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Abstract 50 

Sensitive and accurate biomarkers for the prediction of conversion from mild cognitive 51 

impairment (MCI) to Alzheimer’s Disease (AD) are needed to both support clinical care and 52 

enhance clinical trial design. Here, we examined the potential of cerebrospinal fluid (CSF) levels 53 

of a peptide derived from a neural protein involved in synaptic transmission, VGF (a non-54 

initialism), to enhance accuracy of prediction of conversion from MCI to AD. The performance 55 

of conventional biomarkers (CSF Aβ1-42 and phosphorylated tau +/- hippocampal volume) was 56 

compared to the same biomarkers with CSF VGF peptide levels. It was observed that VGF 57 

peptides are lowered in patients with AD compared to controls and that combinations of CSF 58 

Aβ1-42 and phosphorylated tau, hippocampal volume and VGF peptide levels outperformed 59 

conventional biomarkers alone (hazard ratio = 2.2 vs. 3.9). VGF peptide levels were correlated 60 

most strongly with total tau levels, but not hippocampal volume, suggesting that they serve as a 61 
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marker for neuronal degradation, but not necessarily in the hippocampus. The latter point 62 

suggests that VGF may serve as a more general marker of neurodegeneration. Future work will 63 

be needed to determine the specificity of VGF for AD vs. other neurodegenerative diseases. 64 

Introduction 65 

Alzheimer Disease (AD) is characterized by a long prodromal course during which a number of 66 

pathological changes occur prior to the onset of clinical symptoms. Classically, these changes 67 

include the deposition of amyloid beta (Aβ) and phosphorylated tau (pTau) into the brain, 68 

hippocampal atrophy and disruptions of metabolism, particularly in the temporal and parietal 69 

cortices (for review of preclinical pathology and biomarkers, please see [1]). It is speculated that 70 

these biomarkers are part of a cascade whereby Aβ triggers a series of pathological events, 71 

leading to neuronal dysfunction, hyperphosphorylation of tau and consequent synaptic loss, 72 

leading to volume loss and metabolic disruption [2-4]. These changes have formed the basis for 73 

the use of a series of fluid and imaging biomarkers to facilitate clinical and research practice.  74 

 75 

AD biomarkers may be used to 1) achieve earlier diagnoses for patients, 2) predict which 76 

individuals are most likely to clinically worsen over time, 3) help to identify and stratify subjects 77 

enrolling in AD-related clinical trials and 4) serve as outcome measurements in AD-related 78 

clinical trials [5-7]. For example, there is a 10-15% misdiagnosis rate when AD is diagnosed on 79 

clinical grounds only. This high rate of misdiagnosis has substantial cost implications [8-11] and 80 

if such misdiagnosed subjects are enrolled into clinical trials, they could obscure the impact of 81 

disease-modifying therapy. In addition, prediction of clinical decline in subjects with early-stage 82 

disease will permit the institution of aggressive interventions, such as physical exercise or 83 

pharmacologic therapy, to stave off AD symptoms. Finally, novel biomarkers or combinations of 84 

biomarkers could be used to enrich MCI clinical trials with subjects with high conversion rates to 85 

shorten and diminish the cost of clinical trials [12, 13]. Therefore, a better understanding of how 86 

biomarkers delineate disease classes and predict progression is needed. 87 

 88 

Recently, our group and others have identified a group of novel plasma and cerebrospinal fluid 89 

(CSF) biomarkers that fall outside the traditional Aβ cascade. Many of these markers have been 90 

shown to be useful in the prediction of MCI to AD conversion [14-20]. For example, we used a 91 
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hypothesis-free bioinformatics approach to identify a panel of 16 peptides in CSF initially 92 

identified as showing high diagnostic accuracy for AD vs. control, that was highly predictive of 93 

conversion from mild cognitive impairment (MCI) to AD in an independent group of subjects 94 

and outperformed conventional CSF markers such as Aβ, tau derivatives and their ratios [20]. 95 

These studies highlight non-canonical pathological cascades that may both provide useful tools 96 

for clinical practice and clinical trials purposes, and may also reveal new insights about disease 97 

mechanisms underlying AD. 98 

 99 

One of the peptides identified using this hypothesis-free approach to separate AD from normal 100 

(NL) controls was VGF [20]. VGF (a non-initialism) has recently received significant attention 101 

because of its role in learning and memory and potential role in the pathophysiology of AD [21, 102 

22]. VGF is a neurotrophin-inducible 615-amino acid polypeptide secreted by neurons and is 103 

cleaved into multiple smaller fragments ranging in length from 16-129 amino acids. VGF is 104 

produced in a number of brain regions, including the cerebral cortex, amygdala, hippocampus 105 

and hypothalamus, as well as in neuroendocrine tissues such as the adrenal medulla and 106 

adenohypophysis, and is thought to be involved in synaptogenesis and energy homeostasis [23, 107 

