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Abstract: 1 

Working memory, an important component of cognitive control, is supported by the coordinated activation 2 

of a network of cortical regions in the frontal and parietal cortices. Oscillations in theta and alpha frequency 3 

bands are thought to coordinate these network interactions. Thus, targeting multiple nodes of the network 4 

with brain stimulation at the frequency of interaction may be an effective means of modulating working 5 

memory. We tested this hypothesis by identifying regions that are functionally connected in theta and alpha 6 

frequency bands and intracranially stimulating both regions simultaneously in participants undergoing 7 

invasive monitoring. We found that in-phase stimulation resulted in improvement in performance compared 8 

to sham stimulation. In contrast, anti-phase stimulation did not affect performance. In-phase stimulation 9 

resulted in decreased phase lag between regions within working memory network while anti-phase 10 

stimulation resulted in increased phase lag suggesting that shorter phase lag in oscillatory connectivity may 11 

lead to better performance. The results support the idea that phase lag may play a key role in information 12 

transmission across brain regions. More broadly, brain stimulation strategies that aim to improve cognition 13 

may be better served targeting multiple nodes of brain networks.  14 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 11, 2019. ; https://doi.org/10.1101/514554doi: bioRxiv preprint 

https://doi.org/10.1101/514554
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Page 3 of 25 
 

Introduction: 15 

Working memory (WM) is an important component of cognition and supports higher cognitive functions in 16 

humans like fluid intelligence, decision making and learning. Impairment of WM is observed in many 17 

psychiatric and neurological disorders [1-3] and is often not addressed by current treatment strategies. Thus, 18 

approaches that can improve WM are required. The neural substrates of WM are spread across frontal, 19 

cingulate and parietal cortices [4-7] and are thought to be coordinated by cortical oscillations. Theta (4 – 8 20 

Hz) and alpha (8 – 12 Hz) oscillations are known to play a critical role in WM [8-11]. Given the spatially 21 

distributed nature of processing that takes place during WM tasks, the interaction between different regions 22 

that underlies WM can be captured in functional and effective connectivity analyses. Neuroimaging studies 23 

have revealed that fronto-parietal connectivity is a key functional component of WM in the brain [12-14] and 24 

some studies have found connectivity between frontal and temporal regions to be correlated with WM task 25 

performance [15, 16]. Electroencephalography (EEG) and magnetoencephalography (MEG) studies have 26 

shown that fronto-parietal connectivity may be characterized by interactions in different oscillatory 27 

frequency bands. Alpha band phase synchronization in fronto-parietal regions has been shown to be 28 

modulated by WM load [17, 18]. Theta band connectivity has been shown to increase with increased central 29 

executive demands [19, 20]. Deficits in WM are common in many neurological and psychiatric disorders in 30 

which connectivity is also altered [21-24]. Taken together, the neural substrate for WM is a network of brain 31 

regions and thus, any strategy that targets WM may be better-served by engaging multiple nodes of the 32 

network. 33 

Noninvasive brain stimulation methods like transcranial magnetic stimulation (TMS) [25-28], transcranial 34 

direct current stimulation (tDCS) [29-31] and transcranial alternating current stimulation (tACS) [32-36] have 35 

allowed causal perturbations of specific regions or activity signatures involved in WM. More specifically, 36 

rhythmic TMS (rTMS), in which a periodic pulse train is applied, and tACS, in which a continuous sinusoidal 37 

alternating current is applied, allow for targeting neural oscillations by matching the stimulation frequency 38 

to the frequency of oscillations [37]. RTMS has been shown to improve WM performance when applied at 39 

theta frequency [38-40]. TACS in theta frequency band also leads to improvements in WM performance [33, 40 

36]. Most of these studies have focused on stimulating a single region. In contrast, studies in which multiple 41 

regions of WM network are targeted have yielded important insights into functional network properties. 42 

TACS studies have shown that stimulating fronto-parietal network using waveforms that have 0° phase offset 43 

(in-phase stimulation) result in improvement of WM performance while stimulating networks using 44 

waveforms that have 180° phase offset (anti-phase stimulation) result in deterioration of performance [34, 45 

