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Abstract 

Background: Reactivation of the telomerase reverse transcriptase gene TERT is a 

central feature for the unlimited proliferation potential of the majority of cancers but the 

underlying regulatory processes are only partly understood. 

Results: We assembled regulator binding information from different sources to 

construct a generic human and mouse regulatory network. Advancing our “Mixed 

Integer linear Programming based Regulatory Interaction Predictor” (MIPRIP) 

approach, we identified the most common and cancer-type specific regulators of TERT 

across 19 different human cancers. The results were validated by using the well-

known TERT regulation by the ETS1 transcription factor in a subset of melanomas 

with mutations in the TERT promoter. 

Conclusion: Our improved MIPRIP2 R-package and the associated generic 

regulatory networks are freely available at https://github.com/network-

modeling/MIPRIP. MIPRIP 2.0 identified both common as well as tumor type specific 

regulators of TERT. The software can be easily applied to transcriptome datasets to 

predict gene regulation for any gene and disease/condition under investigation.  
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Background 

Telomere repeats are lost at the 3’-end erosion during replication of linear 

chromosomes. If the telomeres become critically short senescence or apoptosis are 

induced. This process can thus act as a barrier towards unlimited proliferation and 

tumorigenesis [1]. Cancer cells circumvent this constraint by acquiring a telomere 

maintenance mechanism (TMM) [2]. In most instances they reactivate the reverse 

transcriptase telomerase via different pathways, which can extend the telomere 

repeats again [3, 4]. Human telomerase consists of the catalytic subunit TERT and the 

template RNA TERC (or hTR) [5]. TERC is constitutively expressed while the TERT 

gene is silenced in adult somatic cells [6, 7]. Germ and stem cells [7] as well as most 

tumor cells [2] express TERT so that telomerase is assembled. The mechanism of 

TERT activation in cancer cells appears to be highly variable between different cancer 

entities and numerous transcription factors (TFs) have been reported to be involved in 

this process [8]. The core region of the human TERT promoter is located between 330 

bp upstream and 228 bp downstream of the transcription start site. This region 

comprises several TF binding sites, including binding sites with GC and E-box motifs 

[8]. Previous studies showed that TERT promoter mutations can induce its expression 

in cancer cells. TERT promoter mutations occur most frequently in bladder cancer 

(59%), cancers of the central nervous system (43%), melanoma skin cancer (29%) 

and follicular cell-derived thyroid cancer (10%) [9]. 

Here, we performed an in silico analysis of TERT regulation by using our previously 

developed “Mixed Integer linear Programming based Regulatory Interaction Predictor” 

(MIPRIP) to predict TFs regulating the gene expression of TERT. MIPRIP was 

developed to identify regulatory interactions that best explain the discrepancy of 

telomerase transcript levels in Saccharomyces cerevisiae. In S. cerevisiae we 
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uncovered novel regulators of telomerase expression, several of which affect histone 

levels or modifications [10]. A variety of other approaches have been developed which 

integrate regulatory information into an unified model of a gene regulatory network 

(GRN). Many of them infer TF acitvity using linear regression from gene expression 

profiles, a pre-defined network of TFs and their target genes [11-13], probabilistic 

models [14] or a reverse engineering approach that identifies regulator to target gene 

interactions from the pairwise mutual information of their gene expression pofiles [15].   

It is noted that the activity of TFs frequently depends only partially on the gene 

expression of the TF itself but is rather modulated by post-translational modifications 

and protein stability. Hence, it is informative to infer the activity of a TF from the 

expression of its potential target genes [11, 16, 17]. In the present study, we have 

optimized our MIPRIP software and applied it to gene expression profiles of 19 

different cancer types from The Cancer Genome Atlas (TCGA) to identify TFs 

regulating the TERT gene.  

 

Results 

Transcription factor binding information and network construction 

We constructed a generic human regulatory network based on seven different 

repositories, mainly containing experimental validated binding information from ChIP 

based assays. In total, the generic network comprises 618,537 interactions of 1,160 

regulators and 31,915 target genes. For TERT, we identified 75 putative regulators 

(Table S2) that originated mainly from the manual curated database MetaCoreTM (60 

out of 75). Our list of TERT regulators compares well to the TERT regulators described 

in the review by Ramlee et al. [8]. In total, 30 from our identified 75 regulators were 

also described by Ramlee et al. (Fisher’s Exact Test P=6.01E-23) and except of CTCF 
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(Encode) all are listed in MetaCoreTM. Additionally, we assembled a generic gene 

regulatory network for mouse containing 93,140 interactions of 976 TFs and 15,728 

target genes from three different databases. To focus on more reliable edges, entries 

were selected based on database reliability and co-occurrences. 