24]. We and others have observed altered levels of VGF in the CSF of AD patients compared to 108 

controls, though not all studies had the same directionality (studies showing a decrease: [25-31], 109 

study showing an increase: [32]). VGF overexpression also protects against memory impairment 110 

in 5xFAD transgenic mice that model AD [21]. However, previous work has not yet examined 111 

the potential for VGF in the CSF, when combined with established biomarkers, to predict MCI to 112 

AD conversion. It should not be assumed that VGF independently contributes to the prediction 113 

of MCI to AD conversion: it is possible that it is a redundant marker for a process already 114 

encoded by changes in a more conventional biomarker.  115 

 116 

Therefore, in the current study, we examined the potential for VGF in the CSF, when combined 117 

with conventional biomarkers of CSF Aβ1-42, total tau (tTau) and pTau-181 and hippocampal 118 

volume, to enhance the diagnostic and prognostic accuracy of these markers. The focus of this 119 

work is on the VGF peptide fragment with sequence NSEPQDEGELFQGVDPR (“VGF.NSEP”) 120 

since it previously emerged as a strong predictor in a panel of peptides that predict MCI to AD 121 

conversion [20], though other VGF peptide fragments are also examined. Unlike our previous 122 
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studies involving hypothesis-free approaches to identify optimal peptides to include in biomarker 123 

signatures [20, 33, 34], the current study was focused on the utility of VGF. Using data from two 124 

independent groups in the ADNI cohort: one group of AD and control subjects and a separate 125 

group of MCI subjects, it was found that VGF, when combined with conventional biomarkers, 126 

enhanced both the diagnostic accuracy of these markers and the ability of these markers to 127 

predict MCI to AD conversion. 128 

 129 

Methods 130 

Methods and data used for this research are similar to those used in Devanarayan et al. [33]. The 131 

ADNI database (adni.loni.usc.edu) utilized in this research was launched in 2003 as a public-132 

private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of 133 

ADNI has been to test whether serial MRI, PET, other biological markers, and clinical and 134 

neuropsychological assessments can be combined to measure the progression of MCI and early 135 

AD. For up-to-date information, see www.adni-info.org. This study was conducted across 136 

multiple clinical sites and was approved by the Institutional Review Boards of all of the 137 

participating institutions. Informed written consent was obtained from all participants at each 138 

site. Data used for the analyses presented here were accessed on February 24, 2018. Although the 139 

ADNI database continues to be updated on an ongoing basis, most newly added biomarker data 140 

are from later time points (i.e., beyond 1 year), in contrast to the baseline data used in this study. 141 

 142 

Subjects: 143 

This research was focused on the relationship between VGF, conventional biomarkers (CSF 144 

amyloid/tau and MRI hippocampal volume [HV]) and therefore, only those subjects whose 145 

values for these markers were available at baseline were included in this study. Ultimately, this 146 

dataset included 287 subjects across the three diagnostic categories (AD, MCI and NL). NL 147 

subjects were defined as those without memory complaints and had a clinical dementia rating 148 

(CDR) score of 0. MCI subjects had CDR scores of 0.5, had an abnormal score on Wechsler 149 

Memory Scale Revised- Logical Memory II and did not have significant functional impairment. 150 

AD subjects had functional decline and a CDR score of 0.5 or 1.0. 151 

 152 

Hippocampal volume: 153 
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HV was chosen given its robust ability to predict MCI to AD conversion [35, 36] and its 154 

incorporation into proposed schema to classify AD subjects [37]. HV was obtained from MRI 155 

scans (mostly 1.5T; 25% in this dataset had 3.0T scans) and was computed using FreeSurfer 156 

software. Please see “UCSF FreeSurfer Methods” PDF document under “MR Image Analysis” in 157 

the ADNI section of https://ida.loni.usc.edu/) for details as well as [38-40].  158 

 159 

CSF Samples: 160 

Innogenetics’ INNO-BIA AlzBio3 immunoassay on a Luminex xMAP platform (see [41] for 161 

details) was used to measure levels of the conventional biomarkers A1-42, tTau, and pTau-181 162 

in CSF. The Caprion Proteomics mass spectrometry platform was used to measure levels of 163 

individual peptides. The VGF peptides (sequence NSEPQDEGELFQGVDPR, referred to here as 164 

VGF.NSEP, sequence AYQGVAAPFPK, referred to here as VGF.AYQG and sequence 165 

THLGEALEPLSK, referred to here as VGF.THLG) used in this study were among a total of 320 166 

peptides generated from tryptic digests of 143 proteins. Details regarding the measurements of 167 

these peptides can be found in the Use of Targeted Mass Spectrometry Proteomic Strategies to 168 

Identify CSF-Based Biomarkers in Alzheimer’s Disease Data Primer (found under Biomarkers 169 