35]. In-phase stimulation was hypothesized to cause synchronization of the fronto-parietal networks while 46 
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anti-phase stimulation was is hypothesized to cause de-synchronization. Neuroimaging during stimulation 47 

indicated increased blood oxygenation level dependent (BOLD) signal in WM regions during in-phase 48 

stimulation while functional connectivity increased with both in-phase stimulation and anti-phase 49 

stimulation [35]. The BOLD signal does not have milli-second temporal resolution and thus precluded any 50 

analysis of the changes in oscillatory network activity.  51 

Compared to transcranial electric stimulation, direct cortical stimulation (DCS), in which electrical stimulation 52 

is applied directly on the cortical surface, offers higher spatial specificity. Additionally, intracranial EEG (iEEG) 53 

provides higher spatial resolution relative to EEG or MEG as well as higher temporal resolution relative to 54 

functional neuroimaging. Thus, by combining DCS and iEEG, it is possible to dissect functional networks with 55 

high spatio-temporal precision.  This approach has been used for causally perturbing the electrophysiological 56 

and anatomical substrates of episodic memory [41-43] , memory consolidation [44], and face processing [45, 57 

46]. DCS has also been used to target networks engaged in spatial memory, albeit stimulation resulted in 58 

impairment of performance [47]. In another study, direct stimulation of bilateral hippocampal regions with 59 

in-phase and anti-phase stimulation resulted in trend-level changes in performance [48]. Using this approach, 60 

we have shown that frequency-matched DCS of a region (left superior frontal gyrus) that exhibited low 61 

frequency oscillatory activity results in working memory improvement [49]. Here, we extended our 62 

stimulation protocol to target networks underlying working memory by stimulating two functionally 63 

connected regions simultaneously. We used a measure of phase synchronization, the weighted phase lag 64 

index, to identify regions that are functionally connected in alpha and theta frequency bands during a 65 

Sternberg WM task. We applied periodic pulse stimulation in-phase and anti-phase, matched to the 66 

frequency of functional interactions, to the two functionally connected regions, and compared the 67 

performance against sham stimulation. We hypothesized that in-phase stimulation would result in an 68 

increase in oscillatory functional connectivity relative to sham and thereby improve WM performance while 69 

anti-phase stimulation would result in a decrease in oscillatory functional connectivity relative to sham and 70 

thereby impair WM performance.  While in-phase stimulation improved performance, anti-phase stimulation 71 

did not impair performance relative to sham. Analysis of functional connectivity properties in atlas-based 72 

WM (aWM) network revealed that functional connectivity was increased by both in-phase and anti-phase 73 

stimulation. However, in-phase stimulation decreased phase lag relative to sham between regions within the 74 

aWM network while anti-phase stimulation increased phase lag relative to sham suggesting a non-linear 75 

relationship between the phase lag of connections within a network and performance. 76 

 77 
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Results 78 

We performed network-targeted stimulation (Figure 1A) in 3 participants implanted with subdural strips and 79 

stereo EEG electrodes for epilepsy surgery planning. The electrodes covered bilateral frontal, parietal and 80 

temporal cortices (Figure S1). Participants performed a Sternberg working memory task (Figure 1B) in a 81 

baseline session and a stimulation session. In the stimulation session, trains of biphasic pulses were applied 82 

to two pairs of electrodes. Stimulation was applied in-phase, in which stimulation was applied simultaneously 83 

between the two electrode pairs, and anti-phase, in which stimulation applied between one pair of 84 

electrodes was temporally offset from the other electrode pair by half the inter-pulse-interval of the pulse 85 

train (Figure 1C). Stimulation was applied during the encoding epoch of the Sternberg task. Sham stimulation, 86 

in which no DCS was applied, was used as a control as iEEG participants are unable to tell when stimulation 87 

is applied. The three stimulation conditions (in-phase, anti-phase, and sham) were randomly interleaved for 88 

each task block. 89 

 90 

 91 
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 92 

In the baseline session, the WM load, defined as the number of items to be held in WM, was varied pseudo 93 

randomly for each trial. The WM load for each participant was titrated according to performance in a short 94 

practice session (3, 5 for P1; 5, 7 for P2 and P3). Chi-squared test did not reveal any significant influence of 95 

list length on accuracy (χ2 = 0.434, df = 2, p = 0.805). Analysis of reaction time did not reveal any significant 96 

influence of list length (Linear mixed effects model with list length as fixed factor and participant as random 97 

factor; F2, 175.51 = 0.630, p = 0.534). The reaction time and accuracy for individual participants are shown in 98 

Figure S2.  99 

Analysis of functional connectivity using debiased weighted phase lag index (dWPLI) revealed oscillatory 100 

interactions in theta and alpha frequency bands. DWPLI measures the degree of consistency of phase lag 101 

between two signals and is not affected by volume conduction [50] making it an effective tool for identifying 102 

functional interactions in iEEG.  In P1, electrodes that exhibited connectivity within the left frontal regions 103 

