
Stochastic neural field model of stimulus-dependent
variability in cortical neurons

Paul C. Bressloff*

Department of Mathematics, University of Utah, Salt Lake City, UT, USA

* bressloff@math.utah.edu

Abstract

We use stochastic neural field theory to analyze the stimulus-dependent tuning of neural
variability in ring attractor networks. We apply perturbation methods to show how the
neural field equations can be reduced to a pair of stochastic nonlinear phase equations
describing the stochastic wandering of spontaneously formed tuning curves or bump
solutions. These equations are analyzed using a modified version of the bivariate von
Mises distribution, which is well-known in the theory of circular statistics. We first
consider a single ring network and derive a simple mathematical expression that
accounts for the experimentally observed bimodal (or M-shaped) tuning of neural
variability. We then explore the effects of inter-network coupling on stimulus-dependent
variability in a pair of ring networks. These could represent populations of cells in two
different layers of a cortical hypercolumn linked via vertical synaptic connections, or
two different cortical hypercolumns linked by horizontal patchy connections within the
same layer. We find that neural variability can be suppressed or facilitated, depending
on whether the inter-network coupling is excitatory or inhibitory, and on the relative
strengths and biases of the external stimuli to the two networks. These results are
consistent with the general observation that increasing the mean firing rate via external
stimuli or modulating drives tends to reduce neural variability.

Author Summary

A topic of considerable current interest concerns the neural mechanisms underlying the
suppression of cortical variability following the onset of a stimulus. Since trial-by-trial
variability and noise correlations are known to affect the information capacity of
neurons, such suppression could improve the accuracy of population codes. One of the
main candidate mechanisms is the suppression of noise-induced transitions between
multiple attractors, as exemplified by ring attractor networks. The latter have been
used to model experimentally measured stochastic tuning curves of directionally
selective middle temporal (MT) neurons. In this paper we show how the
stimulus-dependent tuning of neural variability in ring attractor networks can be
analyzed in terms of the stochastic wandering of spontaneously formed tuning curves or
bumps in a continuum neural field model. The advantage of neural fields is that one can
derive explicit mathematical expressions for the second-order statistics of neural activity,
and explore how this depends on important model parameters, such as the level of noise,
the strength of recurrent connections, and the input contrast.

PLOS 1/32

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 11, 2019. ; https://doi.org/10.1101/514315doi: bioRxiv preprint 

https://doi.org/10.1101/514315
http://creativecommons.org/licenses/by/4.0/


Introduction

A growing number of experimental studies have investigated neural variability across a
variety of cortical areas, brain states and stimulus
conditions [6, 21,23,35,45,51,52,58,59,63,72]. Two common ways to measure neural
variability are the Fano factor, which is the ratio of the variance to the mean of the
neural spike counts over trials, and the trial-to-trial covariance of activity between two
simultaneously recorded neuron. It is typically found that the presentation of a stimulus
reduces neural variability [21,51], as does attention and perceptual learning [23,58].
Another significant feature of the stimulus-dependent suppression of neural variability is
that it can be tuned to different stimulus features. In particular, Ponce-Alvarez et
al [63] examined the in vivo statistical responses of direction selective area-middle
temporal (MT) neurons to moving gratings and plaid patterns. They determined the
baseline levels and the evoked directional and contrast tuning of the variance of
individual neurons and the noise correlations between pairs of neurons with similar
direction preferences. The authors also computationally explored the effect of an
applied stimulus on variability and correlations in a stochastic ring network model of
direction selectivity. They found experimentally that both the trial-by-trial variability
and the noise correlations among MT neurons were suppressed by an external stimulus
and exhibited bimodal directional tuning. Moreover, these results could be reproduced
in a stochastic ring model, provided that the latter operated close to or beyond the
bifurcation point for the existence of spontaneous bump solutions.

From a theoretical perspective, a number of different dynamical mechanisms have
been proposed to explain aspects of stimulus-dependent variability: (i) stimulus-induced
suppression of noise-induced transitions between multiple attractors as exemplified by
the stochastic ring model [25,26,55,60,63]; (ii) stimulus-induced suppression of an
otherwise chaotic state [1, 65]; (iii) fluctuations about a single, stimulus-driven attractor
in a stochastic stabilized supralinear network [40]. The pros and cons of the different
mechanisms have been explored in some detail within the context of orientation
selective cells in primary visual cortex (V1) [40]. We suspect that each of the three
mechanisms may occur, depending on the particular operating conditions and the
specific cortical area. However, we do not attempt to differentiate between these
distinct mechanisms in this paper. Instead, we focus on the attractor-based mechanism
considered by Ponce-Alvarez et al [63], in order to understand the stimulus-dependent
variability of population tuning curves. Our main goal is to show how the tuning of
neural variability can be analyzed in terms of the stochastic wandering of spontaneously
formed tuning curves or bumps in a continuum neural field model. (For complementary
work on the analysis of wandering bumps within the context of working memory see
Refs. [46, 47,49].) The advantage of using neural field theory is that one can derive
explicit mathematical expressions for the second-order statistics of neural activity, and
explore how this depends on important model parameters, such as the level of noise, the
strength of recurrent connections, and the input contrast. In particular, our
mathematical analysis provides a simple explanation for the bimodal tuning of the
variance observed by Ponce-Alvarez et al [63].

In addition to accounting for the qualitative statistical behavior of a single ring
network, we also explore the effects of inter-network coupling on stimulus-dependent
variability in a pair of ring networks. The latter could represent populations of cells in
two different layers of a cortical hypercolumn linked via vertical synaptic connections, or
two different cortical hypercolumns linked by horizontal patchy connections within the
same layer. We will refer to these two distinct architectures as model A and model B,
respectively. (See also Figs. 14 and 2.) Roughy speaking, cortical layers can be grouped
into input layer 4, superficial layers 2/3 and deep layers 5/6 [16, 28, 42, 62]. They can be
distinguished by the source of afferents into the layer and the targets of efferents leaving
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the layer, the nature and extent of intralaminar connections, the identity of
interneurons within and between layers, and the degree of stimulus specificity of
pyramidal cells. In previous work, we explored the role of cortical layers in the
propagation of waves of orientation selectivity across V1 [13]. In this paper, we use
model A to show how vertical excitatory connections between two stochastic ring
networks can reduce neural variability, consistent with a previous analysis of spatial
working memory [47]. We also show that the degree of noise suppression can differ
between layers, as previously found in an experimental study of orientation selective
cells in V1 [74]. Long-range horizontal connections within superficial layers of cortex are
mediated by the axons of excitatory pyramidal neurons. However, they innervate both
pyramidal neurons and feedforward interneurons so that they can have a net excitatory
or inhibitory effect, depending on stimulus conditions [3, 4, 71]. More specifically, they
tend to be excitatory at low contrasts and inhibitory at high contrasts. An experimental
“center-surround” study of stimulus-dependent variability in V1 indicates that
correlations in spontaneous activity at the center can be suppressed by stimulating
outside the classical receptive field of the recorded neurons [75], that is, by evoking
activity in the surround. In this paper, we show that the effect of a surround stimulus
depends on at least two factors: (i) whether or not the horizontal connections effectively
excite or inhibit the neurons in the center, and (ii) the relative directional bias of the
surround stimulus. In particular, we find that at low contrasts (excitatory regime),
noise is suppressed in the center when the center and surround stimuli have the same
directional bias, whereas it is facilitated when the center and surround stimuli have
opposite directional biases. The converse holds at high contrasts (inhibitory regime).
These results are consistent with the general observation that increasing the mean firing
rate via external stimuli or modulating drives tends to reduce neural variability.

