- 1 Title : Efficacy and Safety of Immunosuppressive Treatment in IgA Nephropathy: A
- 2 Meta-analysis of Randomized Controlled Trials
- 3
- 4 Authors : Zheng Zhang^{1,2}, Yue Yang², Shi-min Jiang^{1,2}, Wen-ge Li^{2*}
- 5 Author contributions statement:
- 6 Zheng Zhang designed this study and conducted literature retrieval, data extraction, data
- 7 analysis and article writing.
- 8 Yue Yang participated in literature retrieval, data extraction and data analysis.
- 9 Shi-min Jiang participated in data extraction.
- 10 Wen-ge Li guided the research.
- 11

12 Institution:

- 13 1. Graduate School of Peking Union Medical College, Beijing, China;
- 14 2. Department of Nephrology, China- Japan Friendship Hospital, Beijing, China.

15

- 16 *Corresponding author's contact information:
- 17 Wen-ge Li
- 18 E- Mail: wenge_lee2002@126.com

- 20 **Competing interests statement:** There is no conflict of interest in this article.
- 21
- 22
- 23

24 Abstract

25	Background: There is some controversy regarding the efficacy and safety of
26	immunosuppressive agents for the treatment of kidney diseases. The recent STOP-IgAN and
27	TESTING studies have focused attention on the application of immunosuppressive agents in
28	IgA nephropathy (IgAN). This study investigated the benefits and risks of
29	immunosuppressive agents in IgAN.
30	Methods: MEDLINE, EMBASE, the Cochrane Library, and article reference lists were
31	searched for randomized controlled trials (RCTs) comparing immunosuppressive agents with
32	any other non-immunosuppressive agents for treating IgAN. A meta-analysis was performed
33	on the outcomes of proteinuria, creatinine (Cr), estimated glomerular filtration rate (eGFR),
34	and adverse events in patients with IgAN, and trial sequential analyses were also performed
35	for outcomes.
36	Results: Twenty-nine RCTs (1957 patients) that met our inclusion criteria were identified.
37	Steroids (weighted mean difference [WMD] -0.70, 95% confidence interval [CI] -1.2 to
38	-0.20), non-steroidal immunosuppressive agents (NSI) (WMD -0. 43, 95% CI -0.55 to
39	-0.31), and combined steroidal and non-steroidal immunosuppressive agents (S&NSI)
40	(WMD –1.46, 95% CI –2.13 to –0.79) therapy significantly reduced proteinuria levels in
41	patients with IgAN. Steroid treatment significantly reduced the risk for end-stage renal
42	disease (ESRD) (relative risk [RR] 0.39, CI 0.19 to 0.79). The immunosuppressive therapy
43	group showed significant increases in gastrointestinal, hematological, dermatological, and
44	genitourinary side effects, as well as impaired glucose tolerance or diabetes. Hyperkalemia
45	was more common in the control group.
46	Conclusion: Immunosuppressive therapy can significantly reduce proteinuria and ESRD risk

46 **Conclusion:** Immunosuppressive therapy can significantly reduce proteinuria and ESRD risk

in patients with IgAN, but with a concomitant increase in adverse reactions. Therefore, careis required in the application of immunosuppressive agents in IgAN.

49

50 Introduction

- 51 IgA nephropathy (IgAN) is one of the most common primary glomerular diseases (1). A
- 52 systematic review demonstrated an overall population incidence of IgAN of 2.5/100000/year
- 53 (2). There is still no uniform standard of treatment for IgAN. The 2012 Kidney Disease:
- 54 Improving Global Outcomes (KDIGO) guidelines (3) for IgAN recommend treatment with a
- 55 renin-angiotensin system (RAS) blocker, such as angiotensin-converting enzyme inhibitors

56 (ACEIs) and angiotensin II receptor blockers (ARBs), in patients with proteinuria with

57 protein excretion > 1 g/day. Corticosteroid therapy can be considered in patients with

58 proteinuria > 1 g/day after 3–6 months of best supportive treatment and without renal failure.

- 59 Intensive immunosuppression is reserved for patients with crescents in more than half the
- 60 glomeruli and a rapid decline in renal function.

61 The publication of the Supportive versus Immunosuppressive Therapy of Progressive IgA

- 62 Nephropathy (STOP-IgAN) trial in 2015 and Therapeutic Evaluation of Steroids in IgA
- 63 Nephropathy Global (TESTING) trial in 2017 focused attention on the treatment of IgAN
- 64 with immunosuppressive agents. According to the results of these two large randomized
- 65 controlled trials (RCTs), there is still no clear evidence that immunosuppressive therapy can
- 66 improve the prognosis of IgAN. Therefore, we retrieved RCTs on immunosuppressive
- 67 therapy for IgAN, and performed a meta-analysis of the efficacy and safety of
- 68 immunosuppressive therapy in this disease.
- 69 Immunosuppressive agents were divided into three subgroups for this meta-analysis: steroids,

70	non-steroidal immunosuppressive (NSI) agents, and steroids combined with non-steroidal
71	immunosuppressive (S&NSI) agents. Their efficacy and safety were compared relative to
72	controls for the treatment of IgAN.
73	This meta-analysis was performed in accordance with the recommendations of the Cochrane
74	handbook for systematic reviews of interventions (4) and is reported in compliance with the
75	Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement
76	guidelines (5). The protocol and registration information are available at
77	http://www.crd.york.ac.uk/PROSPERO/ (CRD42018096197).
78	
79	Inclusion and exclusion criteria
80	This investigation required studies to meet the following inclusion criteria: the study was an
81	RCT; the study compared different immunosuppressive agents versus
82	non-immunosuppressive agents/placebo/no treatment; and study subjects were adult or
83	pediatric patients with biopsy-proven IgAN.
84	Studies were rejected according to the following exclusion criteria: immunosuppressant not
85	given orally or intravenously; study subjects with secondary IgAN; no data available for this
86	study in the article, data included in other articles, or data repeated in other articles; and
87	article not in English.
88	
89	Data sources and searches
90	The MEDLINE, EMBASE, and Cochrane Library medical databases were searched to
91	retrieve relevant studies. Searches were performed in English, and each search retrieved
92	studies that were published between establishment of the database and May 2018.

93	A comprehensive search strategy was established to ensure the comprehensive and accurate
94	retrieval of studies. Specifically, the MEDLINE and Cochrane Library databases were
95	searched using the method described in the Cochrane Policy Manual for optimizing the
96	sensitivity and precision of the search process (6), whereas EMBASE was searched using a
97	sensitivity-specificity filter optimized by the McMaster/Hedges team (7). The following
98	search terms were used: IgAN, steroids, glucocorticoids, immunosuppressive agents,
99	angiotensin-converting enzyme inhibitors, angiotensin receptor antagonists, and placebo.
100	After completing the electronic query of the aforementioned databases, we also searched
101	relevant professional journals manually.
102	
103	Data extraction and quality assessment
104	Two investigators (ZZ and YY) independently selected studies from the retrieved literature
105	based on the inclusion criteria and extracted the data and analytical results of these studies. If
106	the two investigators had different opinions regarding the quality of a study, a third
107	investigator (SMJ) examined the disputed study and discussed it with the two aforementioned
108	reviewers. Data were included for consideration only if discussions allowed the three authors
109	to achieve consensus regarding the data.
110	If necessary, daily proteinuria was recalculated as g/day. Values for eGFR were based on the
111	data provided by the authors of the included studies.
112	We evaluated treatment-related changes based on changes between the pre-treatment and
113	post-treatment mean values and standard deviations (SDs) of the examined outcome
114	measures. As the standard error of the mean (SEM) was used in some studies, we calculated
115	the SD using the formula: SEM \times square root of sample size. In addition, 95% confidence

