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25 Abstract

26 High-quality genotypic data is a requirement for many genetic analyses. For any crop, errors in genotype 

27 calls, phasing of markers, linkage maps, pedigree records, and unnoticed variation in ploidy levels can 

28 lead to spurious marker-locus-trait associations and incorrect origin assignment of alleles to individuals. 

29 High-throughput genotyping requires automated scoring, as manual inspection of thousands of scored 

30 loci is too time-consuming. However, automated SNP scoring can result in errors that should be 

31 corrected to ensure recorded genotypic data are accurate and thereby ensure confidence in 

32 downstream genetic analyses. To enable quick identification of errors in a large genotypic data set, we 

33 have developed a comprehensive workflow. This multiple-step workflow is based on inheritance 

34 principles and on removal of markers and individuals that do not follow these principles, as 

35 demonstrated here for apple, peach, and sweet cherry. Genotypic data was obtained on pedigreed 

36 germplasm using 6-9K SNP arrays for each crop and a subset of well-performing SNPs was created using 

37 ASSIsT. Use of correct (and corrected) pedigree records readily identified violations of simple inheritance 

38 principles in the genotypic data, streamlined with FlexQTLTM software. Retained SNPs were grouped into 

39 haploblocks to increase the information content of single alleles and reduce computational power 

40 needed in downstream genetic analyses. Haploblock borders were defined by recombination locations 

41 detected in ancestral generations of cultivars and selections. Another round of inheritance-checking was 

42 conducted, for haploblock alleles (i.e., haplotypes). High-quality genotypic data sets were created using 

43 this workflow for pedigreed collections representing the U.S. breeding germplasm of apple, peach, and 

44 sweet cherry evaluated within the RosBREED project. These data sets contain 3855, 4005, and 1617 

45 SNPs spread over 932, 103, and 196 haploblocks in apple, peach, and sweet cherry, respectively. The 

46 highly curated phased SNP and haplotype data sets, as well as the raw iScan data, of germplasm in the 

47 apple, peach, and sweet cherry Crop Reference Sets is available through the Genome Database for 

48 Rosaceae.
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49

50 Introduction

51 A high-quality, mostly error-free genotypic data set is imperative to obtain reliable results in many 

52 downstream genetic analyses. The results of genetic analyses can be influenced by even low rates of 

53 genotyping errors [1]. For example, the size of genetic maps and order of markers therein are affected 

54 by errors in genotypic data [2–4]. Inaccurate genotypic data will also lower the power, accuracy, and 

55 resolution of linkage studies and increase the number of false marker-locus-trait associations [5–7]. The 

56 number of observed (double) recombinants is inflated by errors in genotypic data [8]. Incorrect calling of 

57 recombinations in turn leads to incorrect determination of haploblock limits and assignment of 

58 haplotypes [9]. Finally, incorrect genotype calls can lead to incorrect imputations of missing data or even 

59 the improper adjustment of correct data to ensure the data is consistent with Mendelian inheritance 

60 [10].

61

62 There are several reasons for the occurrence of errors in a genotypic data set. Incorrect information 

63 about a sample’s identity, e.g., due to mixing up or mislabeling samples, causes an individual to be 

64 matched with the wrong data [1]. In clonally propagated crops, mislabeling errors can easily spread 

65 when individuals that are not true-to-type are used as parents or as base plants to create new 

66 propagules. Available pedigree information for an individual can be incorrect, causing incorrect 

67 enforcement of allele assignments. In fruit cultivars, numerous pedigree records have been confirmed or 

68 updated with the help of genetic markers [11–23]. Biological reasons such as unexpected mutation, 

69 insertions or deletions in the DNA sequence containing markers, and gene conversion can lead to 

70 inconsistencies in genotype calls and propagate errors through the data set [1]. Technician errors can 

71 also introduce errors in a data set, such as when lab protocols are not applied correctly (Hoffman and 
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72 Amos 2005) or when multiple large data sets with disparate formats are integrated and edited. Finally, 

73 technological and software limitations and failures can also lead to the presence of errors [1].

74

75 SNPs have become the genetic marker of choice for many genetic analyses but, with their increased use 

76 and increasingly large numbers that can be generated, manual data curation has become more 

77 challenging. SNPs are ubiquitous within the genome and allow for simultaneous screening of many 

78 thousands of polymorphic loci via SNP arrays, Genotyping-By-Sequencing, or resequencing [24,25]. SNP 

79 arrays provide consistent information between individuals and have been developed for clonally 

80 propagated crops, such as the 8K apple array [26], 9K peach array [27], and 6K cherry array [28] 

81 developed by international teams led by RosBREED; the GrapeReSeq 18K Vitis array [29]; the 20K apple 

82 array developed by FruitBreedomics [30], all on the Illumina Infinium® platform, and the strawberry 90K 

83 Axiom array [31], and the 480K apple array by FruitBreedomics on the Affymetrix axiom platform [32]. 

84 Genotyping each individual relies on the automated scoring of thousands of SNPs. As thousands to 

85 millions of SNPs are being assessed on a large set of individuals, even a low error rate in SNP scoring can 

86 correspond to a high absolute number of errors. As the number of SNPs on an array increase, it becomes 

87 more time-consuming and less feasible to manually review all automated SNP calls to identify potential 

88 errors.

89

90 For SNP arrays, incorrect genotype assignment using automated SNP scoring software occurs when 

91 intensity plots deviate from expected patterns. Automated genotyping is based on the association of 

92 specific alleles to different fluorescent molecules, the detection of these fluorescent molecules, the 

93 clustering of individual-marker data points according to intensity ratios between the different 

94 fluorescent dyes across multiple individuals into distinct regions of a genotype-calling space, and the 

95 final assignment of these clusters to genotypes. Examples of deviations that are observed in the 
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96 intensity plots are the presence of additional clusters or clusters that have shifted from their expected 

97 location in the intensity plot. The presence of additional clusters or shifted clusters can be attributed to 

98 additional regions that bind to the SNP’s probe [33]. Sequence similarity of these regions with the 

99 intended target is caused by either local sequence repetition or presence of paralogous regions in the 

100 genome. The presence of these highly similar sequences can lead to multi-locus segregating SNP 

101 markers that cannot be adequately called. The calling of a single segregating locus might also be 

102 hampered by the background signal of targeted but non-segregating gene copies (ASSIsT Reference 

103 Manual p17 [34]). The presence of one or more additional SNPs, insertions, or deletions in the probe-

104 binding region can lead to reduced or loss of binding affinity for the SNP’s probe and thereby to the 

105 presence of additional clusters, both of which can lead to incorrect genotype scoring of some SNPs [33].

106

107 No systematic workflow exists to efficiently detect and resolve all types of errors from a genotypic data 

108 set for pedigreed germplasm. Methods and software exist to tackle specific types of errors. For example, 

109 the ASSIsT software was developed for use with Illumina Infinium® arrays to identify which SNPs show 

110 robust results, which SNPs might have genotype calling errors due to alleles with reduced affinity or null 

111 alleles, and which SNPs are monomorphic or failed completely [35]. Another example is the aggregation 

112 of linked SNPs into a single genetic locus, called haploblock, which facilitates tracking the inheritance of 

113 alleles within a pedigree and subsequent identification of inheritance inconsistencies [36]. Despite the 

114 existence these and other methods and software, an effective way to combine these methods has not 

115 been described.

116

117 Here we describe a curation workflow for high-resolution genetic marker data that identifies and 

118 resolves errors to obtain a robust set of genotypic data. The workflow maximizes the genotypic data 

119 obtained from high-throughput genome-scanning tools while minimizing the time needed to identify 
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120 and remove errors. The workflow resulted from curation needs in the multi state and multi-crop USDA-

121 SCRI project RosBREED [37–39] and the European project FruitBreedomics [40–42]. The workflow is 

122 demonstrated for three tree fruit crops, apple, peach, and sweet cherry, using the RosBREED germplasm 

123 sets [43]. The resulting genotypic data sets can be used by researchers to reconstruct pedigrees, 

124 establish quantitative genetic relationships, identify and validate quantitative trait loci (QTLs), and trace 

125 allele sources, leading to valuable practical and scientific genetic insights – with high confidence in the 

126 obtained results.

127

128 Material and Methods

129

130 Plant material 

131 The apple, peach, and sweet cherry collections used in this study, referred to as the ‘Crop Reference 

132 Sets’, were created to represent U.S. breeding germplasm [43] for the RosBREED project [37] 

133 (www.rosbreed.org) and consisted of 451, 426, and 269 individuals for apple, peach, and sweet cherry, 

134 respectively (Tables S1-S3). Three apple breeding programs (Washington State University, the University 

135 of Minnesota, and Cornell University), three peach breeding programs (University of Arkansas, Clemson 

136 University, and Texas A&M University), and one sweet cherry program (Washington State University) 

137 each contributed additional germplasm to complement the Crop Reference Sets and better represent 

138 their important breeding parents [43]. These additional ‘Breeding Pedigree Sets’ consisted of 172, 139, 

139 and 167 apple individuals, 117, 289, and 143, peach individuals, and 259 sweet cherry individuals, 

140 respectively. The sweet cherry Breeding Pedigree Set was later made publicly available and became part 

141 of the sweet cherry Crop Reference Set. Genotypic data of the other Breeding Pedigree Sets were 

142 included as part of the data curation but individual identities of this private germplasm are not provided.

143
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144 To reduce the trimming of pedigrees (as described under ‘Haploblock and haplotype generation’ below), 

145 the genotype calls of 18 additional apple individuals genotyped with the 20K SNP array in the 

146 FruitBreedomics project [42] or genotyped with the 8K SNP array at KU Leuven, Belgium (Table S1) were 

147 added to the data set to complete genotypic data of key ancestors.

148

149 Initial parentage information

150 Initial parentage information was collected as part of the germplasm creation as described by Peace and 

151 co-workers (2014) [43]. For each breeding program, breeders provided pedigree records for their 

152 seedlings, selections, and released cultivars. Other pedigree records were based on historical records 

153 and available literature and were included for all progenitors, regardless of availability so that all 

154 progenitors terminated in founders (individuals with two unknown parents).

155

156 DNA extraction and iScan

157 DNA extraction was conducted for apple, peach, and sweet cherry as described by Chagné and co-

158 workers (2012) [26], Verde and co-workers (2012) [27], and Peace and co-workers (2012) [28], 

159 respectively. Genomic DNA from each individual was purified using the E-Z 96 Tissue DNA Kit (Omega 

160 Bio-Tek, Inc., Norcross, GA, USA). DNA was quantitated with the Quant-iT™ PicoGreen® Assay 

161 (Invitrogen, Carlsbad, CA, USA), using the Victor multiplate reader (Perkin Elmer Inc., San Jose, CA, USA). 

162 DNA concentrations were adjusted to a minimum of 50 ng/µl, in 5 µl aliquots. For apple, DNA samples 

163 were run on the Illumina Infinium® 8K apple SNP array [26] with iScans either at the Biotechnology 

164 Platform of the Agricultural Research Council (Pretoria, South Africa) or at the Research Technology 

165 Support Facility at Michigan State University (East Lansing, MI, USA), following the manufacturer's 

166 protocol (Illumina Inc.). For peach and sweet cherry, DNA samples were run on the 9K peach SNP array 

167 [27] and 6K cherry SNP array [28], respectively, with an iScan at the Research Technology Support 
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168 Facility at Michigan State University (East Lansing, MI, USA), following the manufacturer's protocol 

169 (Illumina Inc.).

170

171 Initial genetic maps

172 For each crop, available genetic maps were used as a framework to determine the initial order of 

173 reliable SNPs. Reliable SNPs (obtained as described under ‘Subset of reliable SNP obtainment’ below) 

174 that were not present in available genetic maps were incorporated by comparing their physical positions 

175 to those of flanking SNPs that were present in available genetic maps.

