some mouse 
cages but not 
others 

DSS in IL10-/- 
mice C57BL/6 

DNA from 
soil kit 
(Macherey-
Nagel) 

V4 Illumina 
MiSeq 

Fecal 
samples 

11 Healthy 
17 Colitis Request 

Sassone-
Corsi et al. 
201634 

Microcins mediate 
competition among 
Enterobacteriaceae 
in the inflamed 
gut. 

DSS C57BL/6 
Slc11a1+ 

QIAamp 
DNA Stool 
Kit 

V4 Illumina 
MiSeq 

Fecal 
samples 

5 Healthy 
7 Colitis 

Public, 
PRJEB15700 
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Moschen et 
al. 201635 

Lipocalin 2 
protects from 
inflammation and 
tumorigenesis 
associated with gut 
microbiota 
alterations. 

Lcn2-/-, IL10-
/- C57BL/6J 

FastDNA 
SPIN Kit, 
Precellys 24 
homogenizer  

V1-V2 Illumina 
MiSeq 

Cecal 
content 

11 Healthy 
19 Colitis 

Public, 
ERP014639 

Berry et al. 
201536   

Intestinal 
microbiota 
signatures 
associated with 
mice experiencing 
recurring colitis. 

DSS C57BL/6 
Phenol-
chloroform, 
bead 

V6-V9 Roche 
454 

Intestinal 
flush, 
fecal 
samples 

36 Healthy 
36 Colitis Request 

Vereecke et 
al. 201437 

A20 controls 
intestinal 
homeostasis 
through cell-
specific activities. 

A20 deletion C57BL/6 
QIAamp 
DNA Stool 
Mini Kit 

V3-V5 Roche 
454 

Cecal 
content 

16 Healthy 
6 Colitis Request 

He et al. 
201638 

Dysbiosis of the 
fecal microbiota in 
the TNBS-induced 
Crohn’s disease 
mouse model 

TNBS BALB/c 
Phenol-
chloroform, 
bead 

V5-V4 
Ion 
Torrent 
PGM 

Fecal 
samples 

5 Healthy 
6 Colitis 

Public, 
ERP011541 

 
TABLE 1 Summary of studies included in the meta-analysis. DSS = Dextran Sulfate Sodium, IL10 = Interleukin 10, NSAID = Non-Steroidal 
Anti-Inflammatory Drug, TNBS = 2,4,6-trinitrobenzene sulfonic acid. 
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Median 
Importance Phylum Class Order Family Genus Species EZTaxon ID Associated 

Status 
Proportion 
Present 

8.467 Firmicutes Clostridia Clostridiales Lachnospiraceae AB626912_g EU452880_s 107581 Healthy 0.502 

7.015 Bacteroidetes Bacteroidia Bacteroidales S24-7_f HM124280_g EF603706_s 103736 Healthy 0.829 

6.873 Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus 

Lactobacillus_gallinarum/Lactobacillus
_hamsteri/Lactobacillus_kitasatonis/Lac
tobacillus_acidophilus/Lactobacillus_ga
sseri/Lactobacillus_ultunensis/Lactobaci
llus_helveticus/Lactobacillus_johnsonii/
Lactobacillus_hominis/Lactobacillus_ro
dentium/FN667084_s/Lactobacillus_am
ylovorus/Lactobacillus_crispatus/Lactob
acillus_kalixensis/Lactobacillus_taiwan
ensis 

117587/127919/85874
/85875/85904/95031/9
5041/95044/95067/95
231/95239/95242/956
46/95665/95889 

Healthy 0.654 

6.829 Firmicutes Clostridia Clostridiales Lachnospiraceae Eisenbergiella AB626943_s/EU457259_s/EF603797_s
/EU622677_s/EU457126_s 

103742/107624/10762
7/109826/84929 Healthy 0.528 

6.557 Bacteroidetes Bacteroidia Bacteroidales S24-7_f DQ815871_g EF603701_s/EU474208_s/EF099993_s/
HM124175_s/EU456490_s 

101731/103735/10761
7/108613/123282 Healthy 0.611 

5.916 Firmicutes Clostridia Clostridiales Ruminococcaceae Oscillibacter 

FJ880499_s/EF602810_s/EU505076_s/
GU302582_s/FJ880976_s/FJ881211_s/
EU454374_s/EU771312_s/EU454366_s
/EU453793_s/KE159714_s 