(superior frontal gyrus and inferior precentral gyrus) in theta band (4 Hz) were chosen. In P2, electrodes in 104 

the left frontal and parietal regions (inferior frontal junction and superior parietal lobule) that exhibited 105 

interactions in alpha band interactions were chosen. In P3, no strong functional interactions were observed 106 

(apart from the interactions between neighboring electrodes). Therefore, we chose electrodes that were in 107 

the putative WM network in the right hemisphere (middle frontal gyrus and superior intraparietal sulcus). 108 

We chose 10 Hz as stimulation frequency for P3 as alpha band synchronization between frontal and parietal 109 

regions has been shown to impact WM [17, 18]. The mean dWPLI for the electrodes chosen are shown in 110 

Figure 2A. Post-hoc analysis of spatial proximity of the chosen stimulation electrodes to canonical WM 111 

network identified from a meta-analytic atlas [51] revealed that both the electrode pairs in P2 and P3 were 112 

in or near regions active during WM (Figure 2B). In P1, one electrode pair was near the inferior frontal 113 

Figure 1: Schematic of Network-Targeted Stimulation.  

A. Intracranial EEG data from implanted electrodes, collected when participants performed WM task, are 

processed to identify functionally connected regions that are then targeted with direct cortical stimulation.  

B. Sternberg working memory task depicting the different epochs and timing of components of each epoch 

C.  The stimulation paradigms used in the study. Each vertical red line denotes a biphasic pulse. In-phase 

stimulation consists of pulses applied simultaneously to functionally connected regions without any phase 

offset (time delay). Anti-phase stimulation consists of pulses applied with a phase offset of 180° (time 

delay of half the inter-stimulus interval Ts). Dotted lines are provided for visual guidance 
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junction, another prominent WM region [7] and one pair was on the superior frontal gyrus, a region that we 114 

have previously demonstrated to be involved in WM [49].  115 

 116 

In stimulation session, participants performed the Sternberg task again but with only one level of WM load. 117 

Stimulation was applied between pairs of electrodes identified in the baseline session during the encoding 118 

epoch.   In-phase stimulation resulted in increased accuracy relative to sham in all 3 participants (Figure 3, 119 

Top). Chi-squared test with all three conditions revealed a statistically significant association between 120 

condition and trial accuracy (χ2 = 7.315, df = 2, p = 0.026). Further pairwise comparisons revealed that in-121 

phase stimulation increased accuracy relative to sham (χ2 = 6.429 df = 1, p = 0.011), but there was no 122 

Figure 2: Functional connectivity of stimulation electrodes 

A. Mean dWPLI for the stimulation electrodes for the different cognitive loads and the different epochs. 

B. The anatomical locations of the identified stimulation electrodes for the three participants. The beige shaded 

regions denote WM regions identified from meta-analyses of functional neuroimaging studies.  
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difference in accuracy for anti-phase relative to sham (χ2 = 1.0913 df = 1, p = 0.296) or in-phase relative to 123 

anti-phase (χ2 = 1.847 df = 1, p = 0.174). Thus, network-targeted stimulation improved WM accuracy but only 124 

when both electrode pairs were stimulated simultaneously without phase-lag. Analysis of reaction time did 125 

not reveal any statistically significant effect of stimulation condition (Figure 3, Bottom, Linear mixed model 126 

with fixed factor stimulation condition and random factor participant; F2,223.42 = 0.545, p = 0.581). 127 

 128 

  129 

Figure 3: Effect of network-targeted stimulation on WM performance 

In-phase stimulation increased accuracy relative to sham (Top). Stimulation did not affect reaction time 

(Bottom) 
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DCS introduces electrical stimulation artifacts in iEEG that need to be addressed before analyses can be 130 

performed. We used an ICA-based method, developed in our previous work [49], to remove the stimulation 131 

artifacts. Following artifact removal, we computed dWPLI between electrodes that were in the aWM 132 

network. As an exploratory measure, we computed magnitude-squared coherence, which is used widely in 133 

connectivity analysis of oscillatory networks. Coherence provides a complementary measure of functional 134 

connectivity as it accounts for the correlations in spectral power which is not captured by dWPLI. We 135 

restricted our analysis to the bands around the stimulation frequency for each individual participant. 136 