 

Three different modes of a MIPRIP 2.0 analysis 

MIPRIP 2.0 can be used to (i) predict the most important regulators of one group of 

samples (single-mode), (ii) identify significant regulators being different between two 

groups of samples (e.g. disease vs. control) (dual-mode) and (iii) can be applied to 

more than two groups (multi-mode). The newly developed multi-mode implementation 

is embedded in a statistical analysis pipeline and can be applied to more than two 

datasets or conditions to identify common but also condition-specific regulators (Fig. 

1). Here, we applied the multi-mode MIPRIP 2.0 version to study the regulation of 

TERT across 19 different cancer types (described in the next section and Table S3) 

and employed the dual-mode to compare the regulation of melanoma samples with 

and without TERT promoter mutation. 

 

Applying MIPRIP 2.0 to identify regulators of TERT across different cancers  

We selected 19 different cancer types from TCGA for which more than 100 primary 

tumor samples were available. For each cancer type, we set up a regulatory model for 

TERT by using a ten-times three-fold cross-validation. We calculated different models 

by restricting the numbers of maximal regulators from 1 up to 10 resulting in 300 

models per cancer type. The performance of the models was estimated by the 

correlation between the predicted and the measured gene expression value (of TERT 

in the expression data). For most of the cancer types, the performance was r = 0.4 or 
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better (Fig 2a). For cervical (CESC), ovary (OV) and melanoma skin (SKCM) cancer 

the performance was distinctively lower. The highest performance was found for 

testicular germ cell cancer (TGCT) (r = 0.75) and thymoma (THYM) (r = 0.7), which 

also showed the highest TERT expression over all cancer types (Fig. 2b). The lowest 

TERT expression was found in breast (BRCA), pancreas (PAAD) and prostate (PRAD) 

cancer. The expression of TERT in melanoma skin cancer was comparable to most of 

the other cancer types, but the performance of the models was the worst (r = 0.1) (Fig. 

2a). As common regulators of TERT across all cancer types, we identified nine 

regulators: the two paired box proteins PAX5 and PAX8, the E2F factors 2 and 4, AR, 

BATF, SMARCB1, TAF1 and MXI1 (Table 1). To validate our results in silico, we 

queried Pubmed articles for the identified regulators. We identified 21 out of 1,002 

TERT articles for our identified regulators which was a significant enrichment for our 

hits (p = 0.013, Tables S4 and S5). 

 

Applying the dual-mode MIPRIP analysis to melanoma skin cancer 

Melanoma skin cancer was the first cancer type for which a high frequency of TERT 

promoter mutations was discovered, mainly in two hotspot C>T mutations at position 

124 bp and 146 bp upstream of the translational start codon [18, 19]. The TERT 

promoter mutation status was available for 115 samples of the melanoma dataset. As 

described in the previous section, we obtained the lowest performance of our 

regulatory models for melanoma samples. Considering this and the high rate of TERT 

promoter mutations we divided the dataset into samples with and without TERT 

promoter mutation in order to improve our predictions. We applied the MIPRIP 2.0 

dual-mode to the separated datasets. This resulted in a list of 12 and 17 TFs which 

were significantly more often used in the models for the samples with and without 
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TERT promoter mutation. AR, E2F1, JUND and ETS1 were the most significant 

regulators in the samples with TERT promoter mutation, while HMGA2, HIF1, RUNX2 

and TAL1 were most significant in the samples without TERT promoter mutation 

(Table 2). To validate that ETS1 is a key regulator in the samples with TERT promoter 

mutation, we investigated published microarray data from experiments in which ETS1 

was knocked down in melanoma cells with TERT promoter mutation [20]. Indeed, 

TERT expression was lower in the ETS1 knockdown sample compared to controls 

(fold change: 0.82).  

In summary, splitting up the melanoma dataset into two pre-defined cancer subgroups 

with and without the TERT promoter mutations led to more reliable modelling results 

(r = 0.3). Thus, dual-mode MIPRIP 2.0 is well suited to identify this specific regulation.  

 

Comparison with ISMARA 

We compared our results with results from the well-established tool ISMARA [11]. 