176

177 For apple, an integrated genetic map based on five full-sib families with ‘Honeycrisp’ as common parent 

178 [20] was used as a framework to help align additional SNPs on the 8K array. The relative order of SNPs in 

179 the map of Howard and co-workers (2017) [20] was adjusted to be consistent with the ‘Golden 

180 Delicious’ double haploid genome sequence v1.1 [44] whenever this did not result in false detection of 

181 double recombination for the original mapping populations. Then, SNPs that were included in the iGL 

182 map [45] but not included by Howard and co-workers (2017) [20] were aligned based on relative marker 

183 order between common markers of both maps and the ‘Golden Delicious’ double haploid genome 

184 sequence v1.1 [44]. In cases of conflict between the iGL map and the reference genome, only the iGL 

185 map was used as reference. Genetic positions of newly added SNPs were determined so that, in the new 

186 map, they had the same position relative to the position of flanking markers as these SNPs did in the iGL 

187 map. Finally, any remaining unmapped SNPs were positioned based solely on relative physical positions 

188 according to the ‘Golden Delicious’ double haploid genome sequence v1.1 [44]. When the genetic 

189 position in the iGL map was known for repositioned or newly added SNPs, their genetic position in the 

190 new map was determined so that they had the same position relative to the position of flanking markers 

191 as they did in the iGL map. When no genetic position in the iGL map was available, the genetic position 
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192 was determined so that, in the new map, they had the same position relative to the position of flanking 

193 markers as they did in the physical genome. In peach, genetic positions were based on the peach 

194 physical position of peach genome v2.0 [46]. The peach physical map was scaled to an approximate 

195 genetic map by using a conversion factor where every 1 Mb corresponded to 4 cM. For sweet cherry, 

196 genetic positions were determined by aligning and integrating the physical positions using peach 

197 genome v2.0 [46] with the sweet cherry ‘Regina’ × ‘Lapins’ SNP linkage map [21,47].

198

199 Workflow procedures

200 Throughout the workflow, several software packages were used. Below are described the main 

201 procedures used in the workflow, the associated software and parameter settings, and output files 

202 used. The order in which each functionality was used in the workflow is reported in Results section 

203 ‘Steps of the data curation workflow’.

204

205 Initial genotypic data obtainment (GenomeStudio®)

206 iScan output was converted to ‘AA’, ‘AB’, and ‘BB’ genotype calls for each SNP marker with the 

207 Genotyping module of GenomeStudio® v2011.1 (Illumina Inc., San Diego, CA, USA) using a sample sheet 

208 to load sample intensities and a ‘Gen Call’ Threshold of 0.15 to assign samples to a genotype cluster. The 

209 sample sheet was adjusted in Microsoft Excel as follows before using it as input for GenomeStudio®:

210  The sample sheet was saved as an ‘xls(x)’ file to avoid the loss of ‘SentrixBarcode’ information 

211 that occasionally occurs when saving it as a ‘.csv’ file.

212  When individuals were separated over multiple iScan runs and sample sheets, the ‘[Data]’ 

213 sections of each sample sheet were combined into one.

214  A copy of the ‘Sample_ID’ column in the ‘[Data]’ section was added and named 

215 ‘Sample_Original’.
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216  Sample names in the ‘Sample_ID’ were adjusted to remove any spaces or special characters 

217 (needed for some software) and avoid long names or names that could be interpreted as dates 

218 (or other special formats) by Excel.

219  Duplicate and parental information was added to the ‘Replicate’, ‘Parent1’, and ‘Parent2’ 

220 columns considering the adjusted names in the ‘Sample_ID’ column.

221  The resulting sample sheet was saved both as a ‘.xlsx’ file for future editing and as a ‘.csv’ file to 

222 serve as an input file for GenomeStudio®.

223

224 Low-quality and non-diploid sample identification (GenomeStudio® and R) 

225 Quality and ploidy were assessed using each sample’s B-allele frequencies calculated by 

226 GenomeStudio®. In GenomeStudio®, the histogram of the B-allele frequency was plotted for each 

227 individual by opening the ‘Histogram plot’ function of the ‘Full Data Table’, choosing the first individual 

228 in the ‘Columns’ section, and then choosing ‘B Allele Freq’ in the ‘Sub Columns’ section. The histogram 

229 for the ‘B-allele frequency’ could then be plotted for each individual by scrolling through the individuals 

230 in the ‘Columns’ section. Samples were considered of good quality when a clear heterozygous peak was 

231 observed around 0.5 with almost no SNPs having a B-allele frequency between 0.125 and 0.375 and 

232 between 0.625 and 0.75. In contrast, samples of poor quality showed no clear heterozygous peak 

233 around 0.5 and had many SNPs with a B allele-frequency between 0.125 and 0.375, and between 0.625 

234 and 0.75. Individuals that showed more than three peaks in the histogram were classified as polyploid. 

235 Individuals that showed a ‘shoulder’ on the AB peak were classified as putative aneuploids and were 

236 examined further in B-allele frequency plots according to Chagné and co-workers (2015) [48], below.

237

238 To create B-allele frequency plots according to Chagné and co-workers (2015) [48], a subset of SNPs was 

239 created by applying the filter parameters described in Table S4A in the ‘SNP Table’ of GenomeStudio®. 
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240 Next, the ‘Full Data Table’ of GenomeStudio® was adjusted to only contain the B-allele frequency of 

241 each sample: in the ‘Column Chooser’ function of GenomeStudio®, ‘B Allele Freq’ was added to the 

242 ‘Displayed Subcolumns’ section while all other subcolumns were removed from this section. The 

243 resulting ‘Full Data Table’ was exported using the ‘export displayed data to a file’ function. The exported 

244 ‘Data Table’ was further adjusted to the following format: the first column contained the SNPs name, 

245 the second column contained the SNP’s cumulative position, and all subsequent columns contained the 

246 samples’ B-allele-frequencies.

247

248 Each SNP’s cumulative genomic position was determined as follows: the chromosome number 

249 corresponding to the SNP was multiplied by the power of ten which ensured that the outcome was 

250 larger than any possible position within any chromosome (e.g., if the largest physical position within any 

251 chromosome was 456,437 bp, all chromosome numbers were multiplied by 1,000,000 or 106 as this is 

252 the first power of 10 that is larger than 456,437. Similarly, if the largest genetic position within any 

253 chromosome was 145 cM, each chromosome number was multiplied by 1000 or 103). Then, the physical 

254 or genetic position within the chromosome was added to the adjusted chromosome number to obtain 

255 the cumulative genomic position of that SNP. The resulting file was then loaded into R [49].

256

257 An ad hoc R-script (Document S1) generated a pdf file that contained a plot for each individual where ‘B-

258 allele frequency’ values were plotted for the subset of SNP markers that were ordered according to their 

259 cumulative position on a genetic linkage map or reference genome sequence. ‘B-allele frequency’ values 

260 were expected to be 0, 0.5, or 1 for diploids. Diploid samples were considered of sufficient quality when 

261 almost no SNPs (<0.3% of the subset) were observed between 0.125-0.375 and 0.625-0.875. In contrast, 

262 a sample was considered of intermediate or poor quality when many SNP markers (0.3%-3% and >3%, 

263 respectively) showed an intermediate or large discrepancy. For triploids, ‘B-allele frequency’ values were 
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264 expected to be 0, 0.33, 0.66, and 1 for all chromosomes while values of 0, 0.25, 0.5, 0.75, and 1.0 were 

265 expected for tetraploids. Aneuploids had a diploid pattern for most chromosomes and a haploid or 

266 polyploid pattern for others. Individuals classified as poor quality, polyploid, and aneuploid were 

267 excluded from further analyses.

268

269 Samples were excluded from various input files and from the genotype clustering in GenomeStudio® by 

270 choosing them in the ‘Samples Table’ and then choosing the ‘Exclude Selected Samples’. SNPs were then 

271 re-clustered by choosing the ‘Cluster All SNPs’ of the ‘Analysis’ section. All statistics were updated when 

272 prompted.

273

274 Subset of reliable SNP obtainment (ASSIsT)

275 The ‘Final report’ and ‘DNA report’ input files were created as described in the ASSIsT Reference Manual 

276 [34]. Briefly, a ‘Final Report’ and ‘DNA Report’ were generated using the ‘Report Wizard’ under the 

277 ‘Reports’ option of the ‘Analysis’ section. The best ‘redo’ was chosen based on the ‘10th Percentile GC 

278 score’ and excluded samples were removed from the report. For the ‘Final Report’, ‘GTScore’, ‘Theta’, 

279 and ‘R’ were added to the default ‘Displayed Fields’ and data was grouped ‘by SNP’. For the ‘DNA 

280 Report’, samples were exported by ‘Sample ID’.

281

282 The pedigree input file was created in Excel by copying the ‘Sample_ID’, ‘Parent1’, and ‘Parent2’ 

283 columns from the ‘[Data]’ section of the sample sheet used to create the GenomeStudio® project, 

284 adjusting the column names to ‘//SampleID’, ‘Mother’, and ‘Father’, respectively, and saving the 

285 resulting file as a tab-delimited text file. The (optional) map was created in Excel by having the SNP 

286 Names as given by GenomeStudio® in the first column and their corresponding chromosome and 

287 position within the chromosome (either physical or genetic) as the second and third column, 

made available for use under a CC0 license. 
certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also 

The copyright holder for this preprint (which was notthis version posted January 7, 2019. ; https://doi.org/10.1101/514281doi: bioRxiv preprint 

https://doi.org/10.1101/514281


13

288 respectively. Column names were set to ‘//SNPid’, ‘Chromosome’, and ‘Position’ and the resulting file 

289 was saved as a tab-delimited text file

290

291 All input files were loaded into ASSIsT v1.01 [35] using the ‘Select’ button. Then, parameters were set 

292 using the ‘Set’ button as described in Table S4B depending on the ‘Population type’ used. ASSIsT 

293 distinguished eight marker classes, which were re-grouped into the following five categories:

294 • Robust SNPs: having less than 5% No Call Rate and all three possible clusters (AA, AB, and BB) 

295 present in the germplasm set. In ASSIsT, these SNPs were classified as ‘Robust’, 

296 ‘OneHomozygRare_HWE’, ‘OneHomozyRare_NotHWE’, and ‘DistortedAndUnexSegreg’

297 • Two cluster SNPs: having less than 5% No Call Rate and one of the homozygous clusters (AA or 

298 BB) absent in the germplasm set. In ASSIsT, these SNPs were classified as ‘ShiftHomo’

299 • Null-allele SNPs: having a probable null allele, classified as ‘NullAllele-Failed’ in ASSIsT

300 • Monomorphic SNPs: having no polymorphism, as in ASSIsT 

301 • Failed SNPs: having more than 50% No Call Rate, poor clustering, or low intensity, as in ASSIsT

302

303 Results of SNP performance in ASSIsT were exported to the ‘Summary’ and ‘Custom SNP information 

304 table’. Genotype calls were saved in ‘Custom gtypes’ to be used in the R-script that checked pedigree 

305 records (described below in ‘Pedigree records verification’). PLINK input files were generated to check 

306 for unknown duplicates within the data (described below in ‘Duplicate individuals detection’) and 

307 FQ_DataPrepper input files were created to easily generate FlexQTL input files using FQDataPrepper 

308 (described below in ‘Genotyping error detection and adjustment’). Genotype calls for the ‘Robust SNPs’ 

309 category were automatically reported in ASSIsT output files whereas other categories were considered 

310 to contain failed SNPs and thus their genotype calls were not automatically reported. To include 

made available for use under a CC0 license. 
certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also 

The copyright holder for this preprint (which was notthis version posted January 7, 2019. ; https://doi.org/10.1101/514281doi: bioRxiv preprint 

https://doi.org/10.1101/514281


14

311 genotype calls of the ‘Two cluster SNPs’, genotype calls of such SNPs were extracted from 

312 GenomeStudio® and added to the data files manually.

313

314 Duplicate individuals detection (GenomeStudio® and Plink)

315 Genotypic data of known mutants and duplicates were compared to ensure their genotypic data were 

316 matching using the ‘Reproducibility and Heritability’ report of GenomeStudio® 

317 (Analysis>Reports>Reproducibility and Heritability Report>with Calculating Errors). The data set was also 

318 screened for individuals with (unknown) identical genotypic data using Plink 1.9 [50] (https://www.cog-

319 genomics.org/plink2). Plink input files generated with ASSIsT were copied into the folder that contained 

320 the PLINK executable (plink.exe). Then, a ‘command window’ or ‘PowerShell window’ was opened in this 

321 folder and the ‘plink.exe --file [filename] –missing-genotype - --genome full’ or ‘\plink.exe --file 

322 [filename] –missing-genotype - --genome full’ command was given, respectively, where [filename] was 

323 the name of the PLINK input files used. The resulting ‘plink.genome’ was opened in Excel and the 

324 ‘PI_HAT’ column was used to represent the proportion of identity-by-descent (IBD) between each pair of 

325 individuals. Pairs of individuals with an IBD proportion higher than 97% were considered to be 

326 duplicates because at this stage all known duplicates shared an IBD proportion of at least 97%. If 

327 individuals were true duplicates, only one was kept in the data set. If pedigree records differed between 

328 duplicate individuals, pedigree records were used to identify trueness-to-type as described below. True-

329 to type individuals were kept in the data set and individuals that were not true-to-type were targeted 

330 for DNA re-sampling. Where two unselected seedlings from the same family were identified as 

331 duplicates, they were both targeted for re-sampling as it was unclear which of the two was true-to-type.