In the remainder of the Introduction we introduce our stochastic neural field
model of coupled ring networks and describe in more detail the structure of models A
and B. We then briefly summarize previous work on the theory of wandering bumps. In
Materials and Methods we use perturbation theory to show how the neural field
equations can be reduced to a pair of stochastic phase equations describing the
stochastic wandering of bump solutions. These equations are analyzed in the Results,
using a modified version of the bivariate von Mises distribution, which is well-known in
the theory of circular statistics. This then allows us to determine the second-order
statistics of a single ring network, providing a mathematical underpinning for the
experimental and computational studies of Ponce-Alvarez et al [63], and to explore the
effects of inter-network coupling on neural variability in models A and B.

Coupled ring model

Consider a pair of mutually coupled ring networks labeled j = 1, 2. Let uj(θ, t) denote
the activity at time t of a local population of cells with stimulus preference θ ∈ [−π, π)
in network j. Here θ could represent the direction preference of neurons in area-middle
temporal cortex (MT) [63], the orientation preference of V1 neurons, after rescaling
θ → θ/2 [8, 9], or a coordinate in spatial working memory [17,47,54]. For concreteness,
we will refer to θ as a direction preference. The variables uj evolve according to the
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neural field equations [10,46,47,83]

τdu1(θ, t) =

[
−u1(θ, t) +

∫ π

−π
J1(θ − θ′)f(u1(θ′, t))dθ′

+
√
ε

∫ π

−π
K1(θ − θ′)f(u2(θ′, t))dθ′ +

√
εh1(θ)

]
dt+

√
2εdW1(θ, t)(1a)

τdu2(θ, t) =

[
−u2(θ, t) +

∫ π

−π
J2(θ − θ′)f(u2(θ′, t))dθ′

+
√
ε

∫ π

−π
K2(θ − θ′)f(u1(θ′, t))dθ′ +

√
εh2(θ)

]
dt+

√
2εdW2(θ, t)(1b)

where
√
ε is a constant scale factor (see below), Jj(θ − θ′) is the distribution of

intra-network connections between cells with stimulus preferences θ′ and θ in network j,
Kj(θ − θ′) is the corresponding distribution of inter-network connections to network j,
and hj(θ) is an external stimulus. The firing rate function is assumed to be a sigmoid

f(u) =
f0

1 + e−γ(u−η)
, (2)

with maximal firing rate f0, gain γ and threshold η. The final term on the right-hand
side of each equation represents external additive noise, with Wj(θ, t) a θ-dependent
Wiener process. In particular,

E[dWj(θ, t)] = 0, E[dWi(θ, t)dWj(θ
′, s)] = δi,jCj(θ − θ′)δ(t− t′)dt dt′, (3)

where δ(t) is the Dirac delta function. The noise is thus colored in θ (which is necessary
for the solution to be spatially continuous) and white in time. (One could also take the
noise to be colored in time by introducing an additional Ornstein-Uhlenbeck process.
For simplicity, we assume that the noise processes in the two networks are uncorrelated,
which would be the case if the noise were predominantly intrinsic. Correlations would
arise if some of the noise arose from shared fluctuating inputs. For a discussion of the
effects of correlated noise in coupled ring networks see [47].) The external stimuli are
taken to be weakly biased inputs of the form

hj = h̄j cos(θ − θ̄j), (4)

where θ̄j is the location of the peak of the input (stimulus bias) and h̄j is the contrast.
Finally, the time-scale is fixed by setting the time constant τ = 10 msec. The maximal
firing rate f0 varies between 10-100 spikes/sec.

The weight distributions are 2π-periodic and even functions of θ and thus have cosine
series expansions. Following [46], we take the intra-network recurrent connections to be

Jj(θ − θ′) = Jj cos(θ − θ′), (5)

which means that cells with similar stimulus preferences excite each other, whereas
those with sufficiently different stimulus preferences inhibit each other. It remains to
specify the nature of the inter-network connections. As we have already mentioned, we
consider two different network configurations: (A) a vertically connected two layer or
laminar model (Fig. 14) and (B) a horizontally connected single layer model (Fig. 2).
In model A, the inter-network weight distribution is taken to have the form

Kj(θ − θ′) = Ej +Kj cos(θ − θ′), (6)

which represents vertical coupling between the layers. We also assume that both layers
receive the same stimulus bias, that is, θ̄1 = θ̄2 = θ̄ in equation (4). In model B, the
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u1(θ,t) layer 1

vertical

connections

u2(θ,t)

h2 cos(θ−θ)

layer 2

input

– –

h1 cos(θ−θ)
– –

Figure 1. Coupled ring model A: the two ring networks are located in two vertically
separated cortical layers and interact via interlaminar connections

inter-network weight distribution represents patchy horizontal connections, which tend
to link cells with similar stimulus preferences. This is implemented by taking

Kj(θ − θ′) = Kjδ(θ − θ′). (7)

Now the two networks can be driven by stimuli with different biases so that θ̄1 6= θ̄2.
Note that in order to develop the analytical methods of this paper, we scale the

internetwork coupling, the noise terms and the external stimuli in equations (1) by the
constant factor

√
ε. Taking 0 < ε� 1 (weak noise, weak inputs and weak inter-network

coupling) will allow us to use perturbation methods to derive explicit
parameter-dependent expressions for neural variability. We do not claim that cortical
networks necessarily operate in these regimes, but use the weakness assumption to

inputs 

u1(θ,t)

horizontal

connections

u2(θ,t)

h2 cos(θ−θ2)
– –

h1 cos(θ−θ1)
– –

Figure 2. Coupled ring model B: the two ring networks are located in the same
cortical layer and interact via intralaminar horizontal connections.

PLOS 5/32

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 11, 2019. ; https://doi.org/10.1101/514315doi: bioRxiv preprint 

https://doi.org/10.1101/514315
http://creativecommons.org/licenses/by/4.0/


obtain analytical insights and make predictions about the qualitative behavior of neural
variability. In the case of weak inter-network connections, the validity of the assumption
is likely to depend on the source of these connections. For example, in model B, they
arise from patchy horizontal connections within superficial or deep layers of cortex,
which are known to play a modulatory role [4]. On the other hand, vertical connections
between layers are likely to be stronger than assumed in our modeling analysis, at least
in the feedforward direction.

The weak stimulus assumption depends on a particular view of how cortical neurons
are tuned to stimuli. Consider the most studied example, which involves orientation
tuning of cells in V1. The degree to which recurrent processes contribute to the
receptive field properties of V1 neurons has been quite controversial over the
years [33,64,77,82]. The classical model of Hubel and Wiesel [43] proposed that the
orientation preference and selectivity of a cortical neuron in input layer 4 arises
primarily from the geometric alignment of the receptive fields of thalamic neurons in the
lateral geniculate nucleus (LGN) projecting to it. (Orientation selectivity is then carried
to other cortical layers through vertical projections). This has been confirmed by a
number of experiments [32, 34, 66, 69, 79]. However, there is also significant experimental
evidence suggesting the importance of recurrent cortical interactions in orientation
tuning [29,50,61,68,70,73,78]. One issue that is not disputed is that some form of
inhibition is required to explain features such as contrast-invariant tuning curves and
cross-orientation suppression [64]. The uncertainty in the degree to which intracortical
connections contribute to orientation tuning of V1 neurons is also reflected in the
variety of models. In ring attractor models [7, 9, 76], the width of orientation tuning of
V1 cells is determined by the lateral extent of intracortical connections. Recurrent
excitatory connections amplify weakly biased feedforward inputs in a way that is
sculpted by lateral inhibitory connections. Hence, the tuning width and other aspects of
cortical responses are primarily determined by intracortical rather than thalamocortical
interconnections. On the other hand, in push-pull models, cross-orientation inhibition
arises from feedforward inhibition from interneurons [79,80]. Finally, in normalization
models, a large pool of orientation-selective cortical interneurons generates shunting
inhibition proportional in strength to the stimulus contrast at all orientations [18]. In
the end, it is quite possible that are multiple circuit mechanisms for generating tuned
cortical responses to stimuli, which could depend on the particular stimulus feature,
location within a feature preference map, and cortical layer [64]. In our analytical study
we adopt the ring attractor network model, for which inputs are weak.