Similar to MIPRIP, ISMARA identifies the activity of regulators based on their target 

genes [11]. In contrast to MIPRIP, target genes are inferred from motif binding 

information, and not directly from ChIP experiments. In ISMARA, TF activities are 

calculated for each sample alone and then averaged over the samples of each group 

(TERT promoter mutated versus wild-type). ISMARA identified twenty TFs for the 

TERT promoter (Supplementary Table S6), but only SIN3A, MAZ and WT1 overlapped 

with the MIPRIP 2.0 results. Remarkably, ETS1 was not found by ISMARA. 
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Availability and Implementation 

MIPRIP 2.0 is implemented as a software package in R [21]. It is freely available at 

our website [22] and on github [23]. MIPRIP 2.0 is platform independent and runs on 

R version 3.5.1 together with Gurobi version 8.0.1 and the CRAN R package slam.  

 

Discussion 

In the present study we have advanced our software package “Mixed Integer linear 

Programming based Regulatory Interaction Predictor” (MIPRIP) for application to 

human and mouse cells. For this, we selected known regulator binding information to 

construct a generic network linking TFs to their potential target genes. The interactions 

between TFs and their targets organize as a scale-free network comprising hubs as 

central regulators [24]. The TFs with the highest score in our generic human regulatory 

network were MYC (sum of es: 12,607), YY1 (sum of es: 10,642.25) and CTCF (sum 

of es: 9,574.50). This might reflect the role of these TFs as master regulators that 

recruit chromatin modifying co-factors and remodel the chromatin structure in the case 

of MYC [25] or mediate structural interactions between enhancers and promoters as 

reported for CTCF and YY1 [26]. 

The MIPRIP 2.0 framework with its new multi-mode was applied to dissect the 

regulation of the telomerase protein subunit TERT across 19 different cancer types, 

yielding nine TFs being common to TERT regulation across all cancer types. These 

regulators together showed a significant enrichment in Pubmed entries for TERT. Five 

TFs (PAX5, PAX8, AR, E2F2 and E2F4) have been described previously as TERT 

regulators. PAX5 has two and PAX8 four binding sites at the TERT transcription start 

site that induce activation of TERT transcription and their function in telomerase 

regulation has been validated [27, 28]. The androgen receptor (AR) belongs to the 
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class of nuclear receptors and is a repressor of TERT expression [29]. The E2F2 and 

E2F4 factors bind to the E2 recognition motif and are involved in cell cycle processes 

and DNA damage response [30] and regulate TERT transcription in human B-cell 

lymphoma [31, 32]. In addition to these five TFs, we here identified BATF, SMARCB1, 

TAF1 and MXI1 as novel TERT regulators across cancer entities that to our 

knowledge, so far, have not been described in the literature as TERT regulators. 

Accordingly, we suggest these as potential candidates for future investigations on the 

mechanism of TERT reactivation in cancer cells.  

The best performance of the MIPRIP 2.0 multi-mode analysis was observed for 

thymoma and testicular germ cell cancer, which showed also the highest TERT 

expression. The worst performance was observed for melanoma skin cancer, even 

though TERT expression was not particularly low. As described in the literature, 

cutaneous melanoma skin cancer patients have a high rate of TERT promoter 

mutations, being responsible for an upregulation of TERT by enabling a further binding 

site of TFs from the ETS family [18, 19].  

Using MIPRIP 2.0 in the dual-mode after dividing the melanoma dataset into cancer 

samples with and without TERT promoter mutation improved the results considerably. 

We identified ETS1 as a highly significant regulator for TERT in tumors with TERT 

promoter mutation. To further validate this finding we analyzed publicly available 

expression data of an ETS1 siRNA knockdown experiment in a melanoma cell line 

with TERT promoter mutation and found a downregulation of TERT compared to 

controls. In line with this finding, ETS binding together with the activation of the non-

canonical NFkB signaling pathway through the co-activator p52 enhances the 

promoter activity of TERT [33].  
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Besides ETS1, we predicted AR, E2F1 and JUND as the most significant regulators 

in melanoma patients with a TERT promoter mutation. AR and E2F were also 

predicted as common TERT regulators in our multi-mode MIPRIP analysis. A recent 

study showed that an inhibition of E2F1 leads to increased cell death in melanoma 

cells, even if they are resistant to BRAF-inhibitors [34]. These results indicate that 

E2F1 is an interesting therapeutic target for melanoma. According to our predictions, 

E2F1 regulates samples with a TERT promoter mutation. As E2F1 is a TERT 

repressor [30], an inhibition of E2F1 may be more efficient in samples without TERT 

promoter mutation.  