116	intervals (CIs) were used in some studies; we calculated the SD using the formula: ((upper
117	limit of 95% CI – lower limit of 95% CI)/(2 × 1.96)) × $\sqrt{(n)}$. Publication bias is defined as a
118	condition in which studies with positive results are more likely to be published. Assessment
119	of the risk of bias was performed following the Cochrane handbook.
120	
121	Risk of bias assessment
122	Two authors (ZZ and YY) independently assessed risk of bias using the Cochrane
123	risk-of-bias tool (8). They reviewed each trial and gave a score of high, low, or unclear risk of
124	bias according to the following criteria: random sequence generation, allocation concealment,
125	blinding of participants and personnel to the study protocol, blinding of outcome assessment,
126	incomplete outcome data, selective reporting, and other bias.
127	
127 128	Statistical analyses
	Statistical analyses To compare the effects of immunosuppressive agents and control treatment on proteinuria
128	•
128 129	To compare the effects of immunosuppressive agents and control treatment on proteinuria
128 129 130	To compare the effects of immunosuppressive agents and control treatment on proteinuria excretion and serum levels of creatinine, data on eGFR and end-stage renal disease (ESRD)
128 129 130 131	To compare the effects of immunosuppressive agents and control treatment on proteinuria excretion and serum levels of creatinine, data on eGFR and end-stage renal disease (ESRD) were extracted for meta-analyses. Subgroup analyses were performed for each outcome based
128 129 130 131 132	To compare the effects of immunosuppressive agents and control treatment on proteinuria excretion and serum levels of creatinine, data on eGFR and end-stage renal disease (ESRD) were extracted for meta-analyses. Subgroup analyses were performed for each outcome based on the type of immunosuppressive agent.
128 129 130 131 132 133	To compare the effects of immunosuppressive agents and control treatment on proteinuria excretion and serum levels of creatinine, data on eGFR and end-stage renal disease (ESRD) were extracted for meta-analyses. Subgroup analyses were performed for each outcome based on the type of immunosuppressive agent. For continuous outcomes, the differences in means and the 95% CI in mean change between
128 129 130 131 132 133 134	To compare the effects of immunosuppressive agents and control treatment on proteinuria excretion and serum levels of creatinine, data on eGFR and end-stage renal disease (ESRD) were extracted for meta-analyses. Subgroup analyses were performed for each outcome based on the type of immunosuppressive agent. For continuous outcomes, the differences in means and the 95% CI in mean change between baseline and end of treatment value were calculated for individual trials, and the weighted
 128 129 130 131 132 133 134 135 	To compare the effects of immunosuppressive agents and control treatment on proteinuria excretion and serum levels of creatinine, data on eGFR and end-stage renal disease (ESRD) were extracted for meta-analyses. Subgroup analyses were performed for each outcome based on the type of immunosuppressive agent. For continuous outcomes, the differences in means and the 95% CI in mean change between baseline and end of treatment value were calculated for individual trials, and the weighted mean difference (WMD) was used as a summary estimator. Dichotomous outcome data from

139	was taken to indicate statistical significance. The fixed-effects and random-effects models
140	were used for the meta-analysis of each indicator. Analyses were performed using Review
141	Manager 5.2 (RevMan; Cochrane Collaboration, Oxford, UK).
142	
143	Trial sequential analyses
144	To evaluate whether the present meta-analysis had a sufficient sample size to reach firm
145	conclusions about the effects of interventions, we performed trial sequential analyses (TSAs)
146	for outcomes, which involves a cumulative meta-analysis to create a Z curve of the
147	summarized observed effect (the cumulative number of included patients and events) and the
148	monitoring boundaries for benefit and harm and estimate the optimal sample size (9). When
149	the cumulative z curve crosses the trial sequential monitoring boundary, a sufficient level of
150	evidence for the anticipated intervention effect may have been reached. If the z curve crosses
151	none of the boundaries and the required information size has not been reached, there is
152	insufficient evidence to reach a conclusion. These analyses were performed using the
153	software TSA version 0.9 Beta (Copenhagen Trial Unit, Copenhagen, Denmark).
154	
155	Basic information regarding the included studies
156	After performing electronic and manual searches, 4,016 potentially relevant papers were
157	obtained. After removing duplicated papers, 2,639 papers remained. After browsing the titles
158	and abstracts, 53 papers were selected. After reading the entire text of these 53 papers, 24

- 159 papers were excluded, and 29 papers describing 25 trials with a total of 1957 patients were
- 160 ultimately included. The literature selection process is illustrated in Figure 1, and detailed
- 161 information regarding the examined studies is provided in Table 1 (10-38).

162

163 Fig. 1. Results of systematic literature search on immunosuppressive treatment for

164 IgAN.

Table 1. Characteristics of RCTs included in the study

Study	Patient	Sample size	Intervention (treatment)	Intervention (control)	Follow-up
Ballardie 2002	18 to 54 years	38(19/19)	Prednisolone 40mg/d (reduced to 10 mg/d by 2 year) + cyclophosphamide 1.5 mg/kg/day (adjusted down to the nearest 50 mg)	no immunosuppression	24M
Cheng 2015	18-55 years old, hypertension	84(42/42)	leflunomide $20 \text{mg/d} + \text{Valsartan}$	Valsartan	24M
	under control, urinary proteins				
	$0.5\mathchar`-3.5\mbox{ g/24h}$, $Cr<\!\!265.2\ \mu mol/L$				
Cruzado 2011	18-70 years old, eGFR 30-60ml/min/1.73m ² , proteinuria >1g/d; BP>140/90mmHg with proteinuria 0.3-1g/d	23(14/9)	SRL 1mg/d (initial) +enalapril (or ACEI) +atorvastatin (or other statin)	Enalapril (or ACEI) +atorvastatin (or other statin)	12M
Frisch 2005	18–75 years old, protein>1g/d	32(17/15)	MMF 1000 mg bid +ACEI/ARB	Placebo + ACEI/ARB	12M
Harmankaya 2002	13–63 years, mean Ccr 89.2 ± 10.2 ml/min	43(21/22)	Prednisolone 40mg/day + azathioprine 100mg/day	no specific treatment	60M
Hirai 2017	urinary protein excretion > 0.5 g/day, age > 16 years	42(21/21)	MZR 150 mg once daily orally in the morning for 12 months + Standard treatment	Standard treatment	36M
Hogg 2015	7-70 years old; UPCR > 0.6 g/g (males) or>0.8 g/g (females); eGFR>50 mL/min/1.73 m2 (or>40 mL/min/1.73 m2 in those already receiving ACE or ARB).	52(25/27)	MMF 25 to 36 mg/kg/d (Max dose of 1 g/d) +lisinopril	lisinopril or placebo 25 to 36 mg/kg/d (Max dose of 1 g/d)	12M
Julian 1993	Ccr>25 ml/min/1.73 m ²	35(17/18)	prednisone	no placebo	12M

Yoshikawa 1999ª	<15 Years old	78(40/38)	Prednisolone 2 mg/kg/d in three divided doses for a total dose of not more than 80 mg/d for 4w, followed by 2 mg/kg/2d, given as a single dose in the morning of every other day for 4w, 1.5 mg/kg/2d for 4w, and 1 mg/kg/2d for 21m + azathioprine 2 mg/kg/d in a single morning dose for 24m +heparin-warfarin + dipyridamole	heparin-warfarin + dipyridamole	24M
Katafuchi 2003	≤60 years old, Cr<1.5mg/dl(132.6umol/L)	90(43/47)	prednisolone orally: 20 mg/d for 1 month, followed by 15 mg/d for 1 month, 10 mg/d for 1 month, 7.5 mg/d for 3 months, and 5 mg/d for 18 months + dipyridamole 150–300 mg/day	Dipyridamole 150–300 mg/day	60M
Kim 2013	18-70 years old , serum creatinine $\leq 1.5 \text{ mg/dL}$ or eGFR ≥ 45 ml/min/1.73 m ² , UACR 0.3-3g/g creatinine, BP<130/80mmHg	40(20/20)	Tacrolimus 0.1 mg/kg/day, 8weeks (maintain trough levels at 5–10 ng/ml) $\rightarrow 0.05$ mg/kg/day, 16weeks (maintain the trough level in 5–10 ng/ml) +RASi(9/20)	RASi(11/20), placebo	16W
Koike 2008	NA	48(24/24)	initially treated with 0.4 mg/kg/day of prednisolone (20–30 mg/day) for the first 4 weeks, and the dose was gradually reduced to 10–20 mg on alternate days for the next 12 months, and then 5–10 mg on alternate days for a subsequent year	Dipyridamole or dilazep hydrochloride	24M
Pozzi 1999 ^b	15–69 years old, urinary protein excretion of 1.0–3.5 g/d, Cr≤133 umol/L (1.5 mg/dL)	86(43/43)	methylprednisolone intravenously for 3 consecutive days; this course was repeated 2 months and 4 months later. Oral prednisone	Supportive treatment	60M