332

333

334
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335 Pedigree records verification (GenomeStudio®, Cervus, and R)

336 Verification of pedigree records was performed by counting the Mendelian-inconsistent errors between 

337 an individual and (each of) its recorded parent(s) where genotypic data was available. These errors were 

338 genotypic data inconsistent with Mendel’s first law, i.e., alleles present in offspring but not present in 

339 either parent. First, parent-child (PC) errors between an individual and a single parent were defined as 

340 genotype calls where none of the parental alleles were present in the offspring. For example, the 

341 recorded offspring might be ‘BB’, ‘B null’, or ‘null null’ while the recorded parent was ‘AA’. In this 

342 example, neither the ‘B’ allele nor the ‘null’ alleles were present in the parent. Secondly, when both 

343 parents were known and confirmed, the combination of the two parents’ SNP data were compared to 

344 the offspring’s SNP data to identify parent-parent-child (PPC) errors. PPC errors were defined as 

345 genotype calls where at least one allele of the offspring was not present in any of its recorded parents. 

346 For example, in the case of an ‘AA’ x ‘AA’ -> ‘AB’ triplet, no PC error would be observed when checking 

347 each parent individually, as both parents could have contributed the ‘A’ allele to the offspring. However, 

348 combination of the two parents would create a PPC error as neither parent could have contributed the 

349 ‘B’ allele observed in the offspring.

350

351 Three ways to count Mendelian-inconsistent errors were compared. In GenomeStudio®, a 

352 ‘Reproducibility and Heritability’ (Analysis>Reports>Reproducibility and Heritability Report>with 

353 Calculating Errors) was generated to obtain the number of PC and PPC errors. Mendelian-inconsistent 

354 errors were calculated in the software Cervus [51] using default parameter settings. Third, an ad hoc R-

355 script (Document S2) was used to check and identify PC and PPC relationships.

356

357 The ‘.gtypes’ ASSIsT output file was further adjusted to the following format: the first column contained 

358 an individual’s ‘Sample ID’, the second and third columns contained the individual’s ‘Mother ID’ and 
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359 ‘Father ID’, respectively, and the subsequent columns contained the individual’s genotypic data. Any 

360 missing parental information was set to ‘-’. All alleles found in the data set were defined in the 

361 ‘AlleleList’ parameter whereas characters used for missing genotypes or missing alleles were defined in 

362 the ‘MissGT’ and ‘MissAllele’ parameters respectively. After loading all functions defined in the R-script, 

363 the ‘CheckParAll()’ function was used to identify Mendelian-inconsistent errors for individuals with at 

364 least one known parent in the data set. When an individual’s supposed parent was not genotyped but 

365 the supposed grandparents were genotyped, the grandparents-grandchild relationship was tested with 

366 the AB+AA-AA test in Excel using the template provided by van de Weg and co-workers (2018) [23].

367

368 A threshold was determined for the proportion of PC errors to confirm or reject PC relations using 

369 incompletely curated marker data. PC errors were counted for a thousand pairs of two random 

370 individuals in the data set that did not have a (known) PC relationship and for all pairs of individuals that 

371 had a known PC relationship. A separation was observed between the resulting distributions of PC errors 

372 for the two sets of individuals and a midway point between both distributions was used as threshold to 

373 reject parentage of an individual. Similarly, a threshold was determined to accept or reject the 

374 combination of two parents; observed PPC errors were counted for previously confirmed PPC 

375 relationships and a threshold set as 110% of the highest number observed PPC errors among these 

376 known relationships.

377

378 In cases of missing or erroneous parent information, efforts were made to identify the missing parent 

379 and, if not possible, to identify sets of possible grandparents. Hereto, all available selected material was 

380 examined (ancestors, direct parents, and breeding selections). In apple and peach, the 

381 ‘FindPosParComb()’ function of the ad hoc R-script (Document S2) was used to find PC and PPC 

382 relationships. The maximum number of PC errors and PPC errors to still accept a PC relationship and PPC 
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383 relationship, respectively, were set with the ‘thresholdPE’ and ‘thresholdPPE’ parameters of the 

384 ‘FindPosParComb()’ function, respectively. In cherry, the software Cervus [51] was used to count these 

385 errors and determine possible parents using the default parameter settings. When no second possible 

386 parent was found in the data set, possible grandparents were identified in Excel using the template 

387 provided by van de Weg and co-workers (2018) [23]. Historic records (e.g., location and time of origin) of 

388 possible grandparents were checked to ensure feasibility. Furthermore, deduced grandparent-

389 grandchild relationships were only kept if they did not lead to a large number of reported errors during 

390 the rest of the workflow.

391

392 Pedigree information was then updated in various input files and in GenomeStudio® (Analysis>Edit 

393 Parental Relationships; then choosing individual and correct parents from drop-down menu) for further 

394 analyses. All statistics in GenomeStudio® were updated when prompted.

395

396 Genotyping error detection and adjustment (GenomeStudio®, FlexQTLTM, and Visual FlexQTLTM)

397 Genotyping errors were divided in two classes: Mendelian-inconsistent errors and Mendelian-consistent 

398 errors [10]. Unlike Mendelian-inconsistent errors, Mendelian-consistent errors are errors that do not 

399 infringe upon Mendel’s first law: a child’s false allele call is present in one of the parents, but results in 

400 problematic co-segregation patterns that show unexpected double recombination between markers 

401 with successive genetic/physical positions. These double recombinations might be due to issues in 

402 ploidy, calling, marker ordering, or phasing or, occasionally, gene conversion [10] (Document S3).

403

404 For individuals with verified pedigree relationships, remaining Mendelian-inconsistent errors were 

405 detected using GenomeStudio® and FlexQTLTM v0.99130. In GenomeStudio®, the ‘SNP Table’ was filtered 

406 for SNPs with Mendelian-inconsistent errors, the ‘Error Table’ was used to identify individuals with 
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407 Mendelian-inconsistent errors, and the ‘SNP Graph’ was used to examine the reported errors. FlexQTLTM 

408 input files were prepared using FlexQTL DataPrepper v1.0.0.4 

409 (https://www.wur.nl/en/show/FlexQTL.htm). Three input files were needed to run FlexQTL 

410 DataPrepper: a map file, a pedigree file, and a data file. The map file was obtained by adjusting the 

411 ASSIsT map input file as follows: Column names were changed to ‘MarkerId’, Group’, and ‘Position’ and 

412 the file was saved as a comma-delimited file (.csv). The pedigree file was obtained by adjusting the 

413 ASSIsT pedigree input file as follows: column names were changed to ‘Name’, ‘Parent1’, and ‘Parent2’ 

414 and the file was saved in the ‘.csv’ format. The data file was obtained by converting the 

415 ‘FlexQTLDataPrepper’ from ASSIsT to the ‘.csv’ format. The data file (.dat) generated by FlexQTL 

416 DataPrepper was adjusted to ensure all individuals had either both parents specified or none. Any 

417 individual that had only one known parent was given a dummy parent. These dummy parents, as well as 

418 any named parent not in the data set, were added to the data input file with all their genotypic data set 

419 to missing. FlexQTLTM was used to check for Mendelian-inconsistent errors (parameter settings in Table 

420 S4C). Briefly, FlexQTLTM was run through using an early stop (‘pedimapV’ parameter set to ‘2’; to stop 

421 after checking the data for inconsistencies) and allowing for segregation distortion (‘MSegDelta’ 

422 parameter set to 1). This analysis summarized for each marker and each individual how many 

423 Mendelian-inconsistent errors were observed in the ‘mconsistency.csv’ file.

424

425 Mendelian-consistent errors were detected by examining double recombinations detected over small 

426 regions (<10 cM) as reported by FlexQTLTM and Visual FlexQTLTM. Parameter settings of FlexQTLTM to 

427 check for double-recombinations were the same as for Mendelian-inconsistent errors above (Table S4C). 

428 The FlexQTL™ output file named ‘DoubleRecomb.csv’ listed all singletons (single markers involved in a 

429 double recombination) in the data set. Visual FlexQTLTM instead identifies all double recombinations 

430 (including singletons) that occur within a given genetic distance. The default for this distance was 10 cM 
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431 and could be changed under ‘Tools>Calculate>(Re-)Compute recombination sequences’. The report on 

432 double recombinations was created through ‘Tools>Export>Export recombination sequence file’ which 

433 provided an output file called ‘DoubleRecombinations.csv’.

434

435 Genotype calls of SNPs with Mendelian-inconsistent errors or SNPs involved in detected double 

436 recombinations were further examined in GenomeStudio® using the ‘SNP Graph’. Where incorrect 

437 cluster identification was detected, clusters were manually called using the ‘SNP Graph’ and FlexQTLTM 

438 was run again to ensure errors were resolved. Individuals belonging to a single cluster were chosen 

439 using the ‘Lasso Mode’ of the ‘SNP Graph’. After ‘right-clicking’ on the ‘SNP Graph’, the ‘Define X Cluster 

440 Using Selected Samples’ was chosen where ‘X’ was the appropriate genotype cluster (‘AA’, ‘AB’, or ‘BB’). 

441 The few SNPs that could not have their genotype clusters assigned simultaneously in GenomeStudio® 

442 (e.g., because clusters were too closely positioned; one of the clusters for homozygous individuals was 

443 between x=0.4 and x=0.6, which is true for part of the paralogous SNP one of the homozygous clusters 

444 according to the ASSIsT Reference Manual p14 [34]; or because null alleles were present) were 

445 genotyped as follows. Individuals belonging to a single cluster were selected using the ‘Lasso Mode’ of 

446 the ‘SNP Graph’ in GenomeStudio®. ‘Sample_IDs’ of the chosen individuals were transferred to Excel by 

447 highlighting the ‘Sample_ID’ column in the ‘Sample Table’, using the ‘copy’ function of the ‘Samples 

448 Table’, and pasting them into Excel. In Excel, the copied ‘SampleIDs’ were then assigned a genotype call. 

449 This process was repeated until all individuals had their genotype assigned. If genotype calls could not 

450 be accurately made, the SNP was considered to have failed and removed from the data set.

451

452 Identification of Mendelian-inconsistent and Mendelian-consistent errors were also performed at the 

453 haplotype level, conducted as described above at the single SNP level. Where an unidentified error in 

454 SNP genotype scoring was detected, the corresponding SNP genotype calls were adjusted. If the calling 
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455 error occurred in a single or few individuals, haplotypes were manually adjusted to reflect the change in 

456 SNP allele. In the rare event that a large group of individuals had their SNP genotype calls adjusted, the 

457 corresponding haplotypes were re-determined using PediHaplotyper [36]. Where Mendelian-

458 inconsistent errors were due to missing SNP alleles, the individual was compared to its parent and 

459 offspring to determine the correct haplotype. For example, if an individual had a SNP haplotype of ‘A-?-

460 B-A’ and the haplotype was not present in either parent, but a parent had a haplotype of ‘A-A-B-A’ and 

461 no haplotype of ‘A-B-B-A’, the haplotype of the offspring would be set to ‘A-A-B-A’. If both ‘A-A-B-A’ and 

462 ‘A-B-B-A’ were present in the parent, information of flanking, linked haplotypes were checked to assess 

463 if the offspring’s haplotype could be determined by minimizing the number of recombinations. Where 

464 inconsistencies in selected material were suspected to be due to a recombination in an ungenotyped 

465 progenitor, the haploblock was split in two at the suspected recombination site to avoid tracking in 

466 downstream genetics analyses of recombination in selected material. The haplotypes for those two new 

467 haploblocks were determined again using PediHaplotyper.