103700/107590/10759
8/107599/109224/110
626/116255/116284/1
16308/121628/139962 

Healthy 0.613 

5.416 Bacteroidetes Bacteroidia Bacteroidales S24-7_f HM124247_g EF603835_s/EF097965_s/EU455014_s 101684/103744/10760
1 Healthy 0.657 

4.652 Bacteroidetes Bacteroidia Bacteroidales S24-7_f EF602759_g/EU62274
9_g EF604981_s/HM123985_s/EU450917_s 103776/107567/12322

9 Healthy 0.778 

4.558 Firmicutes Clostridia Clostridiales Ruminococcaceae
/Lachnospiraceae 

Pseudoflavonifractor/
Butyricicoccus/Eisenb
ergiella/FJ374222_g 

Pseudoflavonifractor_capillosus/Eubact
erium_desmolans/JQ191036_s/EF40494
4_s/KI535319_s/FJ881243_s/HM12417
7_s/EF603680_s/EF604701_s/AB60628
3_s/EF097039_s/ADDX_s/FJ374222_s/
Flavonifractor_plautii/AB606233_s/AY
244908_s/FJ879530_s/EF603862_s/EF6
03786_s/AY858452_s/AB626937_s/EU
622686_s/BCAB_s/AB606341_s/EU79
4285_s/FJ879507_s/AB606380_s/GQ89
7291_s/EF400624_s/EF071402_s/PAC0
00182_s/JQ083832_s/EU505160_s/AB6
06266_s/AB606386_s/FJ880805_s/EU4
56711_s/DQ015070_s/AY992183_s/JQ
084492_s/JQ084301_s/EU773377_s/D
Q456429_s/HQ716472_s/EF404855_s/
FJ510897_s/DQ057387_s/EU509811_s/
JQ084116_s/DQ456157_s/JQ084120_s/
EF096610_s/HQ750839_s/Intestinimon
as_butyriciproducens/GQ867588_s/FJ8
80402_s/FJ368283_s/EU454100_s/EU4

100395/100646/10155
6/101664/101669/101
672/102250/102321/1
02325/103732/103741
/103748/103773/1038
92/104268/104284/10
6717/107596/107620/
107724/108101/10921
0/109226/109289/109
472/109831/110754/1
10830/111111/112154
/113204/113242/1142
11/116208/116209/11
6250/116273/116312/
120648/120687/12322
0/123283/127181/127
401/127454/127589/1
27827/130498/134093
/134182/135159/1351
63/135164/135166/13
5171/135178/135303/

Healthy 0.601 
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65687_s/EU460161_s/EU504346_s/EU
344341_s/EF644509_s/EU009861_s/EU
009822_s/AM278900_s/EF096916_s/D
Q815545_s/AB606256_s/JN713225_s/
HM123968_s/HQ782969_s/HQ821334_
s/JX198570_s/JX047097_s/HQ759796_
s/JQ599692_s/EU775346_s/EU888823_
s/AB062828_s/AY916184_s/EU542517
_s/JQ084175_s/JN680614_s/DQ795333
_s 

136192/137750/13826
5/139755/140361/141
122/142006/80589/81
115/84772/84784/847
92/84801/84831/8484
9/84853/84926/85961/
90333/92836/94458/9
4607/94957/95439/97
493/97598/99582/995
94 

4.526 Firmicutes Clostridia Clostridiales Lachnospiraceae AY305316_g EU456172_s 107613 Healthy 0.507 

4.4567 Firmicutes Clostridia Clostridiales Ruminococcaceae Oscillibacter AB606367_s/EF602808_s/JQ084467_s 103699/135173/84845 Healthy 0.666 

4.316 Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus 
Lactobacillus_apodemi/Lactobacillus_a
nimalis/Lactobacillus_faecis/Lactobacill
us_murinus 