			was given at a dose of 0.5 mg/kg on alternate days for 6 months.		
Lai 1986	14-42 years old, IgAN & NS	34(17/17)	prednisone/prednisolone 40-60mg/d, reduce by half after 8 weeks	Supportive therapy	38M
Lv 2009	18-65 years old, urinary proteins 1-5 g/d, eGFR>30ml/min	63(33/30)	prednisone: 0.8-1.0 mg/kg/day for 8 weeks, tapered by 5-10 mg every 2 weeks + cilazapril	cilazapril	48M
Lv 2017	proteinuria> 1 g/d, eGFR: 20 -120ml/min/1.73m ²	262(136/126)	oral methylprednisolone (0.6-0.8mg/kg/d; maximum, 48mg/d)	placebo	60M
Maes 2004	>18 years old, inulin clearance 20-70 mL/min/1.73m ² , proteinuria >1 g/day, BP>140/90mmHg,	34(21/13)	MMF: 2g/d + ACEI	Placebo (identical lactose-containing capsules)	36M
Manno 2009	16-70 years old, proteinuria>1g/d, eGFR≥50ml/min/1.73m ²	97(48/49)	prednisone: 1.0 mg/kg/day(Max: 75 mg/day) for 2 months, tapered by 0.2 mg/kg/day every month ramipril	ramipril	5Y
Rauen 2015	proteinuria>0.75g/d after 6 months support treatment	162(82/80)	Supportive Care (100%) + Immunosuppression	RASi (77/80)	36M
Shoji 2000	15-55 years old, proteinuria less than 1.5 g/d, serum creatinine level less than 1.5 mg/dL	19(11/8)	prednisolone 0.8 mg/kg of body weight; this was gradually reduced to a daily dose of 0.4 mg/kg of body weight during the first month of therapy, and then tapered to 10 mg very other day for the remainder of the 1 year of therapy	Dipyridamole 300 mg/day	12M
Tang 2005 ^c	urinary proteins>1g/d, BP<125/85mmHg, Cr<300umol/L(3.4mg/dl)	40(20/20)	MMF 2 g/day (weight≥60kg), 1.5g/day(weight<60kg) +ACEI/ARB(16:4)	ACEI/ARB (14:6)	72W

Walker 1990	24h pro>1.0g/d, 120umol/L <cr<200umol l<br="">one or more</cr<200umol>	52(25/27)	Cyclophosphamide (1-2 mg/kg/24h - maximum of 100 mg/24h and ajusted according to peripheral white cell counts) +dipyridamole +warfarin	no treatment	2Y
Wu 2016	18–55 years, proteinuria of 0.5–3.5 g/d, serum creatinine <265 μmol/L, blood pressure between 90/60 and 130/80 mmHg	399(100/299)	Leflunomide 20 mg/d + telmisartan + clopidogrel placebo	Telmisartan + Leflunomide placebo + clopidogrel placebo & Telmisartan +clopidogrel + Leflunomide placebo & Telmisartan + clopidogrel	24w
Xie 2011	14-70 years old, urinary protein excretion: 0.5 to 3.5 g/24 h, Cr <353.6 umol/L	64(34/30)	MZR 200mg/d(weight<50kg), 250mg/d(weight>50kg), 150mg/d(Cr>176.8 umol/L) +losartan	Losartan	12M
Woo 1987		48(27/21)	cyclophosphamide 1.5 mg/kg per day+ dipyridamole + warfarin	No treatment	36M

166 Abbreviations: NA: not applicable; MMF: mycophenolate mofetil; SRL: sirolimus; MZR: mizoribine.

¹⁶⁷ ^aKamei 2011 and Yoshikawa 1999 describe the same trial, but the available data provided by the articles are different. Here, only the data of Yoshikawa

168 1999 are listed.

- ¹⁶⁹ ^bLocatelli 2001 and Pozzi 2004 were follow-up studies of Pozzi 1999, and only the data of Pozzi 1999 are listed here.
- ¹⁷⁰ ^cTang 2010 was a follow-up study of Tang 2005, and only the data of Tang 2005 are listed here.

171 Quality of trials

172	By current standards, reporting of key indicators of trial quality was suboptimal. Some
173	studies in particular provided few details on the process of randomization and concealment of
174	allocation. Only six studies were double-blinded trials. Seven studies used an open-label
175	design. The bias and overall risk diagrams of the included studies are presented in Figure 2.
176	
177	Fig. 2. Risk of bias graph.
178	
179	Effects on proteinuria
180	The difference in the means of urinary protein excretion between end of treatment and
181	baseline was significantly lower in the steroid group than in controls (five trials (17, 21-23,
182	31), 222 patients; WMD –0.51, 95% CI –0.73 to –0.28, with a fixed-effects model; WMD
183	-0.70, 95% CI -1.2 to -0.20 , with a random-effects model; I ² =58%; Fig. 3). After removing
184	Lai (22), heterogeneity I^2 changed to 0.
185	Patients receiving NSI alone showed a more significant reduction of urinary protein excretion
186	after treatment compared to controls (seven trials (12, 26, 32, 34-37), 660 patients, WMD
187	-0.43, 95% CI -0.55 to 0.31, with a fixed-effects model; WMD -0. 43, 95% CI -0.55 to
188	-0.31, with a random-effects model; I ² =0; Fig. 3).
189	With the S&NSI treatment approach, patients had a more significant reduction of urinary
190	protein excretion after treatment compared to controls (three trials (10, 30, 38), 278 patients,
191	WMD -0.16 , 95% CI -1.8 to -1.4 , I ² =83%, with a fixed-effects model; WMD -1.42 , 95% CI
192	-2.18 to -0.66, I ² =89%, with a random-effects model; Fig. 3). After removing Yoshikawa
193	(38), heterogeneity I^2 changed to 0.

- 194 TSAs of steroids, NSI, and S&NSI all indicated that the cumulative z curve crossed both the
- 195 conventional boundary and the trial sequential monitoring boundary (Fig. 4).
- 196
- 197 Fig. 3. Effects of immunosuppressive agents on proteinuria in patients with IgAN.
- 198 CI, confidence interval.
- 199
- 200 Fig. 4. Trial sequential analyses of proteinuria.
- a) Five comparisons between steroids and controls.
- b) Seven comparisons between NSI and controls.
- 203 c) Three comparisons between S&NSI and controls.

204 Effects on renal function and renal survival

205	Creatinine

- 206 There were no statistically significant differences in creatinine changes between baseline and
- 207 end of treatment between immunosuppressive treatment and control groups (nine trials (11,
- 208 13, 17, 19, 20, 22, 26, 31, 34), 420 patients, WMD -0.03, 95% CI -0.11 to 0.15, with a
- fixed-effects model; WMD –0.03, 95% CI –0.11 to 0.05, with a random-effects model;
- 210 I²=0%; Fig. 5).
- 211 TSAs of nine comparisons illustrated that the cumulative z curve did not cross the
- 212 conventional boundary or the line of required information size, indicating that the evidence
- 213 was insufficient. Therefore, further trials are required.
- 214
- Fig. 5. Effects of immunosuppressive agents on creatinine levels in patients with IgAN.
- 216 CI, confidence interval.
- 217
- 218 eGFR
- 219 The differences in the means of eGFR between end of treatment and baseline were
- significantly higher in the NSI group than in controls (five trials (16, 20, 25, 36, 37), 817
- 221 patients; WMD 5.17, 95% CI 3.18 to 7.16, with a fixed-effects model; WMD 5.17, 95% CI
- 3.18 to 7.16, with a random-effects model; $I^2=0\%$; Fig. 6). TSAs of five comparisons
- indicated that the cumulative z curve crossed the conventional boundary, but did not cross the
- trial sequential monitoring boundary.
- 225 However, when the steroid and S&NSI groups were added, there were no significant
- 226 differences in eGFR changes in immunosuppressive treatment compared to controls (seven

- trials (16, 20, 25, 30, 31, 36, 37), 998 patients, WMD 0.26, 95% CI –0.03 to 0.56, with a
- fixed-effects model; WMD 2.52, 95% CI –0.49 to 0.53, with a random-effects model;
- $I^2=76\%$; Fig. 6). TSAs of seven comparisons indicated that the cumulative z curve did not
- 230 cross the conventional boundary or the line of required information size.
- 231
- Fig. 6. Effects of immunosuppressive agents on estimated glomerular filtration rate in
- 233 patients with IgAN.
- 234 CI, confidence interval.