Additionally, we used a permutation-based approach to identify those network connections that exhibited 137 

statistically significant pairwise-differences between the conditions (in-phase stimulation vs sham 138 

stimulation, anti-phase stimulation vs sham stimulation, and in-phase stimulation vs anti-phase stimulation). 139 

This resulted in a network with sparse connections between regions within the WM network. The network 140 

connections obtained from coherence and dWPLI at the stimulation frequency for the 3 participants were 141 

pooled together for visualization in a chord diagram (Figure 4A). The nodes of the diagram represent an 142 

individual electrode while the edge between the nodes indicate the pair-wise difference in connectivity 143 

measure metric (coherence or dWPLI). Both in-phase stimulation and anti-phase stimulation resulted in more 144 

connections showing increased dWPLI than decreased, relative to sham. In contrast, the number of 145 

connections showing an increase were approximately equal to those showing a decrease when in-phase 146 

stimulation was contrasted against anti-phase stimulation. A similar trend was observed in connectivity 147 

obtained from coherence. To quantify the observed trend, we fit separate linear mixed models for pairwise 148 

difference in dWPLI and coherence with comparison as fixed factor and participant as random factor. In both 149 

cases, there was a significant effect of comparison on pairwise difference (dWPLI: F2, 486.18 = 26.921, p < 0.001; 150 

coherence: F2, 533.38 = 16.392, p < 0.001). Post hoc analysis using Tukey method revealed that the pairwise 151 

difference for in-phase vs sham and anti-phase vs sham were higher than in-phase vs anti-phase (Figure 4B, 152 

p < 0.001). The results from dWPLI and coherence suggest that contrary to our initial hypothesis, both in-153 

phase stimulation and anti-phase stimulation increased functional connectivity relative to sham while there 154 

was no clear difference between the two stimulation conditions. 155 

While these results may appear counter-intuitive, it should be noted that dWPLI is a measure of phase 156 

consistency and does not include any information regarding the actual phase difference. It is conceivable that 157 

both in-phase stimulation and anti-phase stimulation successfully engage the network due to the repeated 158 

periodic perturbation of the network and increased overall phase consistency. However, since the stimulation 159 

differed in phase lag between the targeted electrode pairs, in-phase and anti-phase may have impacted the 160 

specific phase lag between nodes in the network. To verify this, we computed phase lag at stimulation 161 
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frequency between electrode pairs that exhibited significant pairwise dWPLI difference between any of the 162 

three stimulation conditions i.e., phase lag corresponding to the edges depicted in the dWPLI chord diagram 163 

in Figure 4A. Phase lag was computed from the cross-spectrum of the iEEG signal during the stimulation 164 

epoch. We pooled the data of the three participants together, as the distribution of phase lag for individual 165 

participants did not satisfy the assumptions required for the circular statistics. There was a significant effect 166 

of comparison on the phase lag differences (Figure 4C; Watson-william test F 2,488 = 3.6523, p = 0.0266). We 167 

found that in-phase stimulation resulted in an overall decrease in phase lag relative to sham (-0.114 ± 1.310 168 

radians; mean ± sd) while anti-phase stimulation resulted in an overall increase in phase lag relative to sham 169 

(0.269 ± 1.240 radians). There was a negligible change in phase lag when in-phase stimulation was compared 170 

to anti-phase stimulation (0.018 ±  1.165 radians). These results indicate that while in-phase stimulation and 171 

anti-phase stimulation both increased phase consistency, they modulated phase lag in opposite directions.  172 
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 174 

Discussion 175 

In this study, we employed a network-targeted stimulation approach to engage the WM network and test if 176 

this approach can improve WM performance. We identified oscillatory networks underlying WM from iEEG 177 

using a phase synchronization measure and stimulated functionally connected electrodes. We found in-phase 178 

stimulation improved WM performance relative to sham stimulation in all 3 participants. Interestingly, we 179 

found that both in-phase and anti-phase stimulation increased functional connectivity relative to sham. 180 

However, the effect of the two stimulation conditions on phase lag was opposite such that in-phase 181 

stimulation decreased phase lag and anti-phase stimulation increased phase lag relative to sham. The 182 

increased functional connectivity from in-phase stimulation and anti-phase stimulation may have been due 183 

to the periodic input of DCS into the WM network that aligned the phase of electrical activity between 184 

multiple regions albeit at different lags. Our results suggest that the differential effect on phase lag may have 185 

contributed to the behavioral modulation. Phase synchronization has been hypothesized to enable interareal 186 

communication by aligning periods of excitability across regions or by enabling spike timing dependent 187 

plasticity [52]. Our electrical stimulation occurred at a time scale faster than the typical timeframe for 188 

observing plasticity, suggesting that our in-phase stimulation may have aligned periods of excitability across 189 

regions that enabled enhanced communication. While in-phase stimulation improved performance, we did 190 

not observe any impairment in performance with anti-phase stimulation. In-phase stimulation may have 191 