Wandering bumps and neural variability

There have been numerous previous studies establishing that a single homogeneous
neural field on the real line or a ring can support a stationary bump or population
tuning curve in the absence of external stimuli [2, 7–9,46,53,76,81, 84]. The network is
said to be in a marginally stable regime, since the location of the peak of the bump is
arbitrary. This reflects the fact that the homogeneous neural field is symmetric with
respect to uniform translations. The presence of a weakly biased external stimulus can
then lock the bump to the stimulus. The output activity is said to amplify the input
bias and provides a network-based encoding of the stimulus, which can be processed by
upstream networks. Since the bump persists if the stimulus is removed, marginally
stable neural fields have been proposed as one mechanism for implementing a form of
spatial working memory [17,20,47,54,85]. One of the consequences of operating in a
marginally stable regime is that the bump is not robust to the effects of external noise,
which can illicit a stochastic wandering of the bump [19,20,46,47,53].

One way to investigate the stochastic wandering of bumps in a neural field model is
to use perturbation theory. The latter was originally applied to the analysis of traveling
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waves in one-dimensional neural fields [10,83], and was subsequently extended to the
case of wandering bumps in single-layer and multi-layer neural fields [14,46,47]. The
basic idea is to to treat longitudinal and transverse fluctuations of a bump (or traveling
wave) separately in the presence of noise, in order to take proper account of marginal
stability. This is implemented by decomposing the stochastic neural field into a
deterministic bump profile, whose spatial location or phase has a slowly diffusing
component, and a small error term. (There is always a non-zero probability of large
deviations from the bump solution, but these are assumed to be negligible up to some
exponentially long time.) Perturbation theory can then be used to derive an explicit
stochastic differential equation (SDE) for the diffusive-like wandering of the bump in
the weak noise regime. (A more rigorous mathematical treatment that provides bounds
on the size of transverse fluctuations has also been developed [15,44].) In this paper, we
apply the theory of wandering bumps in stochastic neural fields in order to characterize
various features of stimulus-dependent variability in cortical neurons.

Results

We present various analytical and numerical results concerning stimulus-dependent
neural variability, under the assumption that the neural field equations (1) support
stable stationary bump solutions uj(θ, t) = Uj(θ) = Aj cos(θ), j = 1, 2, in the absence of
noise, external stimuli, and inter-network coupling (ε = 0). The amplitudes Aj are
determined self-consistently from the equations (see Material and Methods)

Aj = Jj

∫ π

−π
cos(θ)f(Aj cos(θ))dθ := Jjg(Aj). (8)

In order to investigate the effects of noise in the presence of weak external stimuli and
inter-network coupling, we introduce the amplitude phase decomposition [10,47]

uj(θ, t) = Uj(θ + βj(t)) +
√
εvj(θ, t), j = 1, 2. (9)

Such a decomposition reflects the fact that the uncoupled homogeneous neural field
equations are marginally stable with respect to uniform translations around the ring.
Substituting equations (9) into the full stochastic neural field equations (1) and using
perturbation theory along the lines of [10, 14, 46,47], one can derive the following SDEs
for the phases βj(t), see Materials and Methods:

dβ1 = −
√
εΛ1 sin(β1 + θ̄1)dt+

√
εK1(β2 − β1)dt+

√
2εdw1(t), (10a)

dβ2 = −
√
εΛ2 sin(β2 + θ̄2)dt+

√
εK2(β1 − β2)dt+

√
2εdw2(t), (10b)

where Λj = hj/Aj , Kj(β) are 2π-periodic functions that depend on the form of the
inter-network connections, and wj(t) are independent Wiener processes:

E[dwj(t)] = 0, E[dwj(t)dwk(t′)] = δjkDjδ(t− t′)dt′dt, (11)

The functions Kj(β) and the diffusion coefficients D1, D2 are calculated in Materials
and Methods, see equations (72), (73) and (76).

Note that stochastic phase equations similar to (10) were previously derived
in [46,47], except that sinβ and Kj(β) were linearized (eg. sinβ ≈ β etc.), resulting in
a system of coupled Ornstein-Uhlenbeck (OU) processes. Properties of one-dimensional
OU processes were then used to explore how the variance in the position of bump
solutions depended on inter-network connections and statistical noise correlations.
However, it should be noted that the variables βj(t) are phases on a circle (rather than
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positions on the real line), so that the right-hand side of equations (10) should involve
2π-period functions. Therefore, the linear approximation only remains accurate on
sufficiently short times scales for which the probability of either of the phases winding
around the circle is negligible. Here we show how to analyze the full nonlinear phase
equations, and use this to explore the effects of external stimuli and inter-network
connections on neural variability.

Wandering bumps in a single stochastic ring network

Let us begin by considering stimulus-dependent neural variability in a single ring
network evolving according to the stochastic neural field equation

du(θ, t) =

[
−u(θ, t) +

∫ π

−π
J(θ − θ′)f(u(θ′, t))dθ′ +

√
εh(θ)

]
dt+

√
2εdW (θ, t),

(12)

where
E[dW (θ, t)] = 0, E[dW (θ, t)dW (θ′, t′)] = C(θ − θ′)δ(t− t′)dt dt′, (13)

with
J(θ) = J cos θ, h(θ) = h̄ cos θ, C(θ) = aδ(θ) + b cos θ.

A clear demonstration of the suppressive effects of an external stimulus can be seen
from direct numerical simulations of equation (12), see Figs. 3 and 4. In the absence of
an external stimulus, the center-of-mass (phase) of the bump diffuses on the ring,
whereas it exhibits localized fluctuations when a weakly-biased stimulus is present.

ti
m

e
 t

(a) (b)

direction q direction q

Figure 3. Stimulus-dependent wandering of a bump in a single stochastic ring network.
Overlaid lines represent the trajectory of the center-of-mass or phase of the bump, β(t).
(a) In the absence of an external stimulus (h̄ = 0), the center-of-mass of the bump
executes diffusive-like motion on the ring. (b) The presence of a weakly biased external
stimulus (h̄ = 2) significantly suppresses fluctuations, localizing the bump to the
stimulus direction θ̄ = 0. Parameters are threshold η = 0.5, gain γ = 4, synaptic weight
J = 1, correlation parameters a = 3, b = 0.5 and ε = 0.05.
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Figure 4. Snapshots of bump profiles at different times. (a) For no external stimulus
the bumps are distributed at different positions around the ring and vary in amplitude.
(b) In the presence of a stimulus the bumps are localized around zero and have similar
amplitudes.

Clearly, the main source of neural variation is due to the wandering of the bump, which
motivates the amplitude phase decomposition given by equation (9).

Applying the perturbation analysis of Materials and Methods yields a
one-network version of the phase equations (10), which takes the form

dβ(t) = −
√
εΛ sinβ(t)dt+

√
2εDdw(t), (14)

with Λ = h̄/A and D = C/2A2, where A is the amplitude of the bump for ε = 0.
Equation (14) is known as a von Mises process, which can be regarded as a circular
analog of the Ornstein-Uhlenbeck process on a line, and generates distributions that
frequently arise in circular or directional statistics [56]. The von Mises process has been
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used to model the trajectories of swimming organisms [22,41], oscillators in physics [38],
bioinformatics [57], and the data fitting of neural population tuning curves [5].
(Nonlinear stochastic phase equations analogous to (14) also arise in models of ring
attractor networks with synaptic heterogeneities, which have applications to spatial
working memory [48,49,67].)

Introduce the probability density

p(β, t|β0, 0]dβ = P[β < β(t) < β + dβ|β(0) = β0].