468

469 Map error detection and adjustment (FlexQTLTM, Visual FlexQTLTM, and Microsoft Excel)

470 Where double recombinations were observed and these recombinations were not due to incorrect 

471 genotype scoring, a graphical genotyping approach was used to examine and possibly adjust SNP order 

472 in the genetic map [52]. Graphical genotyping plots were created starting from the ‘SIP_Population.csv’ 

473 output file of FlexQTLTM (Document S3). FlexQTLTM was run again to ensure the errors were resolved and 

474 only if the adjustment of the SNP order did not lead to new double recombinations, a change in order 

475 was accepted. SNPs were removed from the data set if they had unexpectedly high incidences of double 

476 recombinations that could not be resolved by repositioning the SNPs in the map. Additionally, where a 

477 SNP mapped to multiple locations in different families, the SNP was removed from the data set.

478
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479 Haploblock and haplotype determination (FlexQTLTM, Visual FlexQTLTM, and PediHaplotyper)

480 Haploblocks were defined as regions in which no recombination was observed for selected material. For 

481 phasing, parental information in the data input file of FlexQTLTM was adjusted so that the pedigree was 

482 trimmed to remove intermediate progenitors without genotypic data unless they were represented by 

483 more than four direct offspring. Because Visual FlexQTLTM does not consider any individual without 

484 offspring (e.g., new breeding selections) in haploblock determination, dummy offspring with missing 

485 genotypic data were added for individuals that did not have any offspring in the data set yet whose 

486 recombinations were desired to contribute to determination of haploblock borders. The data was 

487 phased using FlexQTLTM (parameter settings in Table S4D). Next, Visual FlexQTLTM was used to define 

488 haploblock borders under ‘Tools>Export>Export haplotype blocks file’, creating the ‘HaploBlocks.map’ 

489 file that assigns each marker to a haploblock and could be used as input for PediHaplotyper.

490

491 For SNP phasing within haploblocks, the pedigree had to be trimmed as in haploblock determination to 

492 remove intermediate progenitors without genotypic data unless they were represented by more than 

493 four direct offspring. However, dummy offspring introduced for haploblock determination were 

494 removed again before phasing the data. FlexQTLTM was then run again (parameter settings in Table S4D), 

495 with the output file named ‘mhaplotypes.csv’, which was used as an input for PediHaplotyper.

496

497 The PediHaplotyper package [36] was loaded into R and the working directory was set to the location of 

498 the input files created above (‘HaploBlocks.map’, ‘mhaplotypes.csv’, ‘flexqtl.par’, and ‘flexqtl.sort’). In R, 

499 the function ‘fq_haplotyping_session(sessionID=’prefix", mapfile="HaploBlocks.map")’ was used to 

500 create the haplotype output files in the working directory where ‘prefix’ was user-defined text that 

501 prefixed all output file names. The ‘prefix_hballeleles.dat’ output file listed the composition of each 

502 haplotype of each haploblock and the ‘prefix_flexqtl.dat’,’prefix_flexqtl.map’, and ‘prefix_flexqtl.par’ 
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503 output files were used as input files for FlexQTLTM for further data curation of the haplotyped data sets 

504 (resolving both Mendelian-inconsistent and Mendelian-consistent errors as described under 

505 ‘Genotyping error detection and adjustment’).

506

507 SNP classification

508 A SNP classifications system was established to track clustering issues and minimize future curation of 

509 new data. SNPs that passed the filter criteria from ASSIsT and that were included in the final data set 

510 were classified into four types: type 1 SNPs had no or less than 5% call editing during the curation 

511 process and no additional genotype clusters were present; type 2 SNPs had an incorrect automated 

512 cluster identification of one of the genotype clusters (e.g., ‘AA’ cluster called as ‘AB’), showed no 

513 additional clusters, and could easily be corrected; type 3 SNPs showed additional clusters because of 

514 alleles with differential intensity signals but individuals could easily be called correctly; and type 4 SNPs 

515 had null alleles but individuals with null alleles could be distinguished easily from true homozygous 

516 individuals. Type 5 SNPs could be accurately called but their genetic or physical position could not be 

517 determined accurately and were not included in the map and final data set. Type 6 SNPs were 

518 monomorphic across all individuals. Type 7 SNPs were those considered as ‘Failed’ by ASSIsT or were 

519 removed during the workflow because their genotype calls could not be manually resolved.

520

521 Workflow creation and implementation

522 A workflow was constructed by identifying necessary steps of data curation and ordering them in such a 

523 way that the amount of time needed for data curation is minimized at each step. Thus, errors addressed 

524 first were those relatively easy to identify and resolve and otherwise expected to cause problems at 

525 multiple steps. The workflow was an outcome of efforts in RosBREED and FruitBreedomics on data 

526 curation in apple, peach, and cherry. Statistics at each step of curation were determined from 
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527 implementing this workflow on the RosBREED germplasm described in the ‘Plant Material’ section 

528 above.

529

530 Results

531

532 Steps of the data curation workflow

533 Initial error-detection resulted in a list of possible causes for each type of detected errors (Table 1). This 

534 list identified which issues had to be resolved first and as such resulted in the workflow described below 

535 (Figure 1, Document S3). The workflow developed had three main parts, each with multiple steps. The 

536 first main part ensures that genetic principles can be applied, the second main part applies these 

537 principles on a single marker level, and the last main part applies these principles at the haploblock 

538 level. The proposed steps within each main part are described below, as conducted for apple, peach, 

539 and sweet cherry.

540

541

542 Table 1: Errors observed during the curation process and their possible causes. Causes that 

543 should be (mostly) already resolved by the stage a researcher would start checking for specific errors are 

544 in parentheses and grey font.

Error Cause Solution
Low call rate and impossible cluster 
identification

Probe binding issues Remove SNP from data set

Unexpected B-allele frequencies (Probe binding issues) (Remove SNP from data set)
 Unexpected ploidy Remove sample from data set

Low sample quality Remove sample from data set
High number P(P)C errors (Probe binding issues) (Remove SNP from data set)

(Low sample quality) (Remove sample from data set)
Incorrect pedigree Adjust pedigree record
Incorrect clustering Manually determine genotype clusters
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 Incorrect genotype call(s) not due to 
cluster issues

Adjust genotype call(s) or remove SNP 
from data set

Low number P(P)C errors (Probe binding issues) (Remove SNP from data set)
(Low sample quality) (Remove sample from data set)
(Incorrect pedigree) (Adjust pedigree record)
Incorrect clustering Manually determine genotype clusters

 Incorrect genotype call(s) not due to 
cluster issues

Adjust genotype call(s)

High number double recombinations (Probe binding issues) (Remove SNP from data set)
(Low sample quality) (Remove sample from data set)
(Incorrect pedigree) (Adjust pedigree record)
(Unexpected ploidy) (Remove sample from data set)
Incorrect clustering Manually determine genotype clusters
Incorrect marker position in map Adjust marker position or remove 

marker if it cannot be accurately 
mapped 

Incorrect genotype call(s) not due to 
cluster issues

Adjust genotype call(s)

 Incorrect phasing Find responsible individual and make 
genotype missing

Low number double recombinations (Probe binding issues) (Remove SNP from data set)
(Low sample quality) (Remove sample from data set)
(Incorrect pedigree) (Adjust pedigree record)

(Incorrect clustering) (Manually determine genotype 
clusters)

Nearby double recombination* Resolve nearby double recombination
Incorrect marker position in map Adjust marker position or remove 

marker if it cannot be accurately 
mapped

Incorrect genotype call(s) not due to 
cluster issues

Adjust genotype call(s)

 Incorrect phasing Wait for haploblock analysis to resolve 
issue

Incorrect haplotype determination (Probe binding issues) (Remove SNP from data set)
(Low sample quality) (Remove sample from data set)
(Incorrect pedigree) (Adjust pedigree record)
(Incorrect clustering) (Manually determine genotype 

clusters)
(Incorrect marker position in map) (Adjust marker position or remove 

marker if it cannot be accurately 
mapped)

(Incorrect genotype call(s) not due to 
cluster issues)

(Adjust genotype call(s))

Incorrect phasing Manually correct phasing (determine 
correct haplotypes)

 Recombination within haplotype Adjust haploblock borders
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*Nearby double recombination can occur for two adjacent markers with many double recombinations and markers with 
few double recombinations. However, nearby double recombinations rarely lead to a high number of double 
recombinations for a single marker

545

546

547 Figure 1: Steps of the high-resolution genotypic data curation workflow to ensure a quick and 

548 efficient curation process. Steps that identify errors are shown in white boxes; procedures needed for 

549 detecting, keeping track of, and resolving errors but do not identify errors directly are in grey boxes. 

550 After obtaining a first set of genotypic data, initial steps ensure that inheritance principles can be readily 

551 applied by removing individuals and markers that do not follow these principles and by ensuring 

552 pedigree records are correct. In the next set of steps, inheritance principles are applied at the individual 

553 marker level. In the final set of steps, these principles are applied at the haploblock level. Output used to 

554 detect and resolve observed errors at each step are given in italics. The leaf symbol indicates errors at 

555 the level of individual; the intensity plots symbol indicates errors at the level of SNP scoring; the genetic 

556 map symbol indicates errors at the level of genetically linked markers and phased alleles. When applying 

557 inheritance principles in parts 2 and 3, alleles that do not occur in an individual’s parents (‘Mendelian-

558 inconsistent errors’) are first resolved before addressing remaining genotyping errors (‘Mendelian-

559 consistent errors’). Several procedures, such as marker call adjustments and map order adjustments, are 

560 performed throughout the steps of the workflow to resolve errors detected. Each time after performing 

561 these common procedures, specific steps of the workflow must be repeated, forming an iterative 

562 process that ends when all errors are resolved.

563

564

565

566
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567 1. Ensuring inheritance principles can be applied

568 After creating an initial data set of genotypic data set in GenomeStudio®, a first set of analyses was 

569 performed. Because genotypic errors are identified based on principles of inheritance in diploids, 

570 individuals and markers that do not to follow these principles had to be removed first (Figure 1). When 

571 doing so, individuals with unexpected intensity patterns had to be removed first (Figure 1) as they were 

572 influencing the clustering of all individuals in the germplasm. Individuals with poor quality DNA were 

573 usually poorly genotyped, resulting in many data inconsistencies. Additionally, polyploids (individuals 

574 having one or more additional full chromosome sets) and aneuploids (individuals having an irregular 

575 number of copies for one or more chromosomes) were expected to have intensity ratios for 

576 heterozygous loci that differed from diploid individuals. Removal of individuals with poor DNA quality 

577 and suspected polyploids and aneuploids was observed to improve genotype cluster definitions and 

578 thereby the genotype calling of remaining individuals.

579

580 Once individuals with ploidy and sample quality issues were removed, a set of well performing markers 

581 had to be obtained (Figure 1). Markers with unreliable scoring were observed to lead to many 

582 inconsistencies in subsequent steps. Thus, their early removal would ensure that a relatively low 

583 number of inconsistencies remained in the data set, expected to greatly reduce the observed 

584 inconsistencies and time needed for further steps.

585

586 Identifying and correcting incorrect PC and PPC relationships was a prerequisite to using pedigree 

587 information for the identification of marker calling errors in each data set. Imposing principles of 

588 inheritance on actually unrelated individuals led to many false errors at the marker and map level. 

589 Conversely, identifying thus far unknown PC and PPC relations helped to identify errors at the marker 

590 and map level elsewhere in the data set and was expected to improve the power of downstream QTL 
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591 analyses. Thus, recorded pedigree information needed to be validated and previously unknown pedigree 

592 relationships deduced before curating individual marker calls and marker order errors (Figure 1). 

593 Duplicate individuals were also detected at this stage as they could help resolve sampling errors and 

594 reduce the number of individuals needing detailed error-checking.

595

596

597 2. Applying inheritance principles at the marker level

598 When Mendelian-inconsistent errors were present, at least one allele was incorrect. This issue had to be 

599 resolved before the (corrected) allele could be phased with the alleles of flanking markers. Otherwise, 

600 even the other allele, which might have been correct, could have been incorrectly phased with the 

601 alleles of flanking markers, causing additional observed but false recombinations. Thus, to minimize the 

602 time required to resolve Mendelian-consistent errors by investigating many supposed double 

603 recombinations, Mendelian-inconsistent errors had to be addressed first.

604

605 Markers with a high number of errors were investigated before markers with a relatively low number of 

606 errors among progenitors. Then, markers with a low number of errors for seedlings were investigated as 

607 they were expected to have the least effect on the remaining data set.

608

609 Any supposed double recombinations that occurred at the same region in multiple individuals had to be 

610 resolved first as they were very unlikely, could be due to a single error, and could influence a large set of 

611 individuals. Next, suspicious double recombinations that occurred over multiple loci in ancestors had to 

612 be checked, followed by singletons in ancestors. Finally, singletons in seedlings were checked, but they 

613 were expected to be the least harmful when incorrect because of little to no effect on the remaining 

614 data set.
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615

616 When no genotype calling or map errors were detected, phasing errors were investigated by checking 

617 the phasing of individuals that shared the parent whose homolog was observed to have a double 

618 recombination. In the rare case that incorrect phasing by FlexQTLTM led to a double recombination in 

619 multiple individuals of a single family or parent, it was always caused by one or two individuals in which 

620 the position of (a single) recombination was incorrectly determined. In those cases, individual(s) for 

621 which the SNP was involved in a single recombination had their genotype set to missing. This adjustment 

622 led to correct phasing of all other individuals and removal of reported double recombinations. Double 

623 recombinations that were observed in a single individual and that were not due to incorrect genotype 

624 clustering or incorrect map positions were accepted as the result of true double recombination events.