Consortium CSF Proteomics MRM Data Primer at ida.loni.usc.edu) and in [19]. 170 

 171 

Statistical Methods: 172 

As we have described previously [33], optimal combinatorial signatures including CSF Aβ1-42, 173 

tTau, pTau-181, their ratios, HV and VGF-derived peptides with simple decision thresholds for 174 

each marker were first identified from the AD and NL subjects. These signatures were revealed 175 

by an unbiased, data-driven manner via regression and tree-based computational algorithms 176 

called Patient Rule Induction Method [42] and Sequential BATTing [43]. To measure the 177 

performance of each signature for disease-state differentiation (i.e., NL vs. AD), five-fold cross-178 

validation was performed. To do this, the data were randomly divided into five subgroups, 179 

referred to as folds, and a signature was derived from the remaining four folds. This signature 180 

was then tested on the left-out fold. This process was repeated for 10 iterations and median 181 

performance of each performance of positive predictive value (PPV), negative predictive value 182 

(NPV) and accuracy was computed. 183 

 184 
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Once an optimal signature for differentiating NL from AD was derived, it was tested on a 185 

different group of 135 MCI subjects from the ADNI dataset. Baseline values for Aβ1-42, tTau, 186 

pTau-181, HV and VGF peptides for each MCI subject at baseline were used to classify each 187 

subject as being “signature positive” (i.e., similar to the profile found in AD) or “signature 188 

negative” (i.e., similar to the profile found in NC). PPV, NPV and accuracy were then computed 189 

by comparing the actual outcome (conversion or not to AD over 36 months) to the predicted 190 

outcome (signature positive/negative which would predict conversion/nonconversion, 191 

respectively). Exact McNemar’s test was used to compare PPV, NPV and accuracy. 192 

 193 

In addition to measuring the performance of whether MCI subjects would convert over 36 194 

months, time to conversion was also computed using available data up to 10 years after the initial 195 

evaluation. Potential markers for this analysis were grouped into categories:  196 

 197 

1. Demographic markers (presence of APO-E4 allele, age, gender, education) 198 

2. Demographic markers + HV 199 

3. Demographic markers + amyloid/tau CSF markers (heretofore called “AT”: Aβ1-42, 200 

tTau, pTau-181, ratios of tTau to Aβ1-42 & pTau-181 to Aβ1-42) 201 

4. Demographic markers + HV + AT 202 

5. Demographic markers + HV + AT + VGF 203 

 204 

All analyses related to predictive modeling and signature derivation were carried out using R 205 

(http://www.R-project.org), version 3.4.1, with the publicly available package, SubgrpID [43]. 206 

The time to progression analysis of the derived signatures and related assessments were carried 207 

out using JMP®, version 13.2.  208 

 209 

Results: 210 

Demographics: 211 

Similar to Devanarayan et al. (2019), 66 AD, 135 MCI and 86 NL subjects were included in the 212 

analysis and their demographic information and rates of conversion from MCI to AD are shown 213 

in Table 1. There were no statistically significant differences in terms of age or education (range 214 

of means = 75.1 to 75.8 years, p>0.05) and education (range of means = 15.1 to 16 years, 215 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 7, 2019. ; https://doi.org/10.1101/512939doi: bioRxiv preprint 

https://doi.org/10.1101/512939
http://creativecommons.org/licenses/by/4.0/


8 
 

p>0.05).  There was a greater number of males than females (59.1 vs 40.9%), though their 216 

likelihood of conversion from MCI to AD over 36 months was similar (43.5% vs. 53.9%, 217 

p=0.285, Chi-squared test). The likelihood that an APO-E4 allele was present was higher AD 218 

than in other subjects (present in 71.2% AD, 50% MCI and 24.4% NL subjects, p < 0.0001, Chi-219 

squared test) and was a relatively weak risk factor for the conversion of MCI to AD (present in 220 

40/62 converters and 31/70 non-converters p=0.03, Chi-squared test), both of which have been 221 

demonstrated previously [44-46]. 222 

 223 

Disease state classification – univariate analysis: 224 

Figures 1A-D recapitulates previous analyses by us and others [33, 47-49] showing that Aβ1-42, 225 

tTau, pTau-181 and HV are all significantly different in NL and AD subjects and that these 226 

values are intermediate for MCI subjects. For all four markers in Figures 1A-D, comparisons of 227 

the means between NL and AD groups reveal highly significant differences (p<0.0001 in all 228 

cases). However, it should be noted that there is substantial overlap between the distributions in 229 

each diagnostic category, rendering these biomarkers unsuitable for use in isolation for 230 

diagnostic categorization.  As shown in Figures 1E-F, CSF VGF.NSEP levels are depressed in 231 

AD patients compared to NL subjects (p=0.0002) and lower levels at baseline are found in future 232 

MCI-AD converters than nonconverters (p=0.032).   233 

 234 

Disease state classification – multivariate analysis: 235 

To determine if combinations of