For melanoma samples without TERT promoter mutation, we predicted HMGA2, HIF1, 

RUNX2 and TAL1 as the most significant regulators. HMGA2 is a member of the high-

mobility group of AT-hook proteins, which are expressed during embryonic 

development [35] as well as in different tumors (e.g. squamous cell carcinoma and 

malignant melanoma [36]). While only a few samples showed a TERT promoter 

mutation [36], it is still unclear if there is an association between HMGA2 expression 

and TERT promoter mutations. According to our predictions, we suggest that TERT 

regulation by HMGA2 and TERT promoter mutations are mutually exclusive, which 

has to be validated in future experiments. In this case study, we observed that splitting 

up the datasets into subtypes led to an increased performance of the regulatory 

models and was necessary to break down the relevant regulatory processes. 

Melanoma patients with TERT promoter mutation show decreased survival rates [37]. 

Hence, identifying subtype specific regulatory mechanisms may support risk 

stratification by employing the identified regulators as biomarkers. In addition, such 

predictions may pave the way for a personalized therapy by developing drugs 

specifically interfering with the detected TFs.   
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Using the specific application of known ETS binding site mutations in the TERT 

promoter of melanoma samples as a case study, we compared the results from 

MIPRIP 2.0 with ISMARA. The overlap between our results and ISMARA was very 

low. ISMARA did not retrieve ETS1 as distinct TERT regulator of samples with the 

promoter mutation.  

Besides the advancement with the three different modes and the possibility of 

weighted edges, MIPRIP 2.0 allows to extend the model by including information about 

gene copy number, DNA methylation, miRNA expression and binding, and additional 

variables e.g. related to further epigenetic regulation.  

 

Conclusions 

We here introduced our new MIPRIP 2.0 framework and applied it to predict TERT 

regulators in a pan-cancer analysis. Some of the common TFs identified like PAX5, 

PAX8, AR, E2F2 and E2F4 have been previously described as TERT regulators. 

Others like BATF, SMARCB1, TAF1 and MXI1 are novel. It will be exciting to test 

experimentally whether they are linked to a TMM phenotype. Furthermore, the 

predicted TERT regulators were compared in melanoma samples with wild-type vs 

mutated TERT promoters. In this manner, we validated that a change of TF targets, in 

this case for TFs from the ETS family, was captured by MIPRIP 2.0. The software 

package is available on our website [22] and github [23] together with the generic 

human or mouse regulatory network and example datasets. It can be applied to a large 

variety of datasets to investigate the role of TF mediated gene regulation of a gene of 

interest in the context of diseases or response to a variety of conditions that include 

treatment. 
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Methods 

Gene expression data 

We downloaded publicly available transcriptome expression data (RNA-Seq) of all 

cancer types with more than 100 primary tumor samples from the TCGA Genome Data 

Analysis Center (GDAC) of the Broad Institute [38]. For these datasets the usage 

restriction has been lifted according to the TCGA publication guidelines from 

December 21, 2015 [39]. The pre-processed transcriptomic data with log2 transformed 

RSEM  [40] normalized values were downloaded for 19 different cancer types listed in 

Table S1. In each cancer type, genes with more than 25% missing entries and low 

varying genes (standard deviation ≤ 0.5) were filtered out. Furthermore, we performed 

a z-score transformation for each gene across each cancer dataset.  

 

Assembling transcription factor binding information into a generic human and 

mouse gene regulatory network 

We assembled a comprehensive set of putative regulators for each gene by compiling 

TF binding information in human cells from seven different data repositories 

comprising (i) MetaCoreTM [41] with annotated "direct", "indirect" and "unspecific" 

interactions, (ii) the ChIP Enrichment Analysis (ChEA) database [42], (iii) chromatin 

immunoprecipitation data from the ENCODE project 

(http://www.genome.gov/Encode/), (iv) human ChIP-seq and ChIP-ChIP data from 

hmCHIP [43], (v) experimentally verified interactions from the Human Transcriptional 

Regulation Interactions database (HTRIdb) [44], (vi) ChIP-seq data for long non-

coding RNA and microRNA genes from ChIPBase [45] and (vii) the method of Total 

Binding Affinity (TBA) [46]. TBA estimates the binding probability of a TF to the whole 

range of a gene’s promoter. Only TBA values with a stringency cutoff of a score ³ 1.5 
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were selected. All these repositories were used to compute the generic network of TFs 

and their target genes. An interaction between a TF t and a target gene i was 

considered if it was listed 

(i) in MetaCoreTM and labelled as direct, or listed in Encode, 

(ii) in at least two out of MetaCoreTM (labelled as indirect), ChEA, TBA 

(score≥1.5) or HTRI, or 

(iii) in ChIPBase and hmChIP. 