This satisfies the forward Fokker-Planck equation (dropping the explicit dependence on
initial conditions)

∂p(β, t)

∂t
=

∂

∂β
[
√
εΛ sin(β)p(β, t)] + εD

∂2p(β, t)

∂β2
(15)

for β ∈ [−π, π] with periodic boundary conditions p(−π, t) = p(π, t). It is
straightforward to show that the steady-state solution of equation (15) is the von Mises
distribution

p(β) = M(β; 0, κ), κ =
h̄√
εAD

, (16)

with

M(β;β∗, κ) :=
1

2πI0(κ)
exp (κ cos(β − β∗)) . (17)

Here I0(κ) is the modified Bessel function of the first kind and zeroth order (n = 0),
where

In(κ) =
1

2π

∫ π

−π
exp(κ cos θ) cos(nθ)dθ.

Sample plots of the von Mises distribution are shown in Fig. 5. One finds that
M(β;β∗, κ)→ 1/2π as κ→ 0; since κ ∼ h̄ this recovers the uniform distribution of pure

0 π−π
phase β (radians)

κ = 4

κ = 2

κ = 1

v
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n
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Figure 5. Sample plots of the von Mises distribution M(β, 0, κ) centered at zero for
various values of κ. Inset: Plot of first circular moment I1(κ)/I0(κ).
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Brownian motion on the circle. On the other hand, the von Mises distribution becomes
sharply peaked as κ→∞. More specifically, for large positive κ,

M(β;β∗, κ) ≈ 1√
2πσ2

e−(β−β∗)2/2σ2

, σ2 = κ−1. (18)

We thus have an explicit example of the noise suppression of fluctuations by an external
stimulus, since σ2 ∝ 1/h̄.

Moments of the von Mises distribution are usually calculated in terms of the circular
moments of the complex exponential x = eiβ = cosβ + i sinβ. The nth circular moment
is defined according to

µn = 〈zn〉κ,β∗ =

∫ π

−π
znM(β;β∗, κ)dβ =

I|n|(κ)

I0(κ)
einβ

∗
. (19)

In particular,

〈cosβ〉κ,β∗ =
I1(κ)

I0(κ)
cosβ∗, 〈sinβ〉κ,β∗ =

I1(κ)

I0(κ)
sinβ∗. (20)

We can use these moments to explore stimulus-dependent variability in terms of the
stochastic wandering of the bump or tuning curve. That is, consider the leading order
approximation u(θ, t) ≈ A cos(θ + β(t)), with β(t) evolving according to the von Mises
SDE (14). Trial-to-trial variability can be captured by averaging the solution with
respect to the stationary von Mises density (16). First,

〈U〉(θ) = A

∫ π

−π
cos(θ + β)M(β, 0, κ)dβ

= A [〈cosβ〉κ,0 cos θ − 〈sinβ〉κ,0 sin θ]

:= A(κ) cos θ, A(κ) = A
I1(κ)

I0(κ)
. (21)

from equations (20). Hence, the mean amplitude A(κ) is given by the first circular
moment of the von Mises distribution, see inset of Fig. 5. When κ = 0 (zero external
stimulus), the amplitude vanishes due to the fact that the random position of the bump
is uniformly distributed around the ring. As the stimulus contrast h̄ increases the
wandering of the bump is more restricted and A(κ) monotonically increases.

Second,

〈U2〉(θ) = A2

∫ π

−π
cos2(θ + β)M(β, 0, κ)dβ

=
A2

2

∫ π

−π
(1 + cos(2[θ + β]))M(β, 0, κ)dβ

=
A2

2
[1 + 〈cos 2β〉κ,0 cos 2θ − 〈sin 2β〉κ,0 sin 2θ]

=
A2

2

[
1 +

I2(κ)

I0(κ)
cos 2θ

]
.

It follows that the variance is

var(U) =
A2

2

[
1 +

I2(κ)

I0(κ)
cos 2θ − 2

(
I1(κ)

I0(κ)
cos θ

)2
]

=
A2

2

{
1−

(
I1(κ)

I0(κ)

)2

−

[(
I1(κ)

I0(κ)

)2

− I2(κ)

I0(κ)

]
cos 2θ

}
(22)
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Figure 6. Plot of normalized variance var(U)/A2 as a function of θ for a single ring
network and various κ. In the spontaneous case (κ = 0) the variance is uniformly
distributed around the ring (ignoring transients). The presence of a stimulus (κ > 0)
suppresses the overall level of noise and the variance exhibits a bimodal tuning curve.

In Fig. 6, we show example plots of the normalized variance var(U)/A2 as a function of
the parameter κ, which is a proxy for the input amplitude h̄, since κ ∝ h̄. It can be seen
that our theoretical analysis reproduces the various trends observed in [63]: (i) a global
suppression of neural variability that increases with the stimulus contrast; (ii) a
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Figure 7. Plot of variance in firing rates var(f(A cos(θ)) (in units of f2
0 ) as a function

of θ for a single ring network and various κ. f is given by the sigmoid function (2) with
γ = 4 and η = 0.5. The corresponding amplitude A ≈ 1.85.
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directional tuning of the variability that is bimodal; (iii) a peak in the suppression of
cells at the preferred directional selectivity. One difference between our theoretical
results and those of [63] is that, in the latter case, the directional tuning of the variance
is not purely sinusoidal. Part of this can be accounted for by noting that we consider
the variance of the activity variable u rather than the firing rate f(u). Moreover, for
analytical convenience, we take the synaptic weight functions etc. to be first-order
harmonics. In Fig. 7 we show numerical plots of the variance in the firing rate, which
exhibits the type of bimodal behavior found in [63] when the ring network operates in
the marginal regime.

Effects of inter-network coupling (model A)

We now turn to a pair of coupled ring networks that represent vertically connected
layers as shown in Fig. 14 (model A), with inter-network weight distribution (6). For
analytical tractability, we impose the symmetry conditions A1 = A2 = A and
K1 = K2 = K. However, we allow the contrasts of the external stimuli to differ,
h̄1 6= h̄2. Also, without loss of generality, we set θ̄1 = θ̄2 = 0. Equations (10) then
reduce to the form, see Materials and Methods

dβ1 = −
√
εΛ1 sin(β1)dt−

√
εK sin(β1 − β2)dt+

√
2εdw1(t), (23a)

dβ2 = −
√
εΛ2 sin(β2)dt−

√
εK sin(β2 − β1)dt+

√
2εdw2(t), (23b)

with
E[dwj(t)] = 0, E[dwj(t)dwk(t′)] = δjkDjδ(t− t′)dt′dt. (24)

Given our various simplifications, we can rewrite equations (23) in the more compact
form

dβj = −
√
ε
∂Φ(β1, β2)

∂βj
dt+

√
2εdwj(t), j = 1, 2 (25)

where Φ is the potential function

Φ(β1, β2) = −Λ1 cos(β1)− Λ2 cos(β2)−K cos(β1 − β2). (26)

Introduce the joint probability density

p(β1, β2, t|β1,0, β2,0, 0]dβ1dβ2

= P[βj < βj(t) < βj + dβj , j = 1, 2|βj(0) = βj,0, j = 1, 2].

This satisfies the two-dimensional forward Fokker-Planck equation (dropping the
explicit dependence on initial conditions)

∂p(β1, β2, t)

∂t
=
√
ε
∑
j=1,2

∂

∂βj

[
∂Φ(β1, β2)

∂βj
p(β1, β2, t)

]
+ ε

∑
j=1,2

Dj
∂2p(β1, β2, t)

∂β2
j

(27)

for βj ∈ [−π, π] and periodic boundary conditions p(−π, β2, t) = p(π, β2, t),
p(β1,−π, t) = p(β1, π, t).