625

626 3. Applying inheritance principles at the haploblock level

627 Haploblock and haplotype determination was based on correctly identifying recombinations through 

628 correct phasing across generations and combining individual SNP alleles into haplotypes. Thus, any 

629 remaining errors at the SNP level or map level were expected to lead to errors in haploblock and 

630 haplotype determination. Therefore, all observed inconsistencies at the individual SNP level had to be 

631 resolved before inconsistencies were detected at the haploblock level. The genetic principles applied 

632 throughout the workflow are expected to also hold up at the haploblock level and therefore haplotypes 

633 had to be checked for Mendelian-consistent errors and Mendelian-inconsistent errors.

634

635

636

637

638
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639 Implementation of the workflow on RosBREED apple, peach, and sweet cherry germplasm

640

641 1a. Removing samples: non-diploid individuals and low-quality samples

642 In apple, the ‘B allele frequency’ plot of 744 of the diploid individuals (80.7 %) was very close to that 

643 expected for diploid individuals (Figure 2A; Table S1) and results of these diploid individuals were 

644 considered to be of good quality. Another 71 individuals (7.7%) showed some variation from the 

645 expected B allele frequency, especially for homozygous SNPs, but the three genotypes could be easily 

646 distinguished (Figure 2B; Table S1) and their results quality was considered to be intermediate. Finally, 

647 107 (11.6%) had ‘B allele frequency’ plots that showed a wide variation around the expected frequency 

648 (Figure 2C; Table S1) and their results quality was considered to be bad. No individuals with bad quality 

649 results were found for peach or sweet cherry.

650

651

652 Figure 2: Histograms of B-allele frequency (left) and B-allele frequency for each SNP plotted 

653 against its genomic position (right). Such histograms were used to assess a sample’s genotyping quality 

654 and ploidy. Examples shown are of a sample with good quality genotype calls (panel A), with 

655 intermediate quality of genotype calls (B), with bad quality of genotype calls (C), and that is triploid (D).

656

657

658 For apple, most individuals with poor quality results had their DNA extracts transported outside the U.S. 

659 for genotyping and the poor results were suspected to be caused by a reduction in DNA quality due to 

660 the delay in clearing customs, while only nine individuals with poor quality were from those genotyped 

661 in the U.S. The call rate in GenomeStudio® differed between the individuals that had good, intermediate, 

662 or bad quality, with the call rate dropping as the level of quality lowered (Figure S2).
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663

664 For apple, five triploid individuals were identified (Table S1). One was the known triploid cultivar 

665 ‘Jonagold’ while the others were unselected seedlings (Table S1; Figure S1A). Two other unselected 

666 seedlings had their B-allele frequencies divided over 5 clusters of the GenomeStudio® plot, which 

667 indicated they could be tetraploid or a mixture of two samples (Table S1; Figure S1B). No aneuploids 

668 were detected in the apple germplasm. However, one individual from the Crop Reference Set, ‘AE213-

669 200’ and one individual of a Breeding Pedigree Set were identified as segmental aneuploids (missing one 

670 copy of a large chromosomal segment). They were undetectable in the B-allele frequency analysis and 

671 instead identified by a relatively large number of PC errors and double recombinations observed for only 

672 that chromosomal segment. No polyploids, aneuploids, or segmental aneuploids were detected in peach 

673 and sweet cherry.

674

675 The final number of individuals used in the rest of the workflow was 835, 621, and 528 for apple, peach, 

676 and sweet cherry, respectively, consisting of 139, 48, and 56 direct parents of full-sib families, ancestors, 

677 and cultivars, 76, 24, and 9 selections and 620, 548, and 463 unselected seedlings over 45, 26, and 41 

678 families of 4–62 full-sibs, respectively (Tables S1-S3).

679

680 1b. Obtaining a set of reliable SNPs

681

682 A subset of SNPs with reliable genotyping scores was obtained using ASSIsT (Table 2). Although 

683 discarded by ASSIsT, SNPs from the ‘Two cluster SNPs’ category were retained as many of them were 

684 considered to contain useful information. A total of 4636 (59%), 6098 (75%), and 1727 (30%) of the SNPs 

685 on the apple, peach, and cherry arrays, respectively, were maintained after filtering. Subsequent steps 

686 of the workflow reduced the number of SNPs in the final data set further to 3855, 4005, and 1617 for 
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687 apple, peach, and sweet cherry, respectively. Thus 83%, 66%, and 91% of the SNPs retained after using 

688 ASSIsT for apple, peach, and sweet cherry, respectively, resulted in high-quality data.

689

690

691 Table 2: Summary of SNP classification by ASSIsT for apple, peach, and sweet cherry. SNP 

692 classifications are grouped in retained and discarded SNPs.

SNP classification Apple Peach Sweet Cherry
Retained SNPs

Robust SNPs
Robust 1435 743 373
OneHomozygRare_HWE 368 62 109
OneHomozyRare_NotHWE 369 188 161
DistortedAndUnexSegreg 1364 3696 555

Other
Two cluster SNPs 1100 1409 529

Total 4636 6098 1727
Discarded SNPs

NullAllele-Failed 57 145 43
Monomorphic 1307 1057 3478
Failed 2888 844 448

Total 4252 2056 3969

Total 8888 8144 5696
693

694

695 1c. Correcting pedigree information and identifying duplicates

696 The number of PC errors in apple between two randomly paired individuals without PC relationship 

697 averaged 195, with a minimum of 17 (comparison between two full-sibs) and 99% of these comparisons 

698 had more than 40 errors. In contrast, average and maximum number of PC errors between two related 

699 individuals with a known PC relationship was 2 and 17, respectively, and 99% of these comparisons had 

700 less than 10 PC errors. The threshold to reject a PC relationship was set at 23 errors, which roughly 

701 corresponded to 0.5% of total markers. For 103, 66, and 22 individuals, one recorded parent was 
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702 incorrect in apple, peach, and sweet cherry respectively, and for 36, 14, and zero individuals, both 

703 recorded parents were incorrect. For 106, 1, and 19 of these individuals in apple, peach, and sweet 

704 cherry, one or both of the true parent(s) was found within the germplasm set. The final number of 

705 generations spanned by the corrected pedigrees was eight, nine, and six for apple, peach and sweet 

706 cherry, respectively.

707

708 2a. Finding Mendelian-inconsistent errors at the SNP level

709 FlexQTLTM summarized the number of Mendelian-inconsistent errors for each marker and each 

710 individual. In GenomeStudio®, the ‘SNP Table’ would summarize the number of P(P)C errors for each 

711 SNP and a separate ‘Error Table’ had to be consulted to determine which individuals were involved in 

712 these errors. FlexQTLTM mostly reported the error under the parent, the R-script reported the error 

713 under the offspring, and the ‘Error Table’ of GenomeStudio® reported the genotypes of both parent(s) 

714 and offspring. As a consequence, errors between a single parent and multiple of its offspring would be 

715 reported as one erroneous (parental) genotype in FlexQTLTM whereas GenomeStudio® reported the 

716 error for each offspring. However, FlexQTLTM did identify errors between grandparents and 

717 grandchildren when the missing parental genotype could be imputed.

718

719 FlexQTLTM detected 1209, 2230, and 686 Mendelian-inconsistent errors distributed over 541, 760, and 

720 42 SNPs in apple, peach, and sweet cherry respectively. In apple, GenomeStudio® detected 10,201 PC 

721 errors and PPC errors over 2303 SNPs. Although GenomeStudio® identified which pairs of individuals led 

722 to these errors, some of the detected Mendelian-inconsistent errors did not occur in the data set due to 

723 differences in genotype scoring between ASSIsT and GenomeStudio®. Before removal of these 

724 Mendelian-inconsistent errors, 41,717, 29,009, and 2505 double recombinations involving a single 

725 marker were detected in FlexQTLTM in apple, peach, and sweet cherry, respectively, through the 
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726 ‘DoubleRecomb.csv’ file, whereas only 6177, 4905, and 1739, respectively, of these recombinations 

727 were observed after removal of all Mendelian-inconsistent errors.

728

729 2b. Identifying Mendelian-consistent errors at the SNP level

730 Most double recombinations that occurred in the same genomic region in many individuals could be 

731 resolved by adjusting incorrect marker calls. A total of 648, zero, and 209 markers in apple, peach, and 

732 sweet cherry, respectively, had one or more of their genotype calls adjusted to resolve double 

733 recombinations. Most other double recombinations that occurred in multiple families could be resolved 

734 by repositioning the marker in the genetic map using a graphical genotyping approach. In total, 115, 

735 zero, and zero ### SNPs were moved from their original position in the map to resolve double 

736 recombinations for apple, peach, and sweet cherry, respectively. Many recombination events that 

737 occurred in a single or few individuals over a single marker were resolved by first resolving the double 

738 recombinations that occurred in many individuals. Most of the remaining double recombinations were 

739 solved by either changing single incorrect genotype call or adjusting marker order in the map. Only a few 

740 phasing issues were observed where (almost) all offspring of a founder showed a double recombination 

741 that could be resolved by adjusting the phase of the alleles in that founder. A total of 15, 156, and 63 

742 markers were discarded for apple, peach, and sweet cherry, respectively, because they led to 

743 unresolvable map issues. The total number of remaining reported singletons was 68, 47, 51 for apple, 

744 peach, and sweet cherry, respectively, and these were considered to be true double recombinations.

745

746 During data curation, genetic maps were generated for each crop (Tables S5-S7) by adding new SNPs to 

747 existing maps, by converting physical positions into genetic positions, and/or by updating initial genetic 

748 positions to minimize the number of double recombinations. For apple, 885 SNPs were added and 658 

749 previously-mapped SNPs were removed as they did not perform well in our wider germplasm. Addition 
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750 of SNPs at the chromosome ends enlarged the original map by 7 cM. The resulting apple map was 1179 

751 cM long with chromosome lengths ranging from 57.6 cM (linkage group (LG) 6) to 103.6 cM (LG 15). The 

752 number of SNPs on each LG ranged from 167 SNPs on LG 6 to 359 SNPs on LG 2. The genetic map of 

753 peach was 893.2 cM long; LG 5 was the shortest (72.9 cM) and LG 1 was the longest (190.2 cM). The 

754 number of SNPs on each LG ranged from 294 on LG 5 to 772 on LG 4. In sweet cherry, chromosome 

755 lengths ranged from 56.8 cM (LG 5) to 141.2 cM (LG 1), with a total map length of 655.4 cM. The 

756 number of SNPs on each LG ranged from 137 on LG 5 to 350 on LG 1.

757

758 3. Determining and resolving errors for haploblocks and haplotypes

759 The genetic maps of apple, peach, and sweet cherry were at first divided in 840, 103, 132 haploblocks, 

760 respectively, within which no recombination was observed in selected germplasm. After haplotype 

761 generation, 1262, 2012, and 74 Mendelian-inconsistent errors were reported by the mconsistency.csv 

762 file generated by FlexQTLTM. An additional 124, 429, and 64 recombinations were detected within the 

763 haploblocks for selected germplasm, resulting in the generation of additional haploblocks. The 

764 remaining Mendelian-inconsistent errors were mostly due to missing data within a haplotype that could 

765 not be resolved automatically. This missing data within haplotypes led to the assignment of haplotype 

766 numbers that were different to parental haplotypes that were therefore perceived as errors. In addition, 

767 some inconsistencies between SNP data and haplotype data were observed after haplotype generation 

768 that were easily resolved by looking at the ‘SNP Graph’ in GenomeStudio® and adjusting either the 

769 haplotype or the SNP call.

770

771 The final number of haploblocks was 964, 135, and 196 for apple, peach, and sweet cherry respectively. 

772 For apple, the genetic length of the haploblocks varied between 0 and 7.77 cM with an average of 0.3 

773 cM, the haploblocks contained between 1 and 15 SNPs, and the haploblocks contained an average of 4 
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774 SNPs. The number of haploblocks per apple LG ranged from 42 on LG 6 to 79 on LG 15, with an average 

775 of 57 haploblocks per LG. In peach, the length of the haploblocks varied between 0 cM and 30.47 cM 

776 with an average of 5.8 cM, the haploblocks contained between 1 and 210 SNPs, and the haploblocks 

777 contained an average of 30 SNPs. The number of haploblocks per peach LG ranged from 7 on LG 5 to 37 

778 on LG 4, with an average of 17 haploblocks per LG. For sweet cherry, haploblocks had an average length 

779 of 2.6 cM, with a minimum of 0 cM and a maximum of 15.0 cM. The average number of SNPs per sweet 

780 cherry haploblock was 8, with a minimum of 1 and a maximum of 61 SNPs. The average number of 

781 haploblocks per sweet cherry LG was 24, with a minimum of 16 haploblocks on LG 5 and LG 7 and a 

782 maximum of 47 haploblocks on LG 1.