235

236 ESRD

- 237 There was a lower risk of reaching ESRD in the immunosuppressive treatment group than in
- controls (12 trials (13, 17-19, 24-28, 30, 33, 34), 1031 patients; RR 0.51, 95% CI 0.33 to 0.08,
- with a fixed-effects model; RR 0.55, 95% CI 0.33–0.90, with a random-effects model; I²=8;
- Fig. 6). These analyses were dominated by the steroid treatment group (Fig. 7).
- 241 TSAs of steroids indicated that the cumulative z curve crossed both the conventional
- boundary and the trial sequential monitoring boundary.
- 243
- Fig. 7. Effects of immunosuppressive agents on end-stage renal disease in patients with
- 245 IgAN.
- 246 CI, confidence interval; RR, relative risk.

247

248 Adverse events of treatment

A total of 20 articles reported adverse events during the observation period. The types of

- adverse events varied widely, and included infection, cardiovascular disease, respiratory
- disease, hepatotoxicity, and many others; the 12 most commonly reported are listed in Table
- 252 2. As the number of infections reported in Rauen (30) was greater than the total number, RR
- 253 could not be calculated for infections. TSAs of infection, gastrointestinal disease,
- 254 hematological disease, dermatological disease, impaired glucose tolerance or diabetes
- 255 mellitus, and hyperkalemia indicated that the cumulative z curve crossed the conventional
- boundary but did not cross the trial sequential monitoring boundary. In addition, TSAs of the
- 257 other six diseases indicated that the cumulative z curve did not cross the conventional
- 258 boundary or the line of required information size.

Main adverse events	No. of studies	Immunosu ppressive agent	Control group	RR (95	5% CI)	P v	alue
		group		FE	RE	FE	RE
Gastrointestinal	11	38/431	8/606	2.53 [1.15, 5.55]	2.42[1.07, 5.45]	0.02	0.03
Hematologic	9	16/373	6/551	2.17 [1.00, 4.68]	2.0[0.84, 4.77]	0.05	0.12
Dermatologic	7	16/273	3/463	4.09 [1.57, 10.66]	3.88[1.41, 10.64]	0.004	0.009
Hepatotoxicity	7	21/455	19/636	1.26 [0.72, 2.22]	1.26[0.70, 2.24]	0.42	0.44
Respiratory	6	9/371	12/544	0.81 [0.37, 1.74]	0.82[0.37, 1.82]	0.58	0.62
Infection	6	189/373	114/547	Not estimable	Not estimable	Not estimable	Not estimable
Impaired glucose tolerance or diabetes mellitus	5	15/326	5/316	2.61 [1.04, 6.55]	2.16[0.77, 6.05]	0.04	0.14
BP↑	4	14/193	16/389	0.96 [0.52, 1.79]	0.97[0.43, 2.22]	0.9	0.95
Malignant	4	4/167	2/157	1.40 [0.39, 4.98]	1.33[0.30, 5.93]	0.61	0.71
Musculoskeletal	3	5/238	3/226	1.47 [0.44, 4.93]	1.37[0.40, 4.71]	0.53	0.62
Hyperkalemia	3	2/156	11/350	0.23 [0.07, 0.71]	0.3[0.05, 1.98]	0.01	0.21
Genitourinary	3	6/59	0/56	4.59 [0.85, 24.85]	4.07[0.71, 23.39]	0.08	0.12

259 Table 2. Main adverse events reported in the included RCTs

282 RR: Relative Risk; CI: Confidence Intervals; FE: Fixed Effect Model; RE: Random Effect Model

283 Conclusions

284	Farnsworth (39) and Barnett (40) first used corticotropin between 1949 and 1950 for the
285	treatment of lipoid nephrosis, which is now known as minimal change disease or childhood
286	nephrotic syndrome. Chasis et al. (41) used nitrogen mustard to treat chronic
287	glomerulonephritis and achieved good initial results, thus pioneering the use of
288	immunosuppressive agents for the treatment of nephropathy. Immunosuppressive agents have
289	been used for the treatment of kidney diseases for about 70 years. However, the outcomes
290	immunosuppressive therapy for IgAN are controversial. Therefore, we included 29 reports
291	published between 1986 and 2017 in a meta-analysis of the efficacy and safety of
292	immunosuppressive treatment and control treatment in IgAN.
293	
294	Alleviation of proteinuria
295	Previous studies have suggested that treatment with steroids or alkylating agents can
295 296	Previous studies have suggested that treatment with steroids or alkylating agents can significantly reduce proteinuria levels in patients with IgAN (42-44). Our meta-analysis also
296	significantly reduce proteinuria levels in patients with IgAN (42-44). Our meta-analysis also
296 297	significantly reduce proteinuria levels in patients with IgAN (42-44). Our meta-analysis also showed that immunosuppressive agents can significantly reduce the level of proteinuria. The
296 297 298	significantly reduce proteinuria levels in patients with IgAN (42-44). Our meta-analysis also showed that immunosuppressive agents can significantly reduce the level of proteinuria. The levels of proteinuria in groups treated with steroids, NSI, or S&NSI were significantly
296 297 298 299	significantly reduce proteinuria levels in patients with IgAN (42-44). Our meta-analysis also showed that immunosuppressive agents can significantly reduce the level of proteinuria. The levels of proteinuria in groups treated with steroids, NSI, or S&NSI were significantly reduced compared to controls. The heterogeneity of the steroid group was mainly derived
296 297 298 299 300	significantly reduce proteinuria levels in patients with IgAN (42-44). Our meta-analysis also showed that immunosuppressive agents can significantly reduce the level of proteinuria. The levels of proteinuria in groups treated with steroids, NSI, or S&NSI were significantly reduced compared to controls. The heterogeneity of the steroid group was mainly derived from Lai (22), in which the inclusion criterion included nephrotic syndrome. In addition, the
296 297 298 299 300 301	significantly reduce proteinuria levels in patients with IgAN (42-44). Our meta-analysis also showed that immunosuppressive agents can significantly reduce the level of proteinuria. The levels of proteinuria in groups treated with steroids, NSI, or S&NSI were significantly reduced compared to controls. The heterogeneity of the steroid group was mainly derived from Lai (22), in which the inclusion criterion included nephrotic syndrome. In addition, the heterogeneity of the S&NSI group was mainly derived from Yoshikawa (38), in which the
296 297 298 299 300 301 302	significantly reduce proteinuria levels in patients with IgAN (42-44). Our meta-analysis also showed that immunosuppressive agents can significantly reduce the level of proteinuria. The levels of proteinuria in groups treated with steroids, NSI, or S&NSI were significantly reduced compared to controls. The heterogeneity of the steroid group was mainly derived from Lai (22), in which the inclusion criterion included nephrotic syndrome. In addition, the heterogeneity of the S&NSI group was mainly derived from Yoshikawa (38), in which the inclusion criterion included age < 15 years. Sequential analyses showed that