Figure 4: Effect of network-targeted stimulation on WM Network  

A. Chord diagrams representing the pairwise differences in dWPLI and coherence in the WM network across 

all three participants. The nodes represent electrodes; edges represent connectivity between regions; red 

edges denote a relative increase in the connectivity metric and blue edges denote a relative decrease in 

connectivity metric between the nodes. The edges depicted here have passed a permutation based 

statistical significance test (p < 0.05) 

B. Pairwise difference of dWPLI between stimulation conditions. In-phase vs sham and anti-phase vs sham 

were higher than in-phase vs anti-phase differences. *** denotes statistical significance at p < 0.001 in a 

Tukey post-hoc test 

C. Pairwise difference of coherence between stimulation conditions. In-phase vs sham and anti-phase vs 

sham were higher than in-phase vs anti-phase differences. *** denotes statistical significance at p < 0.001 

in a Tukey post-hoc test 

D. Circular histogram denoting the pairwise differences in phase lag across the three comparisons for the 

three participants. Black line denotes the mean phase lag difference for each comparison. 
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reduced communication delay within an optimal window in which information may be effectively transmitted 192 

between regions resulting in improvement in performance. In contrast, anti-phase stimulation may have 193 

resulted in increased communication delay outside this optimal window which is inconsequential for 194 

information transmission and integration. Further studies are required to confirm this specific hypothesis. 195 

Our results follow tACS studies that have shown behavioral effects of stimulation in WM tasks, albeit we 196 

observe improvements in accuracy while improvements in reaction times are more commonly reported. 197 

Polania et al. [34] observed a decrease in reaction time with in-phase stimulation and an increase in reaction 198 

time with anti-phase stimulation relative to sham. Violante et al. [35] observed a decrease in reaction time 199 

for in-phase stimulation relative to sham and anti-phase stimulation while there was no difference between 200 

sham and anti-phase stimulation, similar to what we observe. In addition, Violante et al. report increased 201 

BOLD signal functional connectivity increases in WM network for both in-phase and anti-phase stimulation. 202 

Although the functional connectivity from BOLD signal quantifies interactions at a slower timescale relative 203 

to what is observed in iEEG, these results support our observation that both in-phase and anti-phase 204 

stimulation resulted in increased functional connectivity.  205 

We used a hybrid data-driven approach to restrict our analyses to putative WM networks in the three 206 

participants. The use of atlas-based priors allowed us to control the dimensionality of our variable of interest, 207 

which is the functional interactions between brain regions involved in WM; and permutation-based statistics 208 

allowed us to account for false positives. The WM network atlas we used was derived from a meta-analysis 209 

of 1091 studies that localized regions that show consistent activation across a variety of WM studies [51]. 210 

However, it must be noted that BOLD activity of regions often corresponds to iEEG activity in the high 211 

frequency broadband activity (30 – 130 Hz) [53] with lower correlations between lower frequency band 212 

activity. Therefore, it is conceivable that we may have excluded regions that exhibited task-related 213 

connectivity. Given the heterogeneity and the small sample size, we motivated this decision as a necessary 214 

trade-off for generalizability at the cost of an exhaustive naïve data-driven approach. Even so, we found task-215 

related functional connectivity between regions in or near the aWM network in participants P1 and P2. In P1, 216 

we found theta band connectivity between superior frontal gyrus and precentral gyrus. Although superior 217 

frontal gyrus is not a part of the aWM network, our previous work has shown it may indeed play a role in 218 

WM. In P2, we found alpha band connectivity within the aWM network and stimulation resulted in the 219 

highest improvement among the three participants. In P3, even with electrodes close to the aWM network, 220 

we did not observe any significant functional interaction. This may be due to variability in the functional 221 

recruitment of brain regions for this participant. While stimulation resulted in an improvement in WM 222 

accuracy, the effect in P3 was weaker than the other two participants presumably due to the decreased 223 
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recruitment of these regions by the task. However, the region of cortex activated by intracranial direct 224 

cortical stimulation extends farther than the immediate vicinity of the stimulation electrodes on the order of 225 