783

784

785 SNP classification system

786 The final number of SNPs in the haplotyped data set was 3858, 4005, and 1617 for apple, peach, and 

787 sweet cherry, respectively. A total of 3350 (87%), 4005 (100%), and 1610 (99.6%) of these SNPs were 

788 classified as type 1 SNPs, which ultimately needed editing for less than 5% of their genotype calls in 

789 apple, peach, and sweet cherry, respectively (Tables S8-10). Type 2 SNPs, for which genotype clusters 

790 were shifted, totaled 300 (8%), zero, and seven (0.4%) SNPs for apple, peach, and sweet cherry, 

791 respectively, and this shift in cluster position lead to incorrect identification of one of the three clusters 

792 in the original automatic clustering by GenomeStudio®. Type 3, SNPs with additional clusters, were 

793 assigned to 80 (2%), zero, and zero SNPs in apple, peach, and sweet cherry, respectively, and this 

794 presence of additional clusters led to incorrect genotype scoring of these SNPs that required subsequent 

795 curation. Type 4, SNPs with null alleles, were assigned to for 125 (3%), 145 (excluded from the final data 

796 set), and 43 (excluded from the final data set) SNPs in apple, peach, and sweet cherry, respectively, and 

797 these null alleles prevented correct automatic scoring for some individuals. 
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798

799 Discussion

800 We established a workflow to efficiently and confidently identify and remove genotyping errors from 

801 genotyped and pedigreed germplasm sets for apple, peach, and sweet cherry. The proposed workflow 

802 (Figure 1) enables directed identification of markers and individuals with genotyping errors. It uses 

803 simple genetic principles such as inheritance of parental alleles, the co-segregation of linked markers, 

804 and the likelihood of double recombinations to find these errors. The order of steps was determined to 

805 efficiently minimize errors found in later steps and thereby minimize overall time needed to find errors 

806 in the data set. For example, in apple, any incorrect PC relationship would lead to an average of 196 

807 reported Mendelian-inconsistent errors, and any unresolved Mendelian-inconsistent errors led to an 

808 average of 30 more reported Mendelian-consistent errors. The developed workflow was demonstrated 

809 on Illumina SNP array data and some software is specific to this platform, but the same workflow order 

810 and genetic principles are appropriate for other marker types and genotyping platforms. The workflow is 

811 especially useful when medium- and high-throughput genotyping tools are used for which checking each 

812 individual marker would be too time-consuming.

813

814

815 Table 3: Recommended software for each step of the genetic marker data curation workflow 

816 when using Illumina Infinium® SNP arrays.

Workflow step Recommended software

Identify polyploids, aneuploids, and samples with low quality
GenomeStudio® to obtain B-allele 
frequencies,
R to plot B-allele frequency for each sample

Create subset of reliable SNPs ASSIsT
Identify duplicate samples PLINK
Identify incorrect P(P)C relationships GenomeStudio®
Identify unknown P(P)C relationships R
Identify unknown grandparent-grandchild relationships Excel*
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Identify and resolve (remaining) Mendelian-inconsistent errors GenomeStudio®, FlexQTLTM

Identify and resolve Mendelian-consistent errors Visual FlexQTLTM + GenomeStudio®
Identify and correct map order inconsistencies Visual FlexQTLTM

Identify phasing issues FlexQTLTM + Visual FlexQTLTM

Haploblock border determination Visual FlexQTLTM

Haplotype determination
- Phasing FlexQTLTM

- Haplotype assignment PediHaplotyper
- Curation (automated) FlexQTLTM

817 * Template in Suppl. File 1 of Van de Weg and co-workers (2018) [23]

818

819

820 Order and considerations of workflow steps

821 Different types of errors can be present in genotypic and pedigree data, caused by different kinds of 

822 issues (Table 1). To minimize the time needed for curation of these data, the proposed error checks 

823 need to be performed in a specific order. By first tackling issues that are common for many types of 

824 errors, subsequent curation of remaining errors becomes easier and quicker.

825

826 Removing individuals with low quality or irregular number of chromosome sets

827 The B-allele frequency plots provided a quick and easy way to identify and remove individuals with an 

828 irregular number of chromosome sets (polyploids and aneuploids) and individuals with low DNA quality. 

829 Removal of such individuals improved SNP calling and thus reduced the number of errors to be dealt 

830 with in later steps. A couple of individuals with poor quality that were originally kept, because of their 

831 importance as breeding parents, resulted in many PC errors. Making all their original SNP calls missing 

832 enabled automated imputation of most of these data points based on genetic information of relatives. 

833 Subsequent re-genotyping of these individuals matched the imputed data completely, confirming that 

834 the errors observed were due to low-quality DNA samples and not to incorrect PC relationships. 

835 Polyploid and aneuploid individuals did not show a higher number of P(P)C errors, as expected. In 
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836 contrast, these chromosome number abnormalities led to higher rates of false double recombination, 

837 either genome-wide (polyploid) or local [(segmental) aneuploids], that cannot be readily resolved other 

838 than by removal of these specific individuals.

839

840 The histogram function in GenomeStudio® enabled quick identification of polyploids and individuals 

841 with very poor DNA samples without the need for additional steps in Excel, R, or other software. 

842 However, identification of aneuploids and individuals with potentially low-quality DNA samples was not 

843 as straightforward. Plotting the B-allele frequency against physical or genetic marker order (when 

844 available) required additional data manipulation and generation of the plots in software outside 

845 GenomeStudio®, but most of it could be automated using R and custom scripts. Therefore, we suggest 

846 using GenomeStudio® for initial removal of poor-quality samples and polyploids, and afterwards, when 

847 positional information for the markers is available, screening for aneuploids with the method described 

848 by Chagné at al. (2015).

849

850 Obtaining a set of reliable SNPs

851 SNPs with major scoring issues that cannot be easily resolved manually need to be removed from the 

852 data set. The early detection and removal of these unreliable SNPs greatly reduces the number of 

853 marker and map errors reported, as well as the time spent evaluating these SNPs in later workflow 

854 stages. By using ASSIsT, a quick subset of SNPs with robust genotype calls could be generated. On 

855 average across the three crops, 80% of this subset was retained in the final data set, which is lower than 

856 the 99% for single full-sib families that was reported by Di Guardo and co-workers (2015) [35]. As the 

857 number of generations and full-sib families in the germplasm increase, more SNPs with null alleles are 

858 likely to be detected and the more complicated the genotype calling of these SNPs can become. In turn, 
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859 this can lead to an increased discarding of SNPs, which could explain the lower proportion of SNPs 

860 retained in our germplasm sets compared to that reported by Di Guardo and co-workers (2015) [35].

861

862 Markers with null alleles identified by ASSIsT were removed from the data set, as they could only be 

863 identified and automatically called in specific F1 families rather than in all families and across 

864 generations. However, many SNPs with null alleles that were later identified in the workflow could be 

865 accurately genotyped manually as long as homozygous ‘AA’ and ‘BB’ individuals could be distinguished 

866 from individuals that carried a null allele. This distinction was time-consuming and therefore we 

867 recommend saving these SNPs only when it justifies the time needed to do so. Examples when such 

868 markers can be of high value are in the construction of genetic linkage maps, even if multiple mapping 

869 populations are used [45], when they occur in a region of low coverage, or when they occur in a region 

870 of specific interest and help define additional alleles.

871

872 Very few other options exist to create a subset of high-quality genome-wide markers across pedigreed 

873 germplasm. GenomeStudio® does provide several quality scores that have been used before in SNP 

874 filtering, but no guidelines exist on what threshold values to use. Using parameter thresholds regularly 

875 reported in literature [26,53–56] (GenTrain Score > 0.7, 50GC Score > 0.4, ClusterSep Score > 0.25, Call 

876 Rate > 0.9, and Minor Freq > 0.01) on the current data, the proportion of retained, unreliable, or 

877 monomorphic SNPs would be 12.3%, 23.1%, and 6.7% in apple, peach, and sweet cherry, respectively, 

878 and a large proportion of good SNPs would be discarded (27.8%, 28.2%, and 7.6%, respectively). Thus, 

879 ASSIsT greatly increased the number of reliable SNPs that were retained without reducing the quality of 

880 the subset of SNPs, making it the most efficient method to choose SNPs without prior knowledge on SNP 

881 performance.

882
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883 Updating pedigree records

884 As thresholds to confirm or discard historic pedigree information depends on the germplasm, 

885 genotyping platform, and data quality, they need to be assessed case-wise. A custom R-script provided 

886 quick and easy determination of the number of PC and PPC errors. However, the custom code required a 

887 significant amount of time to identify possible parents when one or both parents were unknown, 

888 especially for larger data sets. Similar issues were observed for Cervus, which took a long time to run 

889 (days) and did identify some incorrect relationships, especially for inbred material. Cervus also requires a 

890 specific data format and we experienced some problems running the software for large data sets that 

891 were not immediately resolved. GenomeStudio® provided the quickest way to determine the number of 

892 PC and PPC errors, which could be determined immediately after loading the raw intensity data. 

893 However, new PC relationships could not automatically be determined and only SNPs retained by ASSIsT 

894 should be used when using GenomeStudio® to determine the number of PC errors, to avoid inflating the 

895 number of PC errors. Therefore, we recommend using GenomeStudio® to confirm existing pedigree 

896 records when using Illumina arrays and using an R-script to determine new, previously unknown, PC 

897 relationships. Time-consuming analyses in R could be resolved by using a subset of markers equally 

898 spread across the genome. For confirming and identifying possible grandparent-grandchild relationships, 

899 we recommend the Excel template provided by van de Weg and co-workers (2018) [23]. However, this 

900 method can misconstrue aunts-uncles/nephew-nieces and individuals with other close relationships to 

901 the target individual as grandparents. Therefore, we recommend to only use this strategy when the user 

902 has a good understanding of the germplasm such as the origin of the material and the degree of 

903 inbreeding.

904

905 Individuals with only one parent known can still be used in a pedigree-based approach to find errors in 

906 the data set, although some errors might remain unnoticed. We recommend using the ‘M_’ and ‘F_’ 
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907 prefixes to the individual’s name to designate the unknown mother or father, respectively. When it is 

908 unclear whether the unknown individual is the mother or the father, the ‘UP_’ prefix can be used. Using 

909 this system instead of a non-descriptive name such as ‘dummy 1’ creates a clear connection between 

910 the individual with an unknown parent and the placeholder individual that is introduced. When the 

911 correct parent is later found, it also allows the quick replacement of the placeholder by the correct 

912 name (and corresponding genotypic data). Use of the same name for any missing parent should be 

913 avoided (e.g., using ‘dummy’ for all missing parents) unless the missing parent is unequivocally the 

914 parent of multiple individuals. If the same name is used incorrectly for multiple missing parents, the 

915 genotype of that single missing parent is expected by FlecQTLTM to be consistent with inheritance 

916 principles for all of its assigned offspring, potentially creating a large number of errors in further steps.

917

918 Although non-diploid individuals should be removed from the workflow before identifying reliable SNPs, 

919 they can have their pedigree checked if needed. Regardless of their ploidy, individuals should only 

920 contain alleles that are present in their parents. For example, a triploid individual with a marker call at 

921 one SNP of ‘AAA’ will be scored as ‘AA’, but can still not have a ‘BB’ parent. However, caution is advised 

922 as the grandparents through the parent that provided the unreduced gamete will also share a full allele 

923 set with any polyploid individual and thus these grandparents could also be incorrectly assigned as a 

924 parent of the polyploid individual. For example, the triploid ‘Zonga’ and its (diploid) grandparent ‘Cox’s 

925 Orange Pippin’ share a full allele set (through an unreduced gamete of ‘Alkmene’) and thus no PC errors 

926 are reported [57]. However, only the combination of ‘Delcorf’ and ‘Alkmene’ could explain the 

927 genotypes of the triploid ‘Zhonga’ (AB+AA-AA test [23]). Thus, for triploids, not only do parents and 

928 offspring lead to no PC errors but some grandparents do as well, and the second parent is needed to 

929 identify the true PC relationship.