The existence of a potential function means that we can solve the time-independent
FP equation. Setting time derivatives to zero, we have∑

j=1,2

∂Jj
∂βj

= 0, Jj =
√
ε
∂Φ

∂βj
p+ εDj

∂p

∂βj
,

where Jj is a probability current. In the stationary state the probability currents are
constant, but generally non-zero. However, in the special case D1 = D2 = D, then there
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exists a steady-state solution in which the currents vanish. This can be seen by
rewriting the vanishing current conditions as

Jj =
√
εp

∂

∂βj

[
Φ +
√
εD ln p

]
= 0.

This yields the steady-state probability density, which is a generalization of the von
Mises distribution,

p(β1, β2) = N−1e−Φ(β1,β2)/
√
εD

= N−1 exp (κ1 cos(β1) + κ2 cos(β2) + χ cos(β1 − β2))

:= M2(β1, β2;κ1, κ2, χ), (28)

where

κj =
h̄j√
εAjD

≥ 0, χ =
K√
εD

,

and N is the normalization factor

N (κ1, κ2, χ) =

∫ π

−π

∫ π

−π
exp (κ1 cos(β1) + κ2 cos(β2) + χ cos(β1 − β2)) dβ1dβ2. (29)

The distribution M2(β1, β2;κ1, κ2, χ) is an example of a bivariate von Mises distribution
known as the cosine model [57]. The normalization factor can be calculated explicitly to
give

N (κ1, κ2, χ) = (2π)2

[
I0(κ1)I0(κ2)I0(χ) + 2

∞∑
s=1

(−1)sIs(κ1)Is(κ2)Is(χ)

]
. (30)

The corresponding marginal distribution for β1 is

p(β1) =

∫ π

−π
p(β1, β2)dβ2 = N (κ1, κ2, χ)−12πI0(κ13(β1)) exp (κ2 cos(β1)) , (31)

where
κ13(β)2 = κ2

1 + χ2 + 2κ1χ cosβ.

An analogous result holds for the marginal density p(β2).
We now summarize a few important properties of the cosine bivariate von Mises

distribution [57]:

1. The density M2(β1, β2;κ1, κ2, χ) is unimodal if

−χ < κ1κ2

κ1 + κ2
,

and is bimodal if
−χ > κ1κ2

κ1 + κ2
, κ1, κ2 > −χ.

2. When κ1 and κ2 are large, the random variables (β1, β2) are approximately
bivariate normal distributed, that is, (β1, β2) ∼ N2(0,Σ) with

Σ−1 =

(
κ1 + χ −χ
−χ κ2 + χ

)
. (32)
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We will assume that the vertical connections are maximal between neurons with the
same stimulus preference so that K ≥ 0 and χ ≥ 0. It then follows that p(β1, β2) is
unimodal. Moreover, from equation (32) we have

Σ =
1

κ1κ2 + χ(κ1 + κ2)

(
κ2 + χ χ
χ κ1 + χ

)
. (33)

For zero inter-network coupling (χ = 0), we obtain the diagonal matrix
Σ = diag(κ−1

1 , κ−1
2 ) and we recover the variance of the single ring networks, that is,

var(βj) = κ−1
j ; there are no interlaminar correlations. On the other hand, for χ > 0 we

find two major effects of the interlaminar connections. First, the vertical coupling
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Figure 8. Coupled ring network (model A). (a) Amplitude of normalized mean tuning
curve (36) as a function of the input parameter κ = κ1 = κ2 for various coupling
strengths: χ = 0, 1, 5. (b) Corresponding maximum (θ = π/2) and minimum (θ = 0)
normalized variances (37) as a function of the input parameter κ for coupling strengths
χ = 0, 5.
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Figure 9. Coupled ring network A. Plot of correlation tuning curve (39) between cells
with the same direction preference but located in different layers. Here κ = κ1 = κ2 and
χ = 5.

reduces fluctuations in the phase variables within a layer. This is most easily seen by
considering the symmetric case κ1 = κ2 = κ for which

Σ =
1

κ(κ+ 2χ)

(
κ+ χ χ
χ κ+ χ

)
. (34)

Clearly,

var(βj) =
1

κ

κ+ χ

κ+ 2χ
< κ−1. (35)

(This result is consistent with a previous study of the effects of inter-network
connections on neural variability, which focused on the case of zero stimuli and treated
the bump positions as effectively evolving on the real line rather than a circle [47]. In
this case, inter-network connections can reduce the variance in bump position, which
evolves linearly with respect to the time t.) The second consequence of interlaminar
connections is that they induce correlations between the phase β1(t) and β2(t).

Having characterized the fluctuations in the phases β1(t) and β2(t), analogous
statistical trends will apply to the trial-to-trial variability in the tuning curves. This
follows from making the leading-order approximation uj(x, t) ∼ A cos(θ + βj(t)), and
then averaging the βj with respect to the bivariate von Mises density
M2(β1, β2;κ1, κ2, χ). In the large κj regime, this could be further simplified by
averaging with respect to the bivariate normal distribution under the approximations
cos(β) ≈ 1− β2/2 and sinβ ∼ β. Both the mean and variance of the tuning curves are
similar to the single ring network, see equations (21) and (22):

〈U1〉(θ) = A〈cosβ1〉 cos θ, (36)

and

var(U1) =
A2

2

[
1− 〈cosβ1〉2 − [〈cosβ1〉2 − 〈cos 2β1〉] cos 2θ

]
(37)
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Figure 10. Effects of interlaminar connections on a pair of wandering bumps (model
A). Overlaid lines represent the trajectories of the center-of-mass or phase of the bumps,
β1(t) and β2(t). (a,b) Plots of wandering bump in network 1 for zero (K = 0) and
nonzero (K = 2) interlaminar connections, respectively. (c,d) Analogous plots for
network 2. The two networks are taken to be identical with the same parameters as Fig.
3 except h̄ = 0.2.

Their dependence on the coupling strength χ and input parameter κ1 = κ2 = κ is
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Figure 11. Same as Fig. 10 except that h̄1 = 2.0, h̄2 = 0.25 and K = 0.1 in (b,d).

illustrated in Fig. 8. Finally,

〈U1(θ)U2(θ′)〉 = A2

∫ π

−π

∫ π

−π
cos(θ + β1) cos(θ′ + β2)M2(β1, β2;κ, κ, χ)dβ1dβ2

= A2

∫ π

−π

∫ π

−π
(cos θ cosβ1 − sin θ sinβ1)

×(cos θ′ cosβ2 − sin θ′ sinβ2)M2(β1, β2;κ, κ, χ)dβ1dβ2

= A2 (cos θ cos θ′〈cosβ1 cosβ2〉+ sin θ sin θ′〈sinβ1 sinβ2〉)
= A2 (cos θ cos θ′〈cosβ1 cosβ2〉+ sin θ sin θ′〈sinβ1 sinβ2〉) .

PLOS 18/32

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 11, 2019. ; https://doi.org/10.1101/514315doi: bioRxiv preprint 

https://doi.org/10.1101/514315
http://creativecommons.org/licenses/by/4.0/


so that inter-network covariance take the form

〈U1(θ)U2(θ′)〉 − 〈U1(θ)〉〈U2(θ′)〉
= A2 cos θ cos θ′[〈cosβ1 cosβ2〉 − 〈cosβ1〉〈cosβ2〉]

+A2 sin θ sin θ′〈sinβ1 sinβ2〉.

In particular, for θ = θ′ we have

〈U1(θ)U2(θ)〉 − 〈U1(θ)〉〈U2(θ)〉 (38)

=
A2

2
[〈sinβ1 sinβ2〉+ 〈cosβ1 cosβ2〉 − 〈cosβ1〉〈cosβ2〉]

−A
2

2
[〈sinβ1 sinβ2〉 − 〈(cosβ1 cosβ2〉 − 〈cosβ1〉〈cosβ2〉)] cos(2θ).