~50 mm3 [54, 55] while the spatial extent of LFP recordings is a few millimeters [56]. Thus, stimulation may 226 

have spread into neighboring regions that are known to be canonically activated by WM task demands. 227 

Oscillations in the theta and alpha frequency bands have been shown to support WM in many studies [57, 228 

58] with increased oscillatory power as a marker for synchronization. Phase synchronization between brain 229 

regions in alpha and theta frequency bands have been shown to underlie many memory processes (see 230 

reviews [52, 59]) with theta band activity implicated in top-down control [34, 60, 61] and alpha band activity 231 

implicated in suppression of irrelevant information [62, 63]. Theta band synchronization has been observed 232 

between fronto-temporal and fronto-parietal regions in working memory tasks [64-67]. While fronto-parietal 233 

synchronization in alpha band has been associated with cognitive control  and visuospatial attention [68], 234 

interareal synchrony has been observed to be modulated by WM load in the retention period [17, 69]. 235 

Supporting these observations, we found alpha and theta band connectivity in our participants. The 236 

variability in the frequency at which interaction was found may be due to differences in strategy [70], with 237 

theta being dominant in strategies where sequential information is encoded while alpha being dominant in 238 

strategies where competing information is suppressed. Alternately, the differences could be driven by the 239 

difference in regions between which functional connectivity is observed. We observed theta between 240 

electrodes within frontal regions while alpha was observed between electrodes in frontal and parietal 241 

regions.  The studies mentioned above are constrained by the limitations of EEG, which has poor spatial 242 

resolution and is highly susceptible to volume conduction. The use of iEEG and dWPLI enabled us to address 243 

these limitations and provide a more fine-grained picture of the functional interactions.  244 

While these results provide important insight into the role phase lag may play in coordinating working 245 

memory, the heterogeneity and the small sample size limits the interpretation to a general population. 246 

Additionally, the phase lag between stimulation sites was not taken into consideration as the initial 247 

hypothesis was based on the consistency of phase synchronization. In contrast to our approach, Kim et al. 248 

[47] stimulated hubs of a memory retrieval network at the phase lag observed between the two nodes but 249 

found that stimulation impaired performance. Our results imply that choosing a phase lag that is shorter than 250 

the observed phase lag may be beneficial. The choice of stimulation parameters was limited to in-phase 251 

stimulation and anti-phase stimulation to ensure enough trials in each condition for statistical analysis. 252 

However, this meant that we were not able to directly confirm if the effect is frequency-specific. Further 253 

studies incorporating arrhythmic stimulation as used in some TMS studies can be used to establish the 254 

frequency specificity of stimulation effects [40, 71].  255 
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While many studies quantify phase synchronization as consistency in phase differences, very few studies have 256 

focused on the phase lag between regions [34]. Given recent findings on phase-dependent information 257 

processing [72, 73] our result highlights the importance of considering phase information when studying 258 

functional interactions between brain regions. Overall, these findings advance our understanding of network-259 

targeted stimulation for improving cognition in humans. Our results provide causal evidence that networks 260 

of brain regions are critical to cognition [74, 75] and optimal stimulation may require multi-site stimulation. 261 

This work may ultimately lead to therapeutic benefits for cognitive deficits that accompany many 262 

neurological and psychiatric disorders.  263 

Methods: 264 

Participants: 265 

All experimental procedures were approved by the Institutional Review Board of University of North Carolina 266 

at Chapel Hill and informed consent was obtained from participants. Participants were recruited by invitation 267 

from patients who underwent invasive monitoring for epilepsy surgery planning. The participant clinical 268 

information is provided in Table 1. The location of electrodes in all participants were completely dictated by 269 

the clinical needs of the individual participant. See Figure S1 for the electrode coverage.  270 

 271 

 272 

Working Memory Task: 273 

Participants performed a Sternberg working memory task that has been previously used in ECoG studies [11, 274 

49, 76]. The Sternberg task allows a separation of different cognitive processes involved in working memory 275 

into different epochs: encoding, maintenance, and retrieval (Figure 1 B).  Each trial began with a fixation cross 276 

presented for 1000 ms. In the encoding epoch, participants were presented with a sequence of letters from 277 

the English alphabet one letter at a time.  Each letter was presented for 500 ms. Following the encoding 278 

epoch, a blank screen was presented for 2000 ms which served as the maintenance epoch. Next, a single 279 

letter (probe) was presented on the screen for 3000 ms. The participants were instructed to indicate if the 280 