The different repositories were not equally incorporated due to the fact, that some 

repositories were more reliable than others. Because the interactions from 

MetaCoreTM based on literature reports and were manually curated, MetaCore's direct 

interactions (MCdirti, activation, inhibition or unspecific) were weighted by a factor of 

2, while MetaCore's indirect interactions (MCindirti, activation, inhibition or unspecific) 

were weighted by a factor of 1. Entries from cheati, htriti and tbati were also weighted 

by a factor of 1, interactions from Encode (encti) by 0.5. A factor of 0.25 was used for 

interactions found in hmChIP (hmti) and ChIPbase (chipti). This led to the overall edge 

strength score esti: 

   

𝑒𝑠#$	: = 2 ∙ 𝑀𝐶𝑑𝑖𝑟#$ + 	0.5	 ∙ 𝑒𝑛𝑐#$ +	𝑎#$ ∙ (𝑀𝐶𝑖𝑛𝑑𝑖𝑟#$ + 𝑐ℎ𝑒𝑎#$ +	ℎ𝑡𝑟𝑖#$ + 𝑡𝑏𝑎#$) + 	0.25	 ∙

(ℎ𝑚#$ ∙ 𝑐ℎ𝑖𝑝#$)                                                                                                           (1) 

 

with  

𝑎#$ ≔ 	 >1	𝑖𝑓	(𝑀𝐶𝑖𝑛𝑑𝑖𝑟#$ + 𝑐ℎ𝑒𝑎#$ +	ℎ𝑡𝑟𝑖#$ + 𝑡𝑏𝑎#$) 	≥ 2
0	𝑒𝑙𝑠𝑒

  ,    (2) 

 and             

𝑀𝐶𝑑𝑖𝑟#$, 𝑒𝑛𝑐#$, 𝑎#$, 𝑀𝐶𝑖𝑛𝑑𝑖𝑟#$, 𝑐ℎ𝑒𝑎#$, ℎ𝑡𝑟𝑖#$, 𝑡𝑏𝑎#$, ℎ𝑚#$, 𝑐ℎ𝑖𝑝#$ ∈ {0,1}                         (3) 
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In total the generic network (version 1.0) comprises 618,537 non-zero entries for 1,160 

TFs and 31,915 target genes.  

 

Similarly, a comprehensive set of putative regulators for each gene was assembled 

for mouse by compiling TF binding information from MetaCoreTM, ChEA and ENCODE 

containing TF binding information for mouse. Additionally, we added two more 

databases, ECRBase and TfactS. ECRBase is based on alignments of evolutionary 

conserved TF binding sites [47]. TfactS [48] contains interaction information inferred 

from the regulation of TFs from gene expression data of experimentally well-

characterized target genes listed in TRED [49], TRRD [50], PAZAR [51] and 

NFIregulomeDB [52]. Interaction information of TF t and target gene i from MetaCoreTM 

(MCdirti) labelled as direct was weighted by 2. If an interaction was listed in two out of 

(a) MetaCoreTM indirect (MCindirti), (b) ChEA (cheati) and (c) ECRbase (ecrbaseti), it 

was weighted by 1 (for each source). A listed mouse ENCODE entry (encti) was 

weighted by 0.5. The interactions of TfactS (tfacsti) were considered to have weaker 

evidence and were weighted by 0.25. This led to the overall edge strength score mesti 

for mouse: 

 

𝑚𝑒𝑠#$ ∶= 2 ∙ 	𝑀𝐶𝑑𝑖𝑟#$ +	𝑎#$ ∙ (𝑀𝐶𝑖𝑛𝑑𝑖𝑟#$ + 𝑐ℎ𝑒𝑎#$ + 𝑒𝑐𝑟𝑏𝑎𝑠𝑒#$) + 0.5 ∙ 𝑒𝑛𝑐#$ + 0.25 ∙