306 Reducing the risk for ESRD

307	Our results suggest that non-steroidal immunosuppressive therapy may have a positive effect
308	on eGFR. However, sequential analyses suggested that this is still inconclusive and further
309	studies are required for confirmation. In addition, the treatment group showed a greater
310	reduction in the risk for ESRD than the control group, and this effect was mainly due to the
311	steroid treatment group. Sequential analyses showed that steroids could reduce the risk for
312	ESRD without the need for a larger sample size. A relevant study (43) also suggested that
313	high-dose short-course steroid therapy has a significant protective effect on renal function,
314	while a low-dose long-course of steroids does not. Further studies are required to determine
315	whether NSI or S&NSI can reduce the risk for ESRD.
316	
317	More adverse events
318	The use of immunosuppressive agents is often accompanied by side effects. The
318 319	The use of immunosuppressive agents is often accompanied by side effects. The immunosuppressive therapy group showed significant increases in gastrointestinal,
319	immunosuppressive therapy group showed significant increases in gastrointestinal,
319 320	immunosuppressive therapy group showed significant increases in gastrointestinal, hematological, dermatological, and genitourinary side effects, as well as impaired glucose
319320321	immunosuppressive therapy group showed significant increases in gastrointestinal, hematological, dermatological, and genitourinary side effects, as well as impaired glucose tolerance or diabetes in this meta-analysis. As the number of infection events reported in the
319320321322	immunosuppressive therapy group showed significant increases in gastrointestinal, hematological, dermatological, and genitourinary side effects, as well as impaired glucose tolerance or diabetes in this meta-analysis. As the number of infection events reported in the STOP study was too high, even exceeding the total number of patients, it was not possible to
 319 320 321 322 323 	immunosuppressive therapy group showed significant increases in gastrointestinal, hematological, dermatological, and genitourinary side effects, as well as impaired glucose tolerance or diabetes in this meta-analysis. As the number of infection events reported in the STOP study was too high, even exceeding the total number of patients, it was not possible to calculate the RR value. However, across all studies, the proportion of infections reported was
 319 320 321 322 323 324 	immunosuppressive therapy group showed significant increases in gastrointestinal, hematological, dermatological, and genitourinary side effects, as well as impaired glucose tolerance or diabetes in this meta-analysis. As the number of infection events reported in the STOP study was too high, even exceeding the total number of patients, it was not possible to calculate the RR value. However, across all studies, the proportion of infections reported was still higher in the immunosuppressive therapy group than in controls. In addition, the
 319 320 321 322 323 324 325 	immunosuppressive therapy group showed significant increases in gastrointestinal, hematological, dermatological, and genitourinary side effects, as well as impaired glucose tolerance or diabetes in this meta-analysis. As the number of infection events reported in the STOP study was too high, even exceeding the total number of patients, it was not possible to calculate the RR value. However, across all studies, the proportion of infections reported was still higher in the immunosuppressive therapy group than in controls. In addition, the TESTING study had to be discontinued because of the excessive number of serious adverse

329 should be verified by further experiments.

2	2	Δ
Э	Э	υ

331 Strengths and limitations

332	Our study had several limitations that should be taken into consideration. The results of bias
333	analyses indicated that nearly half of the studies did not explicitly report the methods used for
334	randomization. In addition, few studies used blinded methodologies. The quality of the
335	reports in the literature is unsatisfactory. In addition, there were some differences in the
336	inclusion criteria between each study, such as age, proteinuria level, and renal function, and
337	these confounding factors led to a high degree of data heterogeneity.
338	
339	In conclusion, immunosuppressants significantly reduce proteinuria and decrease the risk for
340	ESRD but also increase the risk for serious adverse reactions. Therefore, if it is necessary to
341	use immunosuppressive agents, clinicians should evaluate the patient on an individual basis
342	according to their own conditions before treatment. In the course of using
343	immunosuppressive agents, close observation should be carried out to prevent and control
344	complications. In addition, further well-designed and high-quality RCTs are needed to
345	explore the applicability and optimal methods of immunosuppressant treatment.
346	
347	
348	The English in this document has been checked by at least two professional editors, both
349	native speakers of English. For a certificate, please see:

350 http://www.textcheck.com/certificate/gC26x1

1. Wyatt RJ, Julian BA. IgA nephropathy. N Engl J Med. 2013;368(25):2402-14.

2. McGrogan A, Franssen CF, de Vries CS. The incidence of primary glomerulonephritis worldwide: a systematic review of the literature. Nephrol Dial Transplant. 2011;26(2):414-30.

3. Cattran DC, Feehally J, Cook HT, Liu ZH, Fervenza FC, Mezzano SA, et al. Kidney disease : Improving global outcomes (KDIGO) glomerulonephritis work group. KDIGO clinical practice guideline for glomerulonephritis. Kidney International Supplements. 2012;2(2):139-274.

4. J.P.T. Higgins G. Cochrane Handbook for systematic reviews of interventions, version 5.1.0, 2011. Available from: <u>http://www.cochraneorg/handbook</u>.

5. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339.

Higgins J GS. Cochrane handbook for systematic reviews of interventions version 5.0. 2 [updated September 2009]. The Cochrane Collaboration, 2009.
 2010;Available from www.cochrane-handbook.org; 2010.

7. Wong SS, Wilczynski NL, Haynes RB. Developing optimal search strategies for detecting clinically sound treatment studies in EMBASE. J Med Libr Assoc. 2006;94(1):41-7.

8. Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. Bmj. 2011;343:d5928.

9. Wetterslev J, Thorlund K, Brok J, Gluud C. Trial sequential analysis may establish when firm evidence is reached in cumulative meta-analysis. Journal of clinical epidemiology. 2008;61(1):64-75.

10. Ballardie FW, Roberts ISD. Controlled prospective trial of prednisolone and cytotoxics in progressive IgA nephropathy. Journal of the American Society of Nephrology. 2002;13(1):142-8.

11. Cheng G, Liu D, Margetts P, Liu L, Zhao Z, Liu Z, et al. Valsartan combined with clopidogrel and/or leflunomide for the treatment of progressive immunoglobulin A nephropathy. Nephrology (Carlton). 2015;20(2):77-84.

12. Cruzado JM, Poveda R, Ibernón M, Díaz M, Fulladosa X, Carrera M, et al. Low-dose sirolimus combined with angiotensin-converting enzyme inhibitor and statin stabilizes renal function and reduces glomerular proliferation in poor prognosis IgA nephropathy. Nephrology Dialysis Transplantation. 2011;26(11):3596-602.

13. Frisch G, Lin J, Rosenstock J, Markowitz G, D'Agati V, Radhakrishnan J, et al. Mycophenolate mofetil (MMF) vs placebo in patients with moderately advanced IgA nephropathy: a double-blind randomized controlled trial. Nephrology, dialysis, transplantation [Internet]. 2005; 20(10):[2139-45 pp.]. Available from:

http://cochranelibrary-wiley.com/o/cochrane/clcentral/articles/999/CN-00528999/fra me.html.

14. Harmankaya O, Ozturk Y, Basturk T, Obek A, Kilicarslan I. Efficacy of

immunosuppressive therapy in IgA nephropathy presenting with isolated hematuria. Int Urol Nephrol. 2002;33(1):167-71.

15. Hirai K, Ookawara S, Kitano T, Miyazawa H, Ito K, Ueda Y, et al. Efficacy and safety of adding mizoribine to standard treatment in patients with immunoglobulin A nephropathy: A randomized controlled trial. Kidney Res Clin Pract. 2017;36(2):159-66.

16. Hogg RJ, Bay RC, Jennette JC, Sibley R, Kumar S, Fervenza FC, et al. Randomized Controlled Trial of Mycophenolate Mofetil in Children, Adolescents, and Adults With IgA Nephropathy. American Journal of Kidney Diseases. 2015;66(5):783-91.

17. Julian BA, Barker C. Alternate-day prednisone therapy in IgA nephropathy. Preliminary analysis of a prospective, randomized, controlled trial. Contrib Nephrol. 1993;104:198-206.

18. Kamei K, Nakanishi K, Ito S, Saito M, Sako M, Ishikura K, et al. Long-term results of a randomized controlled trial in childhood IgA nephropathy. Clinical Journal of the American Society of Nephrology. 2011;6(6):1301-7.

19. Katafuchi R, Ikeda K, Mizumasa T, Tanaka H, Ando T, Yanase T, et al. Controlled, prospective trial of steroid treatment in IgA nephropathy: a limitation of low-dose prednisolone therapy. Am J Kidney Dis. 2003;41(5):972-83.