930
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931 Creating or extending genetic maps.

932 This study used available genetic maps for apple and cherry (i.e., [20,21,45,47]), integrated them when 

933 needed, and used available physical information (from [44] and [46]) to add any markers that were not 

934 already mapped. Some of these added markers were positioned at chromosome ends, which resulted in 

935 the increase of the map size by 7 cM for apple. In addition, the orientation of apple chromosome 5 was 

936 inverted here to match the orientation of the latest genome version [44]. If no genetic map is available, 

937 one will need to be constructed alongside genotypic data curation. The need for a precise genetic 

938 position of markers on the 9K peach array prompted development of consensus linkage map for peach 

939 [58] that in the future could serve as a reference map to estimate genetic positions of unmapped 

940 markers. A mapping approach for pedigreed, multi-parental maps is described by Di Pierro and co-

941 workers (2016) [45].

942

943 Resolving remaining Mendelian-inconsistent errors

944 Use of GenomeStudio® for detecting Mendelian-inconsistent errors is limited to Illumina array SNPs and 

945 cannot be used for other markers or haplotypes created in later steps of the workflow. In addition, some 

946 SNPs had their SNP scoring improved with ASSIsT and manual curation, and thus the genotype scoring of 

947 GenomeStudio® might not reflect the actual data. Although this latter limitation is also true when 

948 confirming pedigree data, the few differences in genotype calls between GenomeStudio® and ASSIsT are 

949 not expected to alter the outcome of pedigree confirmation. In contrast, when resolving single 

950 Mendelian-inconsistent errors, it is important to know that the error is indeed present in the data set. 

951 Although Cervus counts the number of Mendelian-inconsistent errors, it does not report which markers 

952 are causing issues for which individuals, making it impractical to use to remove the remaining PC and 

953 PPCerrors. In contrast to GenomeStudio®, FlexQTLTM can handle multiple allele formats and is thus 

954 suited for the curation of both SNP data and haplotype data. In addition, FlexQTLTM checks for 
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955 consistency over multiple generations, which enables detection of errors even if a genotype is missing in 

956 an intermediate individual. It also imputes missing data whenever possible. A disadvantage of FlexQTLTM 

957 is that it only reports one of the two individuals, often the parent, for which an error occurred; it is then 

958 up to the user to find the second individual, often the offspring, involved in the Mendelian-inconsistent 

959 error. Therefore, we recommend using FlexQTLTM to identify Mendelian-inconsistent errors and 

960 resolving them with the help of GenomeStudio®.

961

962 Using map and phasing information to detect Mendelian-consistent errors

963 FlexQTLTM performed very accurate phasing and only a few phasing issues were noticed. Most of these 

964 phasing issues were observed as double recombinations in offspring of an individual that served as a 

965 founder. The lack of parental info for this founder provided FlexQTLTM more freedom to phase alleles, as 

966 the phasing in the founder did not need to match its parents. Incorrect phasing was most likely caused 

967 by one or very few offspring for which a true recombination occurred in the map region. In those 

968 individuals, no double recombination occurred, and the incorrect phasing inferred by FlexQTLTM 

969 minimized the interval over which the true recombination occurred. However, this minimalization of the 

970 recombination interval incorrectly specified where the recombination had occurred, causing incorrect 

971 phasing and resulting in one or multiple false double recombinations in full- and half-sibs of the 

972 individual(s) with the true recombination. Making genotype calls missing for the individual(s) with a 

973 recombination in that area enlarged the recombination interval for those individuals, but also led to 

974 correct phasing in their parent and resolved the supposed double recombinations in their full- and half-

975 sibs. Very few other phasing issues were observed that could not be resolved on a single SNP level but 

976 were later resolved at the haploblock level. Thus, a small number of phasing issues can be accepted 

977 when moving forward to generating haploblocks and they could be nullified by FlexQTLTM by setting the 

978 parameter ‘DeleteDR’ to 1.
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979

980 Haploblock and haplotype determination

981 Visual FlexQTLTM showed good accuracy (between 12% and 33% of the initial haploblocks had to be 

982 divided into additional haploblocks to avoid recombination within haploblocks for selected material) in 

983 determining haploblock borders based on historic recombination events. Two reasons exist for not 

984 identifying all historic recombinations for haploblock border determination. First, Visual FlexQTLTM 

985 determines the border as the middle of the recombination interval. The more non-informative markers 

986 present in the recombination interval (due to homozygosity or lack of co-segregation (phase) 

987 information), the less likely that the middle position is the true position of the historic recombination 

988 (which determines the haploblock border). Secondly, FlexQTLTM determines haploblock borders 

989 sequentially, starting with small recombination intervals; if multiple recombinations occur in the same 

990 region, one haploblock border could suffice to account for all recombinations. This approach thus 

991 minimizes the number of recombination sites needed to explain observed segregation data. In reality, 

992 the recombinations could have occurred between different markers, requiring that region to be split in 

993 additional haploblocks to avoid recombination within haploblocks for selected material.

994

995 PediHaplotyper’s haplotypes did not always match with SNP data. In most cases, these inconsistencies 

996 were introduced during the marker consistency check with FlexQTLTM to ensure the haplotypes in an 

997 individual matched those of its parents and offspring. When the haplotype that caused the inconsistency 

998 was represented well in the pedigree, the haplotype was correct and the original genotype call for the 

999 SNP was incorrect. Thus, in these cases, haplotype curation identified additional errors in the SNP data. 

1000 These errors were mostly caused by (very) small incorrectly identified genotype clusters or by single 

1001 calling errors in the data set that were not detected earlier. When haplotypes in poorly represented 

1002 individuals (one or two directly related individuals in the data set) showed an inconsistency with the SNP 
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1003 data, the SNP data was mostly correct and an error had occurred during haplotyping. The error could 

1004 span multiple generations leading to inconsistencies for multiple individuals but its impact on the 

1005 dataset was small as the overall representation of the incorrect haplotype was small. In the rare case 

1006 that a poor representation led to incorrect haplotype determination, the actual cause of the 

1007 inconsistency often remained unclear, but for some it was due to a recombination within a haploblock 

1008 for an un-genotyped ancestor or one of the direct parents of such an ancestor.

1009

1010 Haploblock borders are not fixed and can change based on the application of the final data set and the 

1011 germplasm used. For example, for QTL analyses some of the haploblocks defined here will be too large 

1012 as they span multiple cM; they will show within-haploblock recombination in numerous unselected 

1013 offspring thereby increasing the number of missing haplotype calls thus increasing uncertainty in QTL 

1014 position (including the widening of QTL intervals). Haploblock sizes can therefore be reduced to 

1015 minimize within haploblock recombination and better define QTL regions. However, when haploblocks 

1016 are very small, many haploblocks will consist of only one SNP or a few SNPs, increasing data sizes (and 

1017 thereby computation time in downstream analyses) and reducing the number of haplotypes per 

1018 haploblock, which can reduce the suitability of the data for visual examination. Unlike the 8K apple SNP 

1019 array, the 20K apple SNP array was designed to have clusters of multiple SNPs spread at approximately 1 

1020 cM intervals. A similar approach was used to create 9K add-ons for the 9K peach array and 6K cherry 

1021 array [59]. This strategy supports the generation of haploblocks consisting of SNPs aggregated within 1 

1022 cM intervals while still having multiple SNPs in a single haploblock and thus multiple informative 

1023 haplotypes.

1024

1025 Different germplasm will also lead to different haploblock borders. Currently, haploblocks are based on 

1026 historic recombination events representing the U.S. breeding programs included in this study. Other 
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1027 breeding programs or genetic studies might have other sets of founders and thus different 

1028 recombinations of relevance. Furthermore, the addition of new advanced selections and parents will 

1029 introduce new recombinations in their germplasm. Finally, as the understanding of the apple, peach, 

1030 and cherry germplasm increases, previously unknown progenitors, founders, and pedigree connections 

1031 will be discovered, also increasing the number of observed recombinations.

1032

1033 Given that haploblocking is performed at a relative late stage in the workflow, haploblock borders can 

1034 be altered without the need to redo all previously conducted pedigree and SNP marker curation. In fact, 

1035 existing haplotype data can be converted back to phased, fully curated SNP data which, in turn, can be 

1036 used to determine haplotypes for any set of haploblocks. As the SNPs are already phased and missing 

1037 SNP data was imputed based on the haplotypes, haplotype determination for new haploblock borders 

1038 should not create new genotyping errors in the data set. Once numbers of new recombinations are high 

1039 enough to justify updating of haploblock data, part of the haploblocks and their haplotypes should be 

1040 altered. PediHaplotyper supports the use of previous haplotype definitions for haploblocks that did not 

1041 change in composition. Adjusted haploblocks could be marked through their names, thus providing tools 

1042 to monitor new as well as previous, possibly well-known, marker alleles. 

1043

1044 The SNP classification system and integration of genotypic data for new germplasm into existing data 

1045 sets

1046 The established SNP classification system enables the quick creation of a subset of SNPs that require 

1047 minimal or no data curation and provides a guideline on possible issues with other SNPs and how to 

1048 solve them. The system should help with the quick integration of new genotypic data into existing data 

1049 sets. Genotype calls for SNPs of type 1 and type 2 can be quickly integrated with high confidence in their 

1050 genotype calls. Where desired, SNPs of type 3, 4, and 5 can also be integrated, but additional curation 
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1051 would be required. Depending on germplasm tested, these SNPs might have incorrect genotype scoring 

1052 but their SNP type is an indication of why the genotype scoring is wrong and how to fix it. In other 

1053 germplasm, additional SNPs in the probe or null alleles might not be present, causing SNPs that are now 

1054 classified as type 4 or type 5 to give reliable results as if they were type 1 or type 2. Similarly, if 

1055 germplasm is used that is unrelated to that used here, type 1 and type 2 SNPs might show additional 

1056 clusters or null alleles and will require further curation. Finally, type 7 SNPs, which could not be mapped 

1057 in this germplasm, might be mapped and valuable for other germplasm.

1058

1059 The available reference data (www.rosaceae.org), combined with the SNP classification system, will 

1060 facilitate correct curation of additional genotypic data, even if the new germplasm is not directly 

1061 descended. The SNP genotype calls provided here are a reference for the genotype of each observed 

1062 genotype cluster in GenomeStudio®. In addition, SNP cluster coordinates of the latest GenomeStudio® 

1063 file can be imported into new projects, thus helping GenomeStudio® to correctly identify clusters. 

1064 Finally, the use of reference iScan data is especially useful for markers that have only two of the three 

1065 clusters in a new project but all three clusters were defined in the current reference dataset. By adding 

1066 reference iScan data into the new project, all three clusters will be available, ensuring correct 

1067 automated genotype calling. Therefore, we recommend including available reference data when 

1068 obtaining genotype calls for new germplasm.

1069

1070 Data curation in apple

1071 The need for SNP data curation in apple was increased by the whole genome duplication in the 

1072 evolutionary history of apple, the relatively poorer quality of the first genome draft used for 

1073 development of the 8K SNP array, and unidentified polymorphisms in the probe regions during SNP 

1074 array design. The genome duplication resulted in presence of multiple highly similar sequences on 
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1075 different chromosomes. Indeed, a BLAST analysis against Malus genome v1.0 of the first 24 nucleotides 

1076 of the 3’ region of arrayed SNP probes, which is most important for probe binding, showed that 

1077 approximately 50% of the sequences returned multiple hits with almost all of these hits being located on 

1078 multiple LGs [33]. This proportion is expected to be lower for the latest genome version [44] as most 

1079 errors in assembly were removed but the proportion is expected to remain high due to chromosome 

1080 and gene duplication observed in apple. Where two genomic regions are targeted by the same probe, 

1081 complex cluster plots will occur if more than one of the targeted loci segregate within a single family. 

1082 Such markers must be excluded from a curated data set. Multi-target markers might still be robust if 

1083 they segregate at only one locus. In this case, only the cluster plot space is reduced (mostly halved), 

1084 causing clusters to be located more closely to each other. In turn, this might occasionally cause 

1085 separation issues. Also, some markers are lost because GenomeStudio® cannot assign genotype calls for 

1086 markers where one of the homozygous clusters is located at theta=0.5, the center of the x-axis, and thus 

1087 these markers are considered by the software to have failed. . A special case for two-locus markers 

1088 occurs where each locus segregates in specific families but both loci never segregate together in the 

1089 same family. In this case, genotype scoring might be performed accurately, and the SNP still needs to be 

1090 present twice in the map although under different names. Two- and three-locus SNPs have been 

1091 successfully mapped in the multi-family based genetic linkage map created by Di Pierro and co-workers 

1092 (2016) [45]. However, in subsequent QTL mapping studies on pedigreed germplasm, such markers were 

1093 excluded, as in the current study.