Participant ID Sex Age Seizure Onset Zones 

P1 F 20 Bilateral hippocampus and temporal lobes 

P2 M 24 Bilateral hippocampus, amygdala, postcentral gyrus 

P3 F 46 Bilateral posterior frontal cortex 

Table 1: Clinical Information of Participants 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 11, 2019. ; https://doi.org/10.1101/514554doi: bioRxiv preprint 

https://doi.org/10.1101/514554
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Page 16 of 25 
 

probe was present in the encoding epoch or not using custom joysticks that interfaced with the task 281 

administration laptop through a USB response box (Black Box Toolkit, Sheffield, UK). P3 was not able to use 282 

the joysticks due to history of stroke affecting motor function in their right hand and responded using the 283 

keyboard of the laptop with their left hand only. The task was programmed in Matlab using Psychtoolbox 284 

[77]. 285 

Participants completed the task in two sessions – a baseline session and a stimulation session. In the baseline 286 

session, the task consisted of memory arrays of two different lengths (WM load). In the stimulation session, 287 

the WM load was fixed to maximize the number of trials in each stimulation condition. The experimental 288 

parameters used for the participants are listed in Table 2. 289 

 290 

ECoG Data Acquisition and Direct Cortical Stimulation: 291 

ECoG data were recorded using a 128-channel EEG system (NetAmps 410, Electrical Geodesics Inc, Eugene, 292 

Oregon, United States) at 1000 Hz sampling rate. Stimulation was delivered using Cerestim M96 cortical 293 

stimulator (Blackrock Microsystems, Salt Lake City, Utah, United States). Stimulation consisted of a train of 294 

biphasic pulses 2 mA in amplitude, 200 µs in duration per phase of the biphasic pulse with a 55 µs interval 295 

between the positive going and negative going phase. The inter-pulse-interval was adjusted according to the 296 

stimulation frequency. Stimulation was applied between two pairs of electrodes identified from functional 297 

Participant 

ID 

Baseline Stimulation Stimulation Electrode Pairs 

Location 

Stimulation 

Frequency  WM 

Load 

No.  

Trials/Load 

WM 

Load 

No. 

Trials/Condition 

P1 3,5 30 5 30 Left anterior superior frontal 

gyrus, Left inferior precentral 

sulcus 

4 Hz 

P2 5,7 40 7 30 in-phase, 36 

anti-phase, 34 

Sham 

Left inferior frontal junction, 

left superior parietal lobule 

10 Hz 

P3 5,7 40 5 40 Right anterior middle frontal 

gyrus, right superior 

intraparietal sulcus 

10 Hz 

Table 2: Experimental Parameters for the Participants 
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connectivity analysis as described in the next subsection. The timing of pulses between the two pairs was in-298 

phase, i.e., stimulation was applied simultaneously between the two electrode pairs (Figure 1C). We 299 

hypothesized that in-phase stimulation would improve WM performance. The active control was anti-phase 300 

stimulation, i.e., stimulation between the first pair and second pair was offset by half the inter-pulse-interval 301 

(Figure 1C). Both in-phase and anti-phase stimulation was time-locked to the start of the encoding epoch. 302 

Stimulation was triggered using Matlab wrapper functions provided by the manufacturer of the cortical 303 

stimulator. In addition, a control condition where no stimulation was applied (sham) was also included to 304 

account for any non-specific effects of stimulation. 305 

Data Analysis 306 

All data analysis was performed using custom written Matlab scripts utilizing functions from the EEGLAB [78] 307 

and Fieldtrip toolboxes [79]. Electrodes over seizure focus were excluded from analysis.   308 

Selection of Stimulation Electrodes: 309 

ECoG data collected during the baseline session was used to determine functionally connected electrodes. 310 

The continuous data was band-pass filtered between 1 and 50 Hz using an FIR filter and re-referenced to the 311 

average of all intracranial electrodes using functions from EEGLAB toolbox. The data was then segmented 312 

into trials containing the different epochs. Functional connectivity was determined using debiased weighted 313 

phase lag index square (dWPLI) implemented in Fieldtrip toolbox. The measure is a composite of phase lag 314 

index, which captures consistency in phase lag between two time oscillatory signals [80], and the imaginary 315 

part of coherence which ignores zero phase lag interactions [81]. DWPLI has been shown to provide a better 316 

estimate of phase-synchronization in the presence of volume conduction and the debiased estimate has 317 

higher statistical power [50]. DWPLI was computed for the fixation, encoding and retention epochs 318 

separately. The strength of functional connectivity was strongest between neighboring electrodes followed 319 

by electrodes within the same anatomical region, i.e., frontal cortex or parietal cortex. Since we were 320 

interested in modulating long-range functional connectivity, we ignored electrode pairs that were neighbors. 321 