20. Kim YC, Chin HJ, Koo HS, Kim S. Tacrolimus decreases albuminuria in patients with IgA nephropathy and normal blood pressure: a double-blind randomized controlled trial of efficacy of tacrolimus on IgA nephropathy. PLoS One. 2013;8(8):e71545.

21. Koike M, Takei T, Uchida K, Honda K, Moriyama T, Horita S, et al. Clinical assessment of low-dose steroid therapy for patients with IgA nephropathy: a prospective study in a single center. Clin Exp Nephrol. 2008;12(4):250-5.

22. Lai KN, Lai FM, Ho CP, Chan KW. Corticosteroid therapy in IgA nephropathy with nephrotic sydrome: A long-term controlled trial. Clinical Nephrology. 1986;26(4):174-80.

23. Locatelli F, Pozzi C, Del Vecchio L, Bolasco PG, Fogazzi GB, Andrulli S, et al. Role of proteinuria reduction in the progression of IgA nephropathy. Ren Fail. 2001;23(3-4):495-505.

24. Lv J, Zhang H, Chen Y, Li G, Jiang L, Singh AK, et al. Combination therapy of prednisone and ACE inhibitor versus ACE-inhibitor therapy alone in patients with IgA nephropathy: a randomized controlled trial. Am J Kidney Dis. 2009;53(1):26-32.

25. Lv J, Zhang H, Wong MG, Jardine MJ, Hladunewich M, Jha V, et al. Effect of Oral Methylprednisolone on Clinical Outcomes in Patients With IgA Nephropathy: The TESTING Randomized Clinical Trial. JAMA. 2017;318(5):432-42.

26. Maes BD, Oyen R, Claes K, Evenepoel P, Kuypers D, Vanwalleghem J, et al. Mycophenolate mofetil in IgA nephropathy: Results of a 3-year prospective placebo-controlled randomized study. Kidney International. 2004;65(5):1842-9.

27. Manno C, Torres DD, Rossini M, Pesce F, Schena FP. Randomized

controlled clinical trial of corticosteroids plus ACE-inhibitors with long-term follow-up in proteinuric IgA nephropathy. Nephrol Dial Transplant. 2009;24(12):3694-701.

28. Pozzi C, Andrulli S, Del Vecchio L, Melis P, Fogazzi GB, Altieri P, et al. Corticosteroid effectiveness in IgA nephropathy: long-term results of a randomized, controlled trial. J Am Soc Nephrol. 2004;15(1):157-63.

29. Pozzi C, Bolasco P, Fogazzi G, Andrulli S, Altieri P, Ponticelli C, et al. Corticosteroids in IgA nephropathy: A randomised controlled trial. Lancet. 1999;353(9156):883-7.

30. Rauen T, Eitner F, Fitzner C, Sommerer C, Zeier M, Otte B, et al. Intensive Supportive Care plus Immunosuppression in IgA Nephropathy. N Engl J Med. 2015;373(23):2225-36.

31. Shoji T, Nakanishi I, Suzuki A, Hayashi T, Togawa M, Okada N, et al. Early treatment with corticosteroids ameliorates proteinuria, proliferative lesions, and mesangial phenotypic modulation in adult diffuse proliferative IgA nephropathy. Am J Kidney Dis. 2000;35(2):194-201.

32. Tang S, Leung JC, Chan LY, Lui YH, Tang CS, Kan CH, et al. Mycophenolate mofetil alleviates persistent proteinuria in IgA nephropathy. Kidney international [Internet]. 2005; 68(2):[802-12 pp.]. Available from: http://cochranelibrary-wiley.com/o/cochrane/clcentral/articles/164/CN-00523164/fra me.html.

33. Tang SCW, Tang AWC, Wong SSH, Leung JCK, Ho YW, Lai KN. Long-term study of mycophenolate mofetil treatment in IgA nephropathy. Kidney International. 2010;77(6):543-9.

34. Walker RG, Yu SH, Owen JE, Kincaid-Smith P. The treatment of mesangial IgA nephropathy with cyclophosphamide, dipyridamole and warfarin: a two-year prospective trial. Clin Nephrol. 1990;34(3):103-7.

35. Woo KT, Edmondson RP, Yap HK, Wu AY, Chiang GS, Lee EJ, et al. Effects of triple therapy on the progression of mesangial proliferative glomerulonephritis. Clin Nephrol. 1987;27(2):56-64.

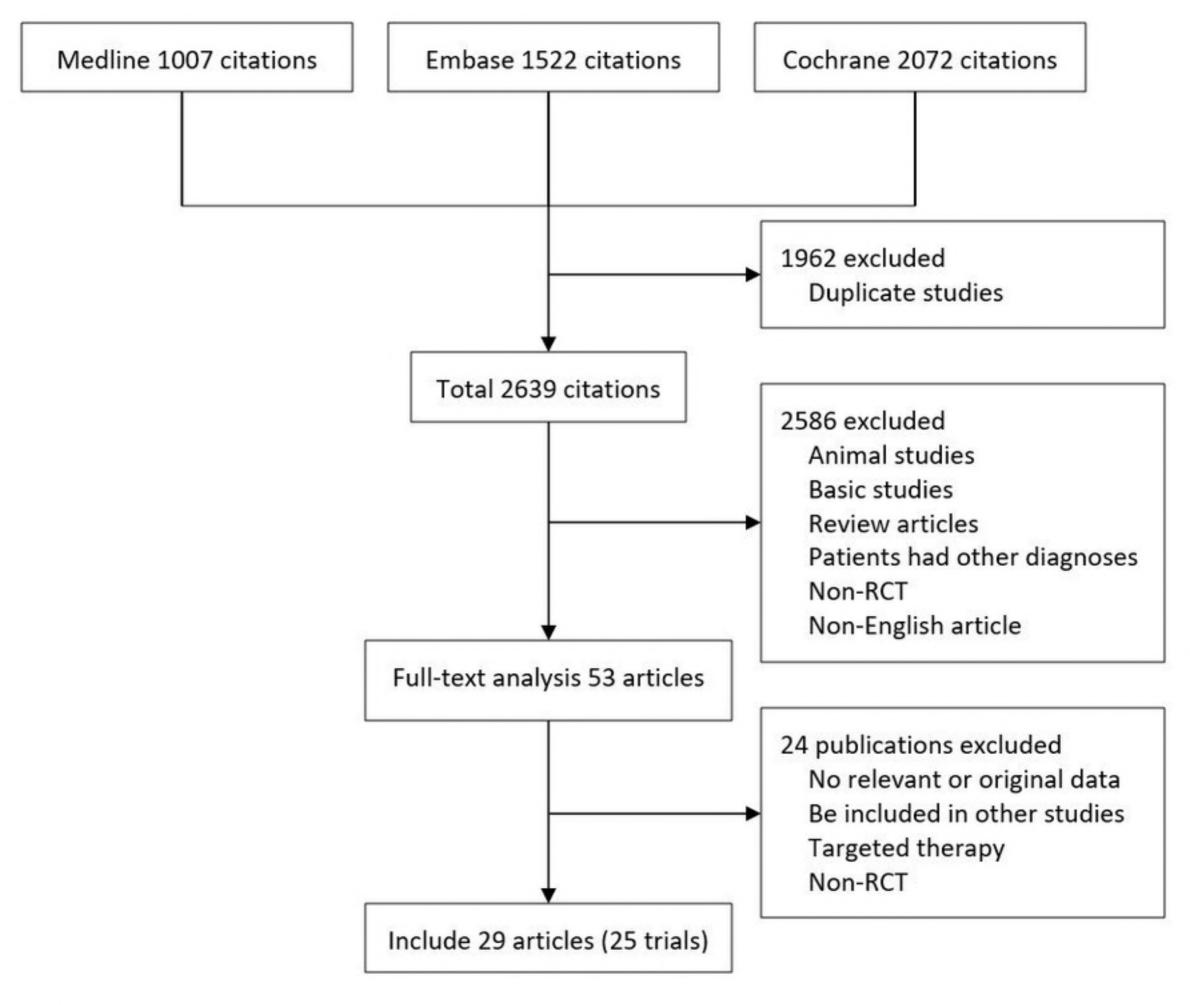
36. Wu J, Duan SW, Sun XF, Li WG, Wang YP, Liu WH, et al. Efficacy of Leflunomide, Telmisartan, and Clopidogrel for Immunoglobulin A Nephropathy: A Randomized Controlled Trial. Chin Med J (Engl). 2016;129(16):1894-903.