𝑡𝑓𝑎𝑐𝑠#$                                              (4)                                                                    

 

with  

 𝑎#$ ≔ 	 >1	𝑖𝑓	(𝑀𝐶𝑖𝑛𝑑𝑖𝑟#$ + 𝑐ℎ𝑒𝑎#$ + 𝑒𝑐𝑟𝑏𝑎𝑠𝑒#$) ≥ 2
0	𝑒𝑙𝑠𝑒

    (5) 

and 

𝑀𝐶𝑑𝑖𝑟#$,𝑀𝐶𝑖𝑛𝑑𝑖𝑟#$, 𝑐ℎ𝑒𝑎#$, 𝑒𝑐𝑟𝑏𝑎𝑠𝑒#$, 𝑒𝑛𝑐#$	, 𝑡𝑓𝑎𝑐𝑠#$, 𝑎#$ ∈ {0,1}         (6) 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 13, 2019. ; https://doi.org/10.1101/513259doi: bioRxiv preprint 

https://doi.org/10.1101/513259
http://creativecommons.org/licenses/by-nd/4.0/


 15 

In total the generic mouse network (version 1.0) comprises 93,140 non-zero entries 

for 976 TFs and 15,728 target genes. 

 

Modeling TERT regulation 

We optimized our previously developed “Mixed Integer linear Programming based 

Regulatory Interaction Predictor” (MIPRIP) software. MIPRIP 2.0 can be used for one 

set of samples (single-mode), can be applied to compare the regulatory processes 

between two sets of samples (dual-mode), and for multiple datasets, to identify the 

most common and condition specific regulators (multi-mode) (Fig. 1). The basic idea 

of MIPRIP is to identify the most relevant regulators of a particular target gene by 

predicting the target gene's expression using a linear model in which the covariates 

are all potential regulators putatively binding to its promoter. The gene expression 

value 𝑔IJKLJ,M	of the TERT gene is predicted for each sample by the following model:  

   𝑔IJKLJ,M = 	𝛽O +	∑ 𝛽# ∙ 	𝑒𝑠#,JKLJ ∙ 	𝑎𝑐𝑡#MJ
#QR                                 (7) 

where β0 is an additive offset, T the number of all regulators for which TERT promoter 

binding information is available, βt is the optimization parameter for regulator t, 𝑒𝑠#$ is 

the edge strength score between regulator t and its putative target gene i and 𝑎𝑐𝑡#M 

the activity of regulator t in sample k. If gene i was reported to be a target of regulator 

t, the edge weight was higher than 0. Instead of using the gene expression value of a 

regulator, we calculate an activity value 𝑎𝑐𝑡#M  for each regulator and each sample 

based on the expression of all its putative target genes gik by  

   𝑎𝑐𝑡#M = 	
∑ STUV	∙	WVX
Y
VZ[
∑ STUVY
VZ[

 .       (8) 

The activity is the cumulative effect of a regulator on all its target genes, normalized 

by the sum of all target genes. To calculate the activity value, we excluded the 

expression value of the gene of interest (TERT) itself. A linear regression is performed 
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based on Mixed Integer Linear Programming (MILP). MILP has advantages over lasso 

regression model, as in MILP based regression, the error penalties are linear (L1 

regression) and not quadratic which avoids over-emphasizing outliers. Furthermore, 

MILP enables using binary on-off switches for each beta coefficient to limit the number 

of beta coefficients [for details, see [17]]. All linear equations are optimized using the 

Gurobi optimizer [53] (version 6.0-7.01) to minimize the difference between the 

measured transcript level (from the gene expression matrix) 𝑔$,M  and the predicted 

gene expression 𝑔I$,M value. This equals to minimizing the error terms 𝑒$M in 

                min∑ |𝑔$M −	𝑔I$M| = 	∑ 𝑒$Ma
MQR

a
MQR .                   (9) 

Because MILP cannot handle absolute values, the absolute values were transformed 

into two inequalities for each gene i and sample k, 

            																																			𝑔$M −	𝑔I$M −	𝑒$M 	≤ 0                                                       (10) 

                         															−	𝑔$M +	𝑔I$M −	𝑒$M 	≤ 0	.                                                   (11) 

To avoid overfitting, for each dataset we constructed models constraining the number 

of regulators starting with one regulator up to 10 regulators. A ten-times threefold 

cross-validation was performed yielding 300 models for each dataset. The correlation 

between the measured and the predicted gene expression values from the models 

indicates the prediction performance.  