The resulting correlation tuning curve behaves in a similar fashion to the variance, see
Fig. 9, where

corr(U1, U2) =
〈U1(θ)U2(θ)〉 − 〈U1(θ)〉〈U2(θ)〉√

var(U1)var(U2)
. (39)

The above qualitative analysis can be confirmed by numerical simulations of the full
neural field equations (1), as illustrated in Fig. 10 for a pair of identical ring networks.
In Fig. 11, we show corresponding results for the case where network 2 receives a
weaker stimulus than network 1 (h̄1 = 2 and h̄2 = 0.5). In the absence of interlaminar
connections, the phase of network 2 fluctuates much more than the phase of network 1.
When interlaminar connections are included, fluctuations are reduced, but network 2
still exhibits greater variability than network 1. This latter result is consistent with an
experimental study of neural variability in V1 [74], which found that neural correlations
were more prominent in superficial and deep layers of cortex, but close to zero in input
layer 4. One suggested explanation for these differences is that layer 4 receives direct
feedforward input from the LGN. Thus we could interpret network 1 in model A as
being located in layer 4, whereas network 2 is located in a superficial layer, say.

Effects of inter-network coupling (model B)

Our final example concerns a pair of coupled ring networks that represent horizontally
connected center and surround hypercolumns, as shown in Fig. 2 (model B), with
inter-network weight distribution (7). Again, for analytical tractability, we impose the
symmetry conditions A1 = A2 = A and K1 = K2 = K. However, in contrast to model
A, we take the contrasts to be the same, h̄1 = h̄2 = h̄, but allow the biases of the two
inputs to differ, θ̄1 6= θ̄2. Equations (10) become, see Materials and Methods

dβ1 = −
√
εΛ sin(β1 + θ̄1)dt+

√
εK(β1 − β2)dt+

√
2εdw1(t), (40a)

dβ2 = −
√
εΛ sin(β2 + θ̄2)dt+

√
εK(β2 − β1)dt+

√
2εdw2(t), (40b)

with wj(t) given by equation (24) and

K(β) =
2K

Γ

∫ π

−π
f ′(A cos(θ − β)) sin(θ − β)f

(
A cos(θ))dθ. (41)

We can rewrite K(β) in the form

K(β) = − 2K

A|Γ|
∂φ

∂β
, φ(β) = f(A cos(θ − β))f

(
A cos(θ))dθ. (42)
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Note that φ(−β) = φ(β) and thus φ′(−β) = −φ′(β). A sample plot of the potential
φ(β) is shown in Fig. 12 together with an approximate curve fitting based on a von
Mises distribution. For the given firing rate parameters η = 0.5 and γ = 4, the
unperturbed bump amplitude is A ≈ 1.85.

As in the case of model A, we can rewrite equations (40) in the more compact form

dβj = −
√
ε
∂Ψ(β1, β2)

∂βj
dt+

√
2εdwj(t), j = 1, 2 (43)

where Ψ is the potential function

Ψ(β1, β2) = −Λ cos(β1 + θ̄1)− Λ cos(β2 + θ̄2)−Kφ(β1 − β2), (44)

and we have absorbed the factor 2/(A|Γ|) into the constant K. The corresponding
two-dimensional forward Fokker-Planck equation is

∂p(β1, β2, t)

∂t
=
√
ε
∑
j=1,2

∂

∂βj

[
∂Ψ(β1, β2)

∂βj
p(β1, β2, t)

]
+ ε

∑
j=1,2

Dj
∂2p(β1, β2, t)

∂β2
j

(45)

for βj ∈ [−π, π] and periodic boundary conditions p(−π, β2, t) = p(π, β2, t),
p(β1,−π, t) = p(β1, π, t). Following the analysis of model A, if D1 = D2 = D then the
stationary density takes the form

p(β1, β2) =M−1e−Ψ(β1,β2)/
√
εD

=M−1 exp
(
κ cos(β1 + θ̄1) + κ cos(β2 + θ̄2) + χφ(β1 − β2)

)
, (46)

where

κ =
h̄√
εAD

≥ 0, χ =
K√
εD

,

and M is a normalization factor.
Suppose that ring network 1 represents a hypercolumn driven by a center stimulus

h̄ cos θ and network 2 represents a hypercolumn driven by a surround stimulus
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Figure 12. Plot of the potential function φ(β) for threshold η = 0.5 and gain η = 4.
The solid curve is an approximation based on a fitted von Mises distribution
φ(β) ≈ 12M(β; 0, 0.6)− 0.9.
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Figure 13. Coupled ring network (model B). Plot of normalized variance var(U1)/A2

of a center ring network as a function of the surround directional bias θ̄ for various
coupling parameters χ. Stimuli to center and surround are h̄ cos θ and h̄ cos(θ − θ̄),
respectively, with h̄ = 2.

h̄ cos(θ − θ̄), see Fig. 2. In Fig. 13 we plot how the normalized maximal variance of the
center (at θ = ±π/2) varies with the directional bias θ̄ of the surround. We also show
the baseline variance in the absence of horizontal connections (χ = 0). It can be seen
that for an excitatory surround (χ > 0) the variance is suppressed in the center relative
to baseline when the center and surround stimuli have similar biases (θ̄ ≈ 0) and is
enhanced when they are sufficiently different (θ̄ ≈ ±π). The converse holds for an
inhibitory surround (χ < 0).

Discussion

In this paper we used stochastic neural field theory to analyze stimulus-dependent
neural variability in ring attractor networks. In addition to providing a mathematical
underpinning of previous experimental observations regarding the bimodal tuning of
variability in directionally specific MT neurons, we also made a number of predictions
regarding the effects of inter-network connections on noise suppression:

1. Excitatory vertical connections between cortical layers can suppress neural
variability; different cortical layers can exhibit different degrees of variability
according to the strength of afferents into the layers.

2. At low stimulus contrasts, surround stimuli tend to suppress (facilitate) neural
variability in the center when the center and surround stimuli have similar
(different) biases.

3. At high stimulus contrasts, surround stimuli tend to facilitate (suppress) neural
variability in the center when the center and surround stimuli have similar
(different) biases.
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One of the main simplifications of our neural field model is that we do not explicitly
model distinct excitatory and inhibitory populations. This is a common simplification of
neural fields, in which the combined effects of excitation and inhibition are incorporated
using, for example, Mexican hat functions [10,30]. In the case of the ring network, the
spontaneous formation of population orientation tuning curves or bumps is implemented
using a cosine function, which represents short-range excitation and longer-range
inhibition around the ring. We note, however, that the methods and results presented in
this paper could be extended to the case of separate excitatory and inhibitory
populations, as well as different classes of interneuron [9, 71].

One final comment is in order. Neural variability in experiments is typically specified
in terms of the statistics of spike counts over some fixed time interval, and compared to
an underlying inhomogeneous Poisson process. Often Fano factors greater than one are
observed. In this paper, we work with stochastic firing rate models rather than spiking
models, so that there is some implicit population averaging involved. In particular, we
focus on the statistics of the variables uj(x, t), which represent the activity of local
populations of cells rather than of individual neurons, with f(uj) the corresponding
population firing rate [10]. This will allow us to develop an analytically tractable
framework for investigating how neural variability depends on stimulus conditions within
the attractor model paradigm. In order to fit a neural field model to single-neuron data,
one could generate spike statistics by taking f(uj) to be the rate of an inhomogeneous
Poisson process. Since f(uj) is itself stochastic, this would result in a doubly stochastic
Poisson process, which is known to produce Fano factors greater than unity [24].
Moreover, the various phenomena identified in this paper regarding stimulus-dependent
variability would carry over to a spiking model, at least qualitatively.

Materials and methods

We present the details of the derivation of the stochastic phase equations (10).