In addition, connections that were present in the fixation epoch and between electrodes over seizure foci 322 

were ignored as the former may reflect preparatory attentional components of network activity and the 323 

latter may reflect pathological connectivity.  324 

Removal of electrical stimulation artifacts 325 

Electrical stimulation artifacts were removed using an independent component analysis (ICA) based approach 326 

as demonstrated in our previous work [49]. Artifacts appear as stereotypical waveforms in iEEG signals. Blind 327 
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signal separation using ICA separates the iEEG signal into components that contain only artifact waveforms 328 

and other components that contain the rest of the signal. The components containing artifacts were then 329 

rejected and the remaining components were used to reconstruct the artifact free signal. We used the 330 

infomax algorithm [82] available as a part of EEGLab toolbox for computing independent components. 331 

Following artifact suppression, the signals were re-referenced to the average of all signals.    332 

Estimation of functional connectivity 333 

DWPLI was computed for the stimulation session (epoched by stimulation condition) in the same manner as 334 

the baseline session (epoched by WM load) using functions from EEGlab and Fieldtrip toolboxes. In addition, 335 

coherence was also computed for the stimulation session.  Adjacency matrices were derived from a 3 Hz 336 

band centered on the frequency of interest. Phase lag was derived from the mean cross-spectrum across 337 

trials in a 2 Hz band centered on the frequency of stimulation. For pairwise comparisons between stimulation 338 

conditions, the difference in adjacency matrices were computed. Statistical significance was computed using 339 

a permutation-based approach. Trial labels were shuffled 1000 times, and adjacency matrices were 340 

computed for each condition. Pairwise differences were computed as above to generate a null distribution. 341 

Any pairwise difference in the non-shuffled adjacency matrices that were greater (or lesser) than 95% of the 342 

null distribution differences were deemed statistically significant. Chord diagrams were plotted using ggraph 343 

and igraph packages written in R. 344 

Identification of electrode locations  345 

3D Slicer [83] was used to analyze and extract electrode locations from CT images obtained after implantation 346 

of subdural electrodes (post-OP CT). Electrode locations were determined manually using the post-OP CT 347 

image by placing fiducials in areas of high activation in the CT. The post-OP CT was co-registered to pre-OP 348 

MRI in Slicer. The anatomical locations of the electrodes were determined by co-registering the pre-OP MRI 349 

Image to the MNI Atlas [84], recomputing electrode locations in the MNI space, transforming these locations 350 

to Talairach space, and using the Talairach Client [85] to obtain the label of the region nearest to the 351 

coordinate representing electrode location.  352 

Determining atlas-based WM network 353 

We used a meta-analysis-based approach to identify regions activated by a variety of WM tasks. Using the 354 

Neurosynth database, we acquired the association test map for ‘Working Memory’ that was derived from 355 

1091 studies. The map consisted of z-scores, corrected with false discovery rate (FDR) at an alpha value of 356 

0.01, from a two-way ANOVA testing for the presence of a non-zero association between the term ‘Working 357 
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Memory’ and voxel activation [51]. We defined 8 mm regions of interest (ROIs) around each electrode in the 358 

Montreal Neurological Institute (MNI) space using custom written scripts and the MarsBaR toolbox in SPM12 359 

[86, 87]. Next, we determined the z-scores from the association map within these ROIs (electrodes) and 360 

computed the mean z-score for each electrode. Any electrode that had a mean z-score greater than 0 was 361 

defined to be part within the aWM network and was included in analysis.  362 

Statistical Analysis 363 

All statistical analyses were performed using custom-written scripts in R. Linear mixed models were fitted 364 

using ‘lmertest’ package [88]. The package uses a Sattherwaite approximation for degrees of freedom for 365 

ANOVA. Post-hoc analyses consisted of pairwise comparisons with Tukey adjustments and were computed 366 

using ‘emmeans’ package. Circular statistics were computed using ‘circular’ package [89].  367 
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Supplementary Information 377 

 378 

  379 

Figure S1: Locations of implanted electrodes in the three participants 
Red circles denote the electrodes implanted in the three participants. Subdural strip electrodes were used in 
P1 while stereotactic EEG electrodes were used in P2 and P3  
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