 

Single-mode MIPRIP 2.0 analysis 

The single-mode analysis was developed to predict a list of regulators best explaining 

the gene expression profile of the target gene of interest (TERT) for all samples of a 

dataset for a single condition or disease. The single mode has no additional statistical 

analysis beyond the linear modelling. The results are simply the frequency of 

regulators over all cross-validation runs, prioritized by their usages. 
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Dual-mode MIPRIP 2.0 analysis 

As a case study, we applied the dual-mode analysis to the skin cutaneous melanoma 

(SKCM) dataset. The SKCM dataset was divided into two subgroups based on the 

TERT promoter mutation (based on the analysis of [54]). In total, the status of the 

TERT promoter was available for 115 samples (primary and metastatic samples). One 

subgroup (n=74) comprised samples with a TERT promoter mutation, the other 

subgroup comprised samples with the according wild-type of the TERT promoter 

(n=41). With these two subgroups we performed a dual-mode analysis by calculating 

the linear models using the same parameters as described above. Significant 

regulators between the two subgroups were determined by a two-sided Fisher's exact 

test, testing an enrichment of a TF to be in a model of the first or the second condition 

based on their distribution in the different models, followed by multiple testing 

correction using the Benjamini-Hochberg method [55]. The stringency cutoff was set 

to P=0.01. 

 

Multi-mode MIPRIP 2.0 analysis 

The multi-mode analysis was developed to predict (1) a list of regulators best 

explaining the gene expression of the gene of interest (TERT) across all conditions (in 

our case tumor types), and (2) for each specific condition, in contrast to all other 

conditions. We prioritized the regulators as follows. For each condition, we listed how 

often each regulator was selected by the optimizer resulting in a count table. With 

these distributions we performed a one-sided Wilcoxon Test for each regulator in the 

list to identify regulators which were selected significantly more often in one of the 

conditions compared to all other conditions yielding the condition specific. Significance 

values (p-values) were corrected for multiple testing [55]. To identify the most common 
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TERT regulators within all conditions (of all 19 cancer types), a rank product test was 

performed based on the ranks from the counts of each condition. A permutation-based 

estimation was used to determine if the rank product value was higher than an 

observed value from a random distribution. We then counted how often the rank 

product values in the permutations were below or equal to the observed value, which 

led to an averaged expected value (E-value) [56].  

 

Systematic literature query 

A Pubmed [57] search was performed for the identified common TERT regulators from 

the multi-mode MIPRIP 2.0 analysis. A combination of all regulator gene symbols from 

Table 1 was queried together with "TERT" and the terms “telomerase”, “human” and 

“regulation”: (E2F4 OR AR OR PAX5 OR E2F2 OR BATF OR PAX8 OR SMARCB1 

OR MXI1 OR TAF1) AND TERT AND telomerase AND human AND regulation. The 

received number of articles was compared to a query without the identified regulators, 

and to the same two queries without the gene symbol of TERT yielding the according 

background counts. A Fisher’s exact test was applied to test if the identified common 

regulators were significantly more often found together with TERT than without TERT 

(Supplementary Table S5). 

 

TF perturbation experiments 

We investigated TERT expression upon ETS1 knockdown for validating our result of 

the dual-mode case study. Wang et al. have previously performed siRNA mediated 

knockdown of 45 TF and signaling molecules in the melanoma cell line A375. The 

gene expression of cells with the knockdown (1 sample per knockdown), untreated (3 

replicates) and siRNA control treated (3 replicates) cells was measured by microarrays 
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(Affymetrix GeneChip Human Genome U133 Plus 2.0) 48 h after transfection [20]. 

RMA-normalized expression data of the perturbation experiments was downloaded 

from Gene Expression Omnibus (GSE31534). Affy probe-ids were mapped to gene 

symbols using BioMart [58] and multiple affy probe-ids for the same gene were 

averaged. A fold change was calculated for TERT upon ETS1 knockdown compared 

to control.  