Stationary bumps in a single uncoupled ring

First, suppose that there are no external inputs, no inter-network coupling
(J12 = J21 = 0), and no noise (ε = 0). Each network can then be described by a
homogeneous ring model of the form

∂u(θ, t)

∂t
= −u(θ, t) +

∫ π

−π
J(θ − θ′)f(u(θ′, t))dθ′. (47)

Let J(θ) = J cos θ and consider the trial solution u(θ, t) = U(θ) with U(θ) an even,
unimodal function of θ centered about θ = 0. This could represent a direction tuning
curve in MT ((in the marginal regime) or a stationary bump encoding a spatial working
memory. It follows that U(θ) satisfies the integral equation

U(θ) = J

∫ π

−π
cos(θ − θ′)f(U(θ′))dθ′. (48)

Substituting the cosine series expansion

cos(θ − θ′) = cos(θ) cos(θ′) + sin(θ) sin(θ′) (49)

into the integral equation yields the even solution U(θ) = A cos θ with the amplitude A
satisfying the self-consistency condition

A = J

∫ π

−π
cos(θ)f(U(θ))dθ = Jg(A). (50)
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Figure 14. Graphical solution of the bump amplitude equation (50) for J = 1 and
η = 0.5. At intermediate gains (γ = 4) the zero solution is unstable and there exists a
single stable bump. In the high gain limit (γ = 20) the zero solution is stable, and
coexists with a small amplitude unstable bump and a large amplitude stable bump.

The amplitude equation (50) can be solved explicitly in the large gain limit γ →∞, for
which f(u)→ H(u− κ), where H is the Heaviside function [46]. That is,
A =

√
1 + κ±

√
1− κ, corresponding to a marginally stable large amplitude wide bump

and an unstable small amplitude narrow bump, consistent with the original analysis of
Amari [2]. On the other hand, at intermediate gains, there exists a single stable bump
rather than an unstable/stable pair of bumps, see Fig. 14.

Linear stability of the stationary solution can be determined by considering weakly
perturbed solutions of the form u(θ, t) = U(θ) + ψ(θ)eλt for |ψ(θ)| � 1. Substituting
this expression into equation (47), Taylor expanding to first order in ψ, and imposing
the stationary condition (48) yields the infinite-dimensional eigenvalue problem [9]

(λ+ 1)ψ(θ) =

∫ π

−π
J(θ − θ′)f ′(U(θ′))ψ(θ′)dθ′. (51)

This can be reduced to a finite-dimensional eigenvalue problem by applying the
expansion (49):

(λ+ 1)ψ(θ) = A cos(θ) + B sin(θ), (52)

where

A = J

∫ π

−π
cos(θ)f ′(U(θ))ψ(θ)dθ, B = J

∫ π

−π
sin(θ)f ′(U(θ))ψ(θ)dθ. (53)

Substituting equation (52) into (53) then gives the matrix equation [46]

(λ+ 1)

(
A
B

)
= J

(
I[cos2 θ] I[cos θ sin θ]
I[cos θ sin θ] I[sin2 θ]

)(
A
B

)
, (54)

where for any periodic function v(θ)

I[v(θ)] =

∫ π

−π
v(θ)f ′(U(θ))dθ. (55)
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Integrating equation (50) by parts shows that for A 6= 0

I[sin2 θ] =

∫ π

−π
sin2 θf ′(U(θ))dθ = 1.

Hence, exploiting the fact that I is a linear functional of v,

I[cos2 θ] = I[1− sin2 θ] = I[1]− I[sin2 θ] = I[1]− 1.

Finally, integration by parts establishes that

I[cos θ sin θ] =

∫ π

−π
cos θ sin θf ′(U(θ))dθ = −

∫ π

−π
sin θf(U(θ))dθ = 0,

since U(θ) is even. Equation (54) now reduces to

(λ+ 1)

(
A
B

)
= J

(
I[1]− 1 0

0 1

)(
A
B

)
, (56)

which yields the pair of solutions

λ0 = 0, λe = 2J

[∫ π

0

f ′(U(θ))dθ − 1

]
. (57)

The zero eigenvalue is a consequence of the fact that the bump solution is marginally
stable with respect to uniform shifts around the ring; the generator of such shifts is the
odd function sin θ. The other eigenvalue λe is associated with the generator, cos θ, of
expanding or contracting perturbations of the bump. Thus linear stability of the bump
reduces to the condition λe < 0. This can be used to determine the stability of the pair
of bump solutions in the high-gain limit [46].

A variety of previous studies have shown how breaking the underlying translation
invariance of a homogeneous neural field by introducing a nonzero external input
stabilizes wave and bump solutions to translating perturbations [31,36,37,46,81]. For
the sake of illustration, suppose that h(θ) = h̄ cos(θ) in the deterministic version of
equation (1). This represents a weak θ-dependent input with a peak at θ = 0.
Extending the previous analysis, one finds a stationary bump solution
U(θ) = A cos θ +

√
εh̄ cos θ, with A satisfying the implicit equation

A = J

∫ π

−π
cos θ(A cos θ +

√
εh̄ cos θ)dθ.

Again, this can be used to determine both the width and amplitude of the bump in the
high-gain limit. Furthermore, the above analysis can be extended to establish that, for
weak inputs, the bump is stable (rather than marginally stable) with respect to
translational shifts [46].

Perturbation analysis

The amplitude phase decompositions (βj , vj) defined by equation (9) are not unique, so
additional mathematical constraints are needed in order to uniquely specify the
decomposition, and this requires specifying the allowed class of functions of vj (the
appropriate Hilbert space). We will take take vj ∈ L2(S1), that is, vj(θ) is a periodic
function with ‖vj‖2 = 〈vj , vj〉 =

∫ π
−π vj(θ)

2dθ <∞. Substituting the decomposition into
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the stochastic neural field equation (1) and using Ito’s lemma gives [39]

U ′1(θ + β1)dβ1 +
ε

2
U ′′1 (θ + β1)dβ2

1 +
√
εdv1(θ, t)

=

[
−U1(θ + β1)−

√
εv1(θ, t) +

∫ π

−π
J1(θ − θ′)f

(
U1(θ′ + β1) +

√
εv1(θ′, t)

)
dθ′
]
dt

+

[∫ π

−π

√
εK1(θ − θ′)f

(
U2(θ′ + β2) +

√
εv2(θ′, t)

)
dθ′ +

√
εh1(θ)

]
dt+

√
2εdW1(θ, t).

and

U ′2(θ + β2)dβ2(t) +
ε

2
U ′′2 (θ + β2)dβ2

2 +
√
εdv2(θ, t)

=

[
−U2(θ + β2)−

√
εv2(θ, t) +

∫ π

−π
J2(θ − θ′)f

(
U2(θ′ + β2) +

√
εv2(θ′, t)

)
dθ′
]
dt

+

[∫ π

−π

√
εK2(θ − θ′)f

(
U1(θ′ + β1) +

√
εv1(θ′, t)

)
dθ′ +

√
εh2(θ)

]
dt+

√
2εdW2(θ, t).

Introduce the series expansions vj = vj,0 +
√
εvj,1 +O(ε), Taylor expanding the

nonlinear function F , imposing the stationary solution (48), and dropping all O(ε)
terms. This gives [10,46], after dropping the zero index on vj,0,

√
εdv1(θ, t) =

√
εL1

β1
v1(θ, t)dt+

√
εK̂1(θ + β2)dt+

√
εh1(θ)dt+

√
2εdW1(θ, t),

−U ′1(θ + β1)dβ1 (58a)
√
εdv2(θ, t) =

√
εL2

β2
v2(θ, t)dt+

√
εK̂2(θ + β1) +

√
εh2(θ)dt+

√
2εdW2(θ, t)

−U ′2(θ + β2)dβ2, (58b)

where Ljβ are the following linear operators

Ljβv(θ, t) = −v(θ, t) +

∫ π

−π
Jj(θ − θ′)f ′(Uj(θ′ + β))v(θ′, t)dθ′, (59)

and

K̂1(θ+β) =

∫ π

−π
K1(θ−θ′)f

(
U2(θ′+β))dθ′, K̂2(θ+β) =

∫ π

−π
K2(θ−θ′)f

(
U1(θ′+β))dθ′.