1094

1095 Several intermediate progenitors in the apple data set lacked any genotypic data and therefore the 

1096 recorded link between some important breeding parents and their ancestors had to be set to unknown 

1097 during haploblock and haplotype determination. For some progenitors, 20K data from the European 

1098 FruitBreedomics project was available that reestablished the connection between genotyped individuals 
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1099 and their ancestors, but many other progenitors likely no longer exist. Individuals that were 

1100 disconnected from the pedigree with little representation could not therefore have their haplotypes 

1101 accurately determined using PediHaplotyper. It was, however, possible to manually determine their 

1102 haplotypes based on their SNP data and haplotypes present in disconnected relatives.

1103

1104 Data curation in peach

1105 In peach, the most challenging step in the workflow was the curation of pedigree information over nine 

1106 generations. Although much pedigree information is available in the literature [60], we identified 

1107 incorrect parentage in the PC error analysis in cultivars and breeding selections, which we attributed to 

1108 selfing or outcrossing. Incorrect pedigree records were previously reported in the UC Davis processing 

1109 peach breeding program in approximately 20% of individuals, both parental and breeding selections 

1110 [16]. In this work, we identified incorrect parentage in approximately 11% of the pedigree records from 

1111 the three fresh market peach breeding programs, most of which were observed in breeding selections. 

1112 High level of inbreeding and coancestry in the U.S cultivated peach germplasm [61] creates overlap in 

1113 the ancestral generations of most U.S. peach breeding programs. Therefore, corrections in the ancestral 

1114 pedigree records reported by Fresnedo-Ramírez and co-workers (2015) [16] reduced the number of 

1115 errors detected here. Furthermore, intermediate parents were unavailable for genotyping, so pedigree 

1116 connections were preserved by retaining pedigree information even though many intermediate 

1117 progenitors were not genotyped. Finally, the presence of missing data within a haplotype resulted in 

1118 Mendelian-inconsistent errors in the haploblock and haplotype generation steps, which made the 

1119 haploblock data curation time-consuming.

1120

1121

1122
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1123 Data curation in sweet cherry

1124 For the sweet cherry germplasm, the most challenging issue was the small sample size of some families 

1125 (as few as four individuals), which were too small for FlexQTLTM to accurately determine linkage phase. 

1126 For parents with just one genotyped offspring, phasing of the parent homologs was considered putative 

1127 as recombination inherited by offspring could not be determined. For those parents with just two 

1128 genotyped offspring, recombinations were arbitrarily assigned between the two offspring, as the true 

1129 recombinant offspring could not be determined. In addition, scarce information on pedigrees in 

1130 ancestral generations beyond about five limited further imputations in data curation, unlike for apple 

1131 and peach. Various founders showed extensive regions of common haplotypes, indicating a high degree 

1132 of relatedness among such founders. Some recently published haplotyping results exemplify this for the 

1133 founders ‘Black Republican’ and ‘Napoleon’ [21]. Unraveling the unknown relationships among founders 

1134 could thus provide useful information for future data curation in sweet cherry.

1135

1136 Expectations for other crops

1137 The proposed workflow could be applied to other diploid crops with similar breeding systems where 

1138 clonally propagated relatives of current breeding material still exist. However, there are additional 

1139 aspects that would need to be considered in certain circumstances that were not encountered in the 

1140 present study. First, this workflow makes the assumption that there are no differences in the true SNP 

1141 map order among individuals of a species. In interspecific crosses where there can be differences in 

1142 chromosome arrangements between parental species, the different SNP order or indel variation among 

1143 individuals could result in additional perceived double recombinations or other difficulties in following 

1144 this workflow. Additionally, this workflow assumes that there is sufficient marker information to 

1145 correctly identify pedigree relationships and assumes sufficient segregation information for validating 

1146 marker order and identifying Mendelian-consistent errors. When using highly homozygous, inbred 
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1147 individuals, there might be too few segregating markers available to correctly identify marker order or 

1148 find Mendelian-consistent errors through double recombinations. Also, for small germplasm sets, too 

1149 few recombinations might be available to detect incorrect marker order. Finally, the prevalence of 

1150 missing genotypic values should be sufficiently low across individuals. Unlike the SNP arrays used in this 

1151 study, some genotyping methods such as Genotyping-by-Sequencing do not consistently target specific 

1152 loci. This non-specificity can increase the flexibility of their use, but also raises new issues for which the 

1153 current workflow would have to be adapted, including the potential decrease in accuracies of 

1154 genotyping and haploblock determination due to unbalanced representation of genotyped loci, high 

1155 levels of missing data, and sequencing errors.

1156

1157 High-quality archived SNP and haplotype data sets

1158 The presented genome-wide genotypic data sets for apple, peach, and sweet cherry are of very high 

1159 quality, are composed of genetically complex germplasm, and contain no errors that could be 

1160 determined based on pedigree information. This high quality provides confidence in the results of 

1161 downstream analyses. Such confidence is important as many of these results are expected to lead to 

1162 fundamental discoveries and practical breeding application. The iScan data, phased SNP, and haplotype 

1163 datasets of individuals in the apple, peach, and sweet cherry crop reference sets are available through 

1164 the Genome Database for Rosaceae (www.rosaceae.org). 

1165

1166 Marker and pedigree data from germplasm subsets of the current U.S. RosBREED project, the EU-

1167 FruitBreedomics project, and other research projects have previously been curated by a precursor to the 

1168 current workflow and used for the creation of a multi-family based genetic linkage maps [20,45] and in 

1169 multifamily based QTL studies in apple [62–65], peach [22,66], and sweet cherry [14]. Also, elements of 

1170 the workflow were used for allo-octoploid strawberry to curate Axiom-based SNP markers [31] and 
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1171 pedigree data that were subsequently used in multi-family based QTL analyses [67–69]. While providing 

1172 high-quality data for each analysis separately, these earlier steps in data curation have helped guide and 

1173 streamline the data curation workflow presented here. The current workflow and resulting data sets 

1174 ensure that the same curation steps have been used across the data sets of multiple crops and that the 

1175 data sets are of the same high quality.

1176

1177 Conclusion

1178 A curation workflow for genotypic data of pedigreed germplasm was generated by determining the 

1179 optimal order of resolving issues and by providing a step-by-step guideline. Using simple genetic 

1180 principles, errors can be found and curated in a directed and efficient way, reducing the time needed to 

1181 obtain a high-quality genotypic data set. The workflow was used to obtain a SNP data set for large 

1182 germplasm sets for each of apple, peach, and sweet cherry representing U.S. breeding programs based 

1183 on the apple 8K SNP array, peach 9K SNP array, and cherry 6K SNP array, respectively, whose SNP data is 

1184 available through this paper (www.rosaceae.org), as well as used on apple and peach germplasm sets 

1185 representing European breeding programs based on the apple 20K and peach 9K arrays, whose SNP data 

1186 are still private. These high-quality data sets contain the largest sets of SNPs obtained through their 

1187 respective SNP arrays and will provide the foundation for confident subsequent analyses in genetic 

1188 research. 

1189
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1199 Supplementary information

1200 Table S1: Apple germplasm genotyped and used for data curation workflow. Individuals are split over 

1201 the publicly available RosBREED Crop Reference Set, three privately held RosBREED Breeding Pedigree 

1202 Sets, and genotypic data received from either KULeuven (Belgium) or the FruitBreedomics project. 

1203 Except for the Breeding Pedigree sets, curated pedigree information is given for each individual. For 

1204 each individual, the type of material (selected vs. unselected), the location of sampling, quality of the 

1205 results, and inferred ploidy of the sample are given. For unselected seedlings, the family to which they 

1206 belong is also given. For the Breeding Pedigree Sets, this information is summarized per full-sib family. If 

1207 tissue was collected at the USDA germplasm repository in Geneva, a GRIN accession number is also 

1208 provided. Parents highlighted in yellow did not have genotypic data and their pedigree-relationships 

1209 could not be tested.

1210

1211 Table S2: Peach germplasm genotyped and used for curation workflow. Individuals are split over the 

1212 publicly available RosBREED Crop Reference Set and three privately held RosBREED Breeding Pedigree 

1213 Sets. Except for the Breeding Pedigree Sets, curated pedigree information is given for each individual. 

1214 For each individual, the type of material (selected vs. unselected), the location of sampling, and quality 

1215 of the results of the sample are given. For unselected seedlings, the family to which they belong is also 

1216 given. For the Breeding Pedigree Sets, this information is summarized per full-sib family.

1217
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1218 Table S3: Sweet cherry germplasm genotyped and used for curation workflow. All individuals are part of 

1219 the publicly available RosBREED Crop Reference Set. For each individual, curated pedigree information, 

1220 the type of material (selected vs. unselected), the location of sampling, and quality of the results of the 

1221 sample are given. For unselected seedlings, the family to which they belong is also given.

1222

1223 Table S4: Parameter settings used for (A) filtering SNPs used in analyses of B-allele frequency, (B) 

1224 running ASSiST, (C) running FlexQTLTM for detecting Mendelian-inconsistent errors and Mendelian-

1225 consistent errors, and (D) running FlexQTLTM for phasing, haploblock determination, and creating 

1226 PediHaplotyper input files.

1227

1228 Table S5: Final genetic map used for apple during data curation. For each marker, genetic position, 

1229 associated haploblock, and physical position based on the apple GDDH 13 v1.1 genome are given.

1230

1231 Table S6: Final genetic map used for peach during data curation. For each marker, genetic position, 

1232 associated haploblock, and physical position based on the peach v2 genome are given.

1233

1234 Table S7: Final genetic map used for sweet cherry during data curation. For each marker, genetic 

1235 position, associated haploblock, and physical position based on the peach v2 genome are given.

1236

1237 Table S8: SNP classification for apple. Each SNP is classified as follows: Type ‘1’ for SNPs with good 

1238 clustering and less than 5% call errors, ‘2’ for SNPs with shifted clusters causing one of the clusters to be 

1239 called incorrectly, ‘3’ for SNPs with additional clusters (excluding null-alleles) that cause the incorrect 

1240 identification of at least one cluster, ‘4’ for SNPs with null-alleles that cannot be correctly called 
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1241 automatically, ‘5’ for SNPs that could not be mapped accurately but had correct clustering, ‘6’ for 

1242 monomorphic SNPs, and ‘7’ for failed SNPs.

1243

1244 Table S9: SNP classification for peach. Each SNP is classified as follows: Type ‘1’ for SNPs with good 

1245 clustering and less than 5% call errors, ‘2’ for SNPs with shifted clusters causing one of the clusters to be 

1246 called incorrectly, ‘3’ for SNPs with additional clusters (excluding null-alleles) that cause the incorrect 

1247 identification of at least one cluster, ‘4’ for SNPs with null-alleles that cannot be correctly called 

1248 automatically, ‘5’ for SNPs that could not be mapped accurately but had correct clustering, ‘6’ for 

1249 monomorphic SNPs, and ‘7’ for failed SNPs.

1250

1251 Table S10: SNP classification for sweet cherry. Each SNP is classified as follows: Type ‘1’ for SNPs with 

1252 good clustering and less than 5% call errors, ‘2’ for SNPs with shifted clusters causing one of the clusters 

1253 to be called incorrectly, ‘3’ for SNPs with additional clusters (excluding null-alleles) that cause the 

1254 incorrect identification of at least one cluster, ‘4’ for SNPs with null-alleles that cannot be correctly 

1255 called automatically, ‘5’ for SNPs that could not be mapped accurately but had correct clustering, ‘6’ for 

1256 monomorphic SNPs, and ‘7’ for failed SNPs.

1257

1258 Figure S1: SNP B-allele frequences plotted against physical position in the genome for (A) triploid 

1259 individuals excluding ‘Jonagold’, and (B) individuals with a tetraploid pattern

1260

1261 Figure S2: Call rates observed for individuals classified as having good, intermediate, or bad quality of 

1262 genotypic data as defined by their B-allele frequency plot outcome. Higher call rates are observed for 

1263 individuals with better quality of genotypic data.

1264
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1265 Document S1: R-script used to create B-allele frequency plots for all genotyped individuals.

1266

1267 Document S2: R-scripts used to confirm and deduce P(P)C relationships.

1268

1269 Document S3: Hands-on guideline on how to perform data curation using the steps described in this 

1270 study

1271
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