 

Comparison of MIPRIP 2.0 with ISMARA 

We compared our MIPRIP 2.0 results with the results from the “Integrated Motif Activity 

Response Analysis” (ISMARA) tool. ISMARA predicts regulatory interactions between 

the TFs and the target genes based on TF binding motifs [11]. For the SKCM data 

from TCGA only preprocessed data was available. Hence, ISMARA could not be used 

via the web portal. Therefore, the ISMARA analysis was performed based on the 

FPKM values (downloaded from the GDC portal [59], June 2018) by the developers 

using default settings.  

 

List of abbreviations 

MIPRIP: Mixed Integer linear Programming based Regulatory Interaction Predictor 

TMM: telomere maintenance mechanism 

TF: transcription factor 

GRN: gene regulatory network 

ChIP: Chromatin immunoprecipitation 

TCGA: The Cancer Genome Atlas 

SKCM: skin cutaneous melanoma 

OV: ovarian serous cystadenocarcinoma 
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CESC: cervical cancer 

THYM: thymoma 

TGCT: testicular germ cell cancer 

PRAD: prostate adenocarcinoma 

PAAD: pancreatic ductal adenocarcinoma 

BRCA: breast cancer 

ISMARA: Integrated Motif Activity Response Analysis 

EMSA: electrophoretic shift assay 

MILP: Mixed Integer Linear Programming 

GDAC: Genome Data Analysis Center 

RSEM: accurate transcript quantification from RNA-Seq data with or without a 

reference genome 

ChEA: ChIP Enrichment Analysis 

HTRIdb: Human Transcriptional Regulation Interactions database 

TBA: total binding affinity 

es: edge strength 

FPKM: fragments per kilobase of exon model per million reads mapped  

E-value: expected value 

TERT: Telomerase reverse transcriptase 

AR: androgen receptor 

ETS: E-twenty six 
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Table 1. Predicted TERT regulators common to all 19 cancer types 

TF E-value 
E2F4 0 
AR 1.00 E-04 

PAX5 4.00 E-04 
E2F2 6.00 E-04 
BATF 3.20 E-03 
PAX8 6.30 E-03 

SMARCB1 1.38 E-02 
MXI1 1.87 E-02 
TAF1 2.12 E-02 

 

 

Table 2. TERT regulators of melanoma samples with (mut) and without (wt) TERT 

promoter mutation 

Regulators in 
mut 

P-value Regulators in 
wt 

P-value 

AR 3.97 E-37 HMGA2 1.05 E-16 
E2F1 3.00 E-29 HIF.1 1.03 E-15 
JUND 2.86 E-25 RUNX2 2.88 E-12 

SMARCB1 1.85 E-15 TAL1 1.54 E-09 
ETS1 4.46 E-13 ESR2 3.92 E-09 

SIN3AK20 1.42 E-06 AP-2 3.28 E-06 
REST 3.64 E-06 MITF 2.59 E-05 
MAZ 7.85 E-06 WT1 2.80 E-05 
E2F2 9.20 E-05 SMAD3 5.76 E-05 
TAF1 1.36 E-04 TFAP2D 2.78 E-04 

BCL11A 4.31 E-04 PAX8 6.04 E-04 
MYB 4.73 E-04 GRHL2 7.16 E-04 

  TP53 1.21 E-03 
  TCF7 1.68 E-03 
  MZF1 3.44 E-03 
  TFAP2C 3.68 E-03 
  NR2F2 7.96 E-03 
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Figure Legends 
 

Figure 1. Schematic overview of the workflow. Three different modes are available in 

MIPRIP 2.0. The single-mode can be used to predict the most relevant regulators of 

the gene of interest based on a single entity of the disease or condition. The dual-

mode compares the regulator predictions of a gene of interest between two different 

diseases or conditions (e.g. treatment versus control). The multi-mode can be used 

for more than two diseases or conditions to identify the most common and condition 

specific regulators of the gene of interest. 

 

Figure 2. TERT expression and prediction performance for the investigated different 

cancer types. Boxplots for each cancer type of (a) the correlation between predicted 

and experimental gene expression over all models, and (b) TERT expression in each 

sample. 
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Figure 1 

 

  

MIPRIP 2.0

multi-modedual-mode

statistical
analysis

common 
regulators

group specific 
 regulators

group 1

group1 and group2 
specific regulators

single-mode

regulators

statistical
analysis

group 2 group 1 group 2 ...

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 13, 2019. ; https://doi.org/10.1101/513259doi: bioRxiv preprint 

https://doi.org/10.1101/513259
http://creativecommons.org/licenses/by-nd/4.0/


 29 

Figure 2 
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