(60)
It can be shown that the operator Lj0 has a 1D null space spanned by U ′j(θ). The

fact that U ′j(θ) belongs to the null space follows immediately from differentiating
equation (48) with respect to θ. Moreover, U ′j(θ) is the generator of uniform
translations around the ring, so that the 1D null space reflects the marginal stability of
the bump solution. (Marginal stability of the bump means that the linear operator Lj
has a simple zero eigenvalue while the remainder of the discrete spectrum lies in the
left-half complex plane. The spectrum is discrete since S1 is a compact domain.) This
then implies a pair of solvability conditions for the existence of bounded solutions of
equations (58a), namely, that dvj is orthogonal to all elements of the null space of the

adjoint operator Lj†βj
. The corresponding adjoint operator is

Lj†β v(θ, t) = −v(θ, t) + f ′(Uj(θ + β))

∫ π

−π
Jj(θ − θ′)v(θ′, t)dθ′. (61)

Let Vj(θ) span the 1D adjoint null space of L†0. Now taking the inner product of both
sides of equation (58a) with respect to Vj(θ + βj) and using translational invariance
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then yields the following SDEs to leading order:

dβ1 =
√
εH1(β1)dt−

√
εK1(β1 − β2)dt+

√
2εdw1(t), (62a)

dβ2 =
√
εH2(β1)dt−

√
εK2(β2 − β1)dt+

√
2εdw2(t), (62b)

where

Hj(β) = Γ−1
j

∫ π

−π
Vj(θ)hj(θ − β)dθ, (63)

for Hj(β + 2π) = Hj(β),

Kj(β) = Γ−1
j

∫ π

−π
Vj(θ)K̂j(θ + β)dθ, (64)

and

Γj =

∫ π

−π
Vj(θ)U ′j(θ)dθ, (65)

Here wj(t) are scalar independent Wiener processes,

E[dwj(t)] = 0, E[dwj(t)dwk(t′)] = δj,kDjδ(t− t′)dt′dt,

with

Dj =
1

Γ2
j

∫ π

−π

∫ π

−π
Vj(θ)Vj(θ′)Cj(θ − θ′)dθ′dθ. (66)

Evaluation of functions Hj and Kj

In order to determine the functions Hj and Kj we need to obtain explicit expressions
for the null vectors Vj . We will take hj(θ) = h̄j cos(θ− θ̄j). Applying the expansion (49)

to the adjoint equation Lj†0 Vj = 0 with Lj†0 defined by equation (61), we can write [46]

Vj(θ) = f ′(Uj(θ))[Cj cos θ + Sj sin θ],

with

Cj = Jj

∫ π

−π
cos θ Vj(θ)dθ, Sj = Jj

∫ π

−π
sin θ Vj(θ)dθ.

Substituting the expression for Vj(θ) into the expressions for Cj and Sj then leads to a
matrix equation of the form (56) with λ = 0. Since I[1] 6= 1, it follows that Cj = 0 so
that, up to scalar multiplications,

Vj(θ) = f ′(Uj(θ)) sin θ, U(θ) = Aj cos θ. (67)

Now substituting V(θ) into equation (63), we have

Hj(β) = Γ−1
j

∫ π

−π
Vj(θ)hj(θ − β)dθ

=
h̄j
Γ

∫ π

−π
f ′(Uj(θ)) sin θ cos(θ − θ̄j − β)dθ

=
h̄j
Γ

∫ π

−π
f ′(Uj(θ)) sin θ[cos θ cos(β + θ̄j) + sin θ sin(β + θ̄j)]dθ

= −Λj sin(β + θ̄j), (68)

with

Λj = − h̄j
Γj

∫ π

−π
f ′(Uj(θ)) sin2 θdθ. (69)
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We have used the fact that f ′′(Uj(θ)) is an even function of θ, so that the coefficient for
cos(β + θ̄j) is zero. The constant Γj can be calculated from equation (65):

Γj =

∫ π

−π
Vj(θ)U ′j(θ)dθ = −Aj

∫ π

−π
f ′(Uj(θ)) sin2 θdθ < 0. (70)

It follows that

Λj =
h̄j
Aj

> 0. (71)

The calculation of Kj(β) depends on whether we consider model A or model B, see
Figs. 14 and 2. From equations (6), (60) and (64), we have for model A

K1(β) = Γ−1
1

∫ π

−π
V1(θ)

[∫ π

−π
K1(θ − θ′)f

(
U2(θ′ + β))dθ′

]
dθ,

= Γ−1
1

∫ π

−π
f ′(U1(θ)) sin θ

[∫ π

−π
[E1 +K1 cos(θ − θ′)]f

(
U2(θ′ + β))dθ′

]
dθ

= Γ−1
1

[∫ π

−π
f ′(U1(θ)) sin2 θdθ

] [∫ π

−π
K1 sin θ′f

(
U2(θ′ + β))dθ′

]
= − 1

A1

[∫ π

−π
K1 sin(θ′ − β)f

(
U2(θ′))dθ′

]
=

K1

A1
sinβ

[∫ π

−π
cos θ′f

(
A2 cos(θ′))dθ′

]
≡ K1A2

A1
sinβ, (72a)

where we have used the stationary condition (8), and

K2(β) =
K2

A2
sinβ

[∫ π

−π
cos θ′f

(
A1 cos(θ′))dθ′

]
≡ K2A1

A2
sinβ. (72b)

Similarly, from equations (7), (60) and (64), we have for model B

K1(β) = Γ−1
1

∫ π

−π
f ′(U1(θ)) sin θ

[∫ π

−π
K1δ(θ − θ′)f

(
U2(θ′ + β))dθ′

]
dθ

=
2K1

Γ1

∫ π

−π
f ′(U1(θ)) sin θf

(
U2(θ + β))dθ

=
2K1

Γ1

∫ π

−π
f ′(U1(θ − β)) sin(θ − β)f

(
U2(θ))dθ. (73a)

Similarly,

K2(β) =
2K2

Γ2

∫ π

−π
f ′(U2(θ − β)) sin(θ − β)f

(
U1(θ))dθ. (73b)

Evaluation of diffusion coefficients

Finally, from equation (66), the diffusion coefficients Dj become

Dj =
1

Γ2
j

∫ π

−π

∫ π

−π
Cj(θ − θ′)f ′(Uj(θ))f ′(Uj(θ′)) sin θ sin θ′dθ′dθ. (74)

One finds that the diffusivities decreases as the spatial correlation lengths increase. For
example, in the case of spatially homogeneous noise (Cj(θ − θ′) = Cj), Dj = 0 since
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f ′(Uj(θ)) is even. On the other hand, for spatially uncorrelated noise
(Cj(θ − θ′) = Cjδ(θ − θ′)), we have

Dj =
Cj
Γ2
j

∫ π

−π
sin2 θ[f ′(Uj(θ)]

2dθ > 0. (75)

In Results we take Cj(θ − θ′) = Cj cos(θ − θ′) so that

Dj =
1

Γ2
j

∫ π

−π

∫ π

−π
Cj cos(θ − θ′)f ′(Aj cos(θ))f ′(Aj cos(θ′)) sin θ sin θ′dθ′dθ

=
Cj
Γ2
j

[∫ π

−π
f ′(Aj cos(θ)) sin2 θdθ

]2

=
Cj
2A2

j

. (76)

Numerical methods

All numerical simulations were performed in Matlab. One dimensional numerical
simulations were per- formed using a forward Euler method scheme in time and a
trapezoidal rule for integration in θ. Time steps were taken to be ∆t = 0.001, and
orientation steps ∆θ = 0.01π.
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