85634/86083/95249/9
5520 Healthy 0.726 

4.180 Bacteroidetes Bacteroidia Bacteroidales S24-7_f DQ815871_g DQ815395_s 100637 Healthy 0.751 

4.149 Firmicutes Clostridia Clostridiales Lachnospiraceae Eisenbergiella EF603669_s 103730 Healthy 0.507 

3.949 Firmicutes Clostridia Clostridiales Lachnospiraceae KE159538_g KE159538_s 139953 Healthy 0.620 

3.924 Bacteroidetes Bacteroidia Bacteroidales S24-7_f FJ881296_g EF406456_s 102343 Healthy 0.793 

3.354 Actinobacteri
a 

Actinobacteri
a_c 

Bifidobacteriale
s Bifidobacteriaceae Bifidobacterium Bifidobacterium_choerinum/Bifidobacte

rium_pseudolongum 130483/130566/92228 Healthy 0.551 

3.311 Bacteroidetes Bacteroidia Bacteroidales S24-7_f EF406773_g EF406773_s 102358 Healthy 0.551 

3.197 Firmicutes Clostridia Clostridiales Ruminococcaceae Oscillibacter 
AB606333_s/AB606363_s/HM124063_
s/FJ881219_s/AB606362_s/JQ085218_s
/EU457459_s/EU509241_s 

107630/109277/11630
9/123250/135196/848
26/84842/84843 

Healthy 0.574 

3.165 Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus 

Lactobacillus_reuteri/Lactobacillus_pan
is/Lactobacillus_pontis/Lactobacillus_a
ntri/Lactobacillus_vaginalis/Lactobacill
us_oris/Lactobacillus_frumenti 

143355/85903/86957/
89050/91592/95057/9
5077 

Healthy 0.562 

2.718 Bacteroidetes Bacteroidia Bacteroidales S24-7_f EF602759_g DQ815429_s 100640 Healthy 0.567 

12.406 Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides 

Bacteroides_fragilis/Bacteroides_salyers
iae/Bacteroides_acidifaciens/Bacteroide
s_finegoldii/Bacteroides_thetaiotaomicr
on/Bacteroides_xylanisolvens/AB02116
5_s/DQ798855_s/Bacteroides_faecichin
chillae/Bacteroides_faecis/AY986255_s
/FJ371693_s/FJ368968_s/JH815484_s/
HQ769253_s/HQ804309_s/Bacteroides
_ovatus/HQ789817_s/DQ805799_s 

100427/100475/10120
3/113206/113213/127
510/127651/127740/1
30536/80812/82489/8
6035/88159/90221/91
731/94946/95194/952
23/96915 

Colitis 0.557 

7.897 Bacteroidetes Bacteroidia Bacteroidales S24-7_f FJ880046_g EF406536_s 102347 Colitis 0.880 

6.354 Bacteroidetes Bacteroidia Bacteroidales S24-7_f HM124117_g EF097184_s 101677 Colitis 0.713 

5.869 Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae Alistipes DQ815748_s/FJ510995_s 100663/114212 Colitis 0.647 

5.044 Bacteroidetes Bacteroidia Bacteroidales Porphyromonadac
eae Parabacteroides Parabacteroides_goldsteinii 91730 Colitis 0.503 
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4.991 Bacteroidetes Bacteroidia Bacteroidales S24-7_f EF406806_g EF603121_s 103716 Colitis 0.623 

4.688 Bacteroidetes Bacteroidia Bacteroidales S24-7_f EF406806_g EF603904_s 103750 Colitis 0.557 

4.676 Bacteroidetes Bacteroidia Bacteroidales S24-7_f HM124247_g EF406368_s 102341 Colitis 0.844 

4.029 Bacteroidetes Bacteroidia Bacteroidales S24-7_f EF406712_g EF406712_s 102356 Colitis 0.635  

3.462 Firmicutes Clostridia Clostridiales EU234093_f AB606326_g AB606326_s/EF604610_s 103758/84822 Colitis 0.533 

3.287 Bacteroidetes Bacteroidia Bacteroidales S24-7_f HM124247_g EF603149_s 103717 Colitis 0.587 

3.180 Firmicutes Clostridia Clostridiales Ruminococcaceae Anaerotruncus DQ168656_s/KE159677_s 139961/98138 Colitis 0.551 

 
TABLE 2  Thirty-three taxa selected through Boruta feature selection for inclusion in dysbiosis index. The median importance is the median importance 
score calculated by the Boruta algorithm. EZTaxon ID refer to the ID number in the EZTaxon database. Proporotion present refers to the proportion of 
healthy or colitis samples the taxon was present in. 
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