37. Xie Y, Huang S, Wang L, Miao L, Zhang A, Li Y, et al. Efficacy and safety of mizoribine combined with losartan in the treatment of IgA nephropathy: a multicenter, randomized, controlled study. American journal of the medical sciences [Internet]. 2011; 341(5):[367-72 pp.]. Available from:

http://cochranelibrary-wiley.com/o/cochrane/clcentral/articles/297/CN-00787297/fra me.html.

38. Yoshikawa N, Ito H, Sakai T, Takekoshi Y, Honda M, Awazu M, et al. A controlled trial of combined therapy for newly diagnosed severe childhood IgA nephropathy. Journal of the American Society of Nephrology. 1999;10(1):101-9.

39. Farnsworth EB. Metabolic changes associated with administration of adrenocorticotropin in the nephrotic syndrome. Proceedings of the Society for Experimental Biology and Medicine Society for Experimental Biology and Medicine (New York, NY). 1950;74(1):60-2.

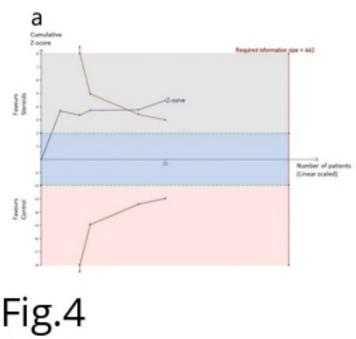

40. Barnett HL, Mc NH, Mc CW, Forman C, Rapoport M, Michie A, et al. The effects of ACTH and cortisone on the nephrotic syndrome. AMA American journal of diseases of children. 1950;80(3):519-20.

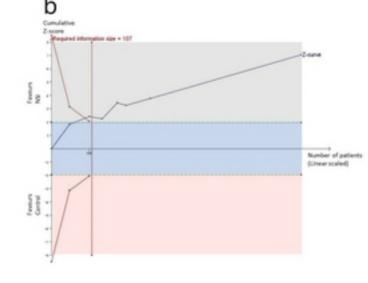
41. Chasis H, Goldring W, Baldwin DS. Effect of febrile plasma, typhoid vaccine and nitrogen mustard on renal manifestations of human glomerulonephritis. Proceedings of the Society for Experimental Biology and Medicine Society for Experimental Biology and Medicine (New York, NY). 1949;71(4):565-7.

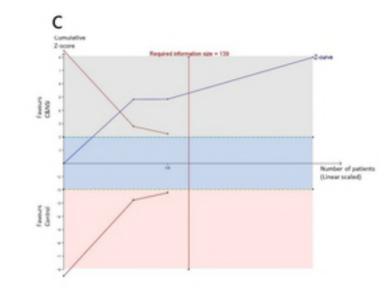
42. Zhou YH, Tang LG, Guo SL, Jin ZC, Wu MJ, Zang JJ, et al. Steroids in the treatment of IgA nephropathy to the improvement of renal survival: a systematic review and meta-analysis. PLoS One. 2011;6(4):e18788.

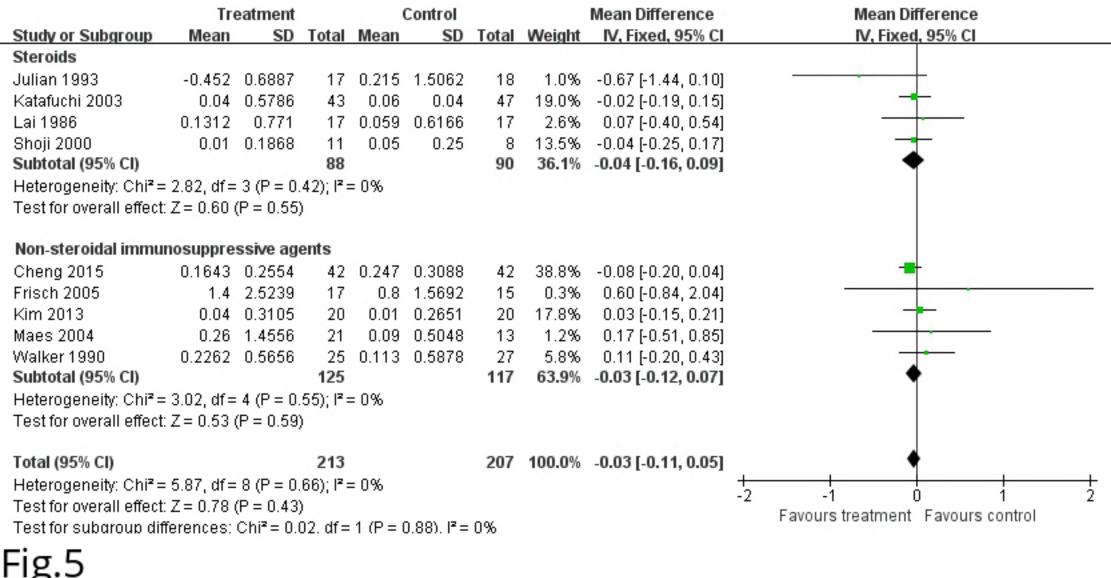
43. Lv J, Xu D, Perkovic V, Ma X, Johnson DW, Woodward M, et al. Corticosteroid therapy in IgA nephropathy. J Am Soc Nephrol. 2012;23(6):1108-16.

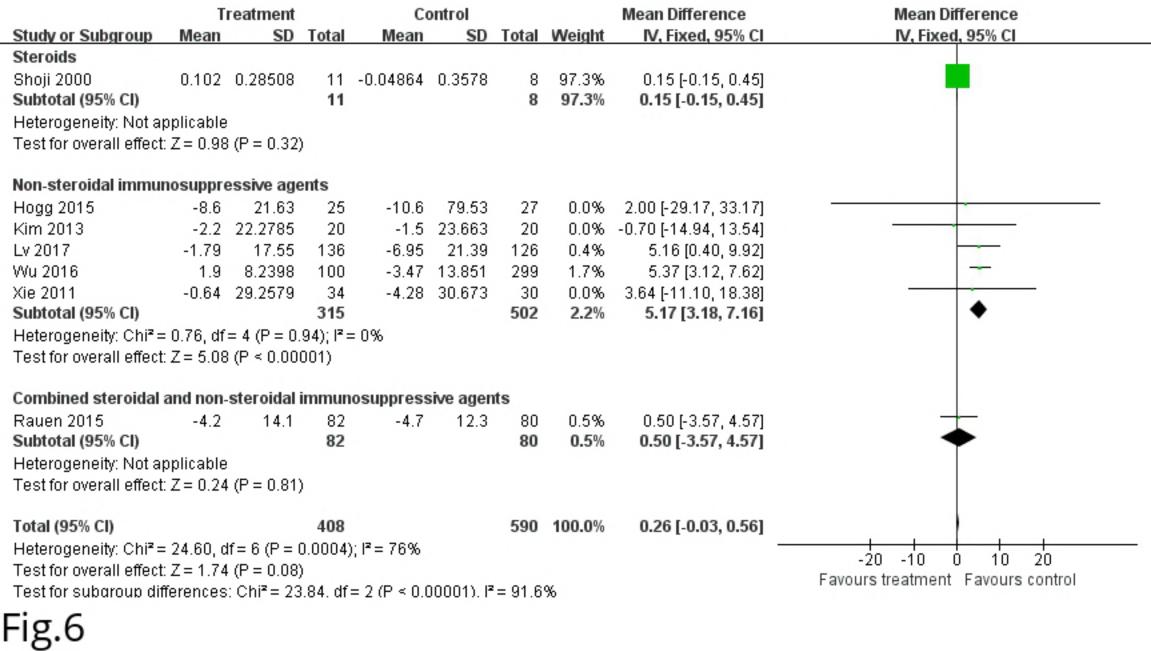
44. Cheng J, Zhang X, Zhang W, He Q, Tao X, Chen J. Efficacy and safety of glucocorticoids therapy for IgA nephropathy: a meta-analysis of randomized controlled trials. Am J Nephrol. 2009;30(4):315-22.


Fig.1


Yoshikawa 1999	Xie 2011	Wu 2016	W00 1987	Walker 1990	Tang 2010	Tang 2005	Shoji 2000	Rauen 2015	Pozzi 2004	Pozzi 1999	Manno 2009	Maes 2004	Lv 2017	Lv 2009	Locatelli 2001	Koike 2008	Kim 2013	Katafuchi 2003	Kamei 2011	Julian 1993	Hogg 2015	Hirai 2017	Harmankaya 2002	Frisch 2005	Cruzado 2011	Cheng 2015	Ballardie 2002	
•	ŝ	٠	?	•	۲	~	۲	٠	~	•	٠	2	•	۲	8	•	۲	~	~	۲	•	•	?	•	٠	•	~	Random sequence generation (selection bias)
•	6	•	~	••	٠	~	۲	•	~	•	•	->	•	•	~	••	•	•	~	•	•	••	~	•	••	•	••	Allocation concealment (selection bias)
2	•	٠	•	•	•	~	~	•	~	~	•	~	•	•	~	•	•	~	~	~	•	••	~	•	••	•	••	Blinding of participants and personnel (performance bias)
~	6	••	~	••	~	~	~	~	~	~	->	~	•	->	•	••	•	~	~	•	•	•	٠	•	•	•	•	Blinding of outcome assessment (detection bias)
•	•	٠	•	••	۲	•	~	•	•	•	•	~	•	•	•	••	•	•		•	•	••	~	•	••	->	••	Incomplete outcome data (attrition bias)
2	~	••	~	••	->	~	•	••	~	~	•	~	••	~	~	••	->	~	~	~	~	~	~	~	••	~	~	Selective reporting (reporting bias)
٠	•	٠	•	•	۲	•	•	٠	•	•	٠	•	•	٠	•	٠	۲	•	•	۲	•	•	٠	•	٠	٠	•	Other bias


Fig.2


	Treatment				Control			Mean Difference	Mean Difference				
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% Cl				
Steroids													
Julian 1993	-2.2	2.148	17	-1.4	2.583	18	0.4%	-0.80 [-2.37, 0.77]					
Koike 2008	-0.66	0.663	24	-0.21	0.615	24	6.8%	-0.45 [-0.81, -0.09]	+				
Lai 1986	-4.2	2.553	17	-1.4	1.852	17	0.4%	-2.80 [-4.30, -1.30]					
Locatelli 2001	-1.33	3.585	43	-0.42	9.77	43	0.1%	-0.91 [-4.02, 2.20]					
Shoji 2000	-0.465	0.258	11	-0.02	0.371	8	9.9%	-0.45 [-0.74, -0.15]	*				
Subtotal (95% CI)			112			110	17.6%	-0.51 [-0.73, -0.28]	•				
Heterogeneity: Chi ^z = 9.44, df = 4 (P = 0.05); I ^z = 58%													
Test for overall effect: .	Z= 4.44	(P ≤ 0.0	00001)										
Non-steroidal immun	osuppre	ssive a	gents										
Cruzado 2011		1.559	14	-0.9	1.51	9	0.5%	• • •					
Maes 2004		2.381	21	-0.3	1.908	13	0.4%						
Tang 2005	-0.66	0.987	20	0.53	1.59	20	1.3%	-1.19 [-2.01, -0.37]					
Walker 1990	-0.53	1.15	25	0.13	1.767	27	1.4%	-0.66 [-1.46, 0.14]					
Woo 1987	1.02	0.91	27	1.82	1.84	21	1.2%	-0.80 [-1.66, 0.06]					
Wu 2016	-0.59	0.51	100	-0.17	0.838	299	46.7%	-0.42 [-0.56, -0.28]	-				
Xie 2011	-0.61	0.23	34	-0.25	0.83	30		-0.36 [-0.67, -0.05]	1				
Subtotal (95% CI)			241			419	60.9 %	-0.43 [-0.55, -0.31]	,				
Heterogeneity: Chi ² =				²=0%									
Test for overall effect: .	Z = 7.04	(P < 0.0	00001)										
Combined steriodal a						-							
Ballardie 2002		3.045	19		11.433	19	0.0%						
Rauen 2015		0.854	82	0.77	0.665	80		-1.81 [-2.05, -1.57]	•				
Yoshikawa 1999	-1.13	0.402		-0.14	1.206	38		-0.99 [-1.39, -0.59]	· -				
Subtotal (95% CI)			141			137	21.5%	-1.60 [-1.80, -1.40]	•				
Heterogeneity: Chi ² =					3%								
Test for overall effect: .	Z = 15.4	5 (P < 0	.00001)				-					
									-4 -2 0 2 4				
									Favours treatment Favours control				


Fig.3

	Treatm	ent	Contr	ol		Risk Ratio	Risk Ratio						
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl						
Steroids													
Julian 1993	1	17	2	18	4.5%	0.53 [0.05, 5.32]							
Katafuchi 2003	3	43	3	47	9.6%	1.09 [0.23, 5.13]							
Lv 2009	0	33	2	30	2.7%	0.18 [0.01, 3.65]							
Lv 2017	4	136	10	126	16.5%	0.37 [0.12, 1.15]							
Manno 2009	1	48	7	49	5.6%	0.15 [0.02, 1.14]							
Pozzi 2004	1	43	5	43	5.4%	0.20 [0.02, 1.64]							
Subtotal (95% CI)		320		313	44.3%	0.39 [0.19, 0.79]	◆						
Total events	10		29										
Heterogeneity: Tau ² =	Heterogeneity: Tau ² = 0.00; Chi ² = 3.35, df = 5 (P = 0.65); l ² = 0%												
Test for overall effect:	Z=2.61 (P = 0.0	09)										
Non-steroidal immun	osuppres	ssive a	gents										
Frisch 2005	5	17	2	15	10.3%	2.21 [0.50, 9.74]							
Maes 2004	2	21	0	13	2.8%	3.18 [0.16, 61.49]							
Tang 2010	2	20	9	20	11.4%	0.22 [0.05, 0.90]							
Walker 1990	1	25	2	27	4.4%	0.54 [0.05, 5.59]							
Subtotal (95% CI)		83		75	28.9%	0.82 [0.21, 3.11]							
Total events	10		13										
Heterogeneity: Tau ² =	0.89; Chi	^z = 5.92	2, df = 3 (P = 0.1	2); I ^z = 49	%							
Test for overall effect:	Z = 0.30 (P = 0.7	7)										
Combined steroidal a	and non-s	teroida	l immun	osuppi	essive a	gents							
Kamei 2011	2	40	5	38	9.2%	0.38 [0.08, 1.84]							
Rauen 2015	6	82	6	80	17.7%	0.98 [0.33, 2.90]							
Subtotal (95% CI)		122		118	26.9%	0.72 [0.29, 1.76]							
Total events	8		11										
Heterogeneity: Tau ² =	0.00; Chi	z = 0.93	3, df = 1 (P = 0.3	3); I ^z = 0%	6							
Test for overall effect:	Z=0.72 (P = 0.4	7)										
Total (95% CI)		525		506	100.0%	0.55 [0.33, 0.90]	•						
Total events	28		53										
Heterogeneity: Tau ² =	0.06; Chi	² = 11.9	91, df = 1	1 (P = 0	0.37); I ^z =	8%	$1 \\ 0.01 \\ 0.1 \\ 1 \\ 10 \\ 100$						
Test for overall effect:	Z = 2.36 (P = 0.0	2)				Favours treatment Favours control						
Test for subaroup diff	erences:	Chi ^z = 1	l.60. df=	2 (P =	0.45), I ² =	0%	ravours acadmenter ravours control						
Fig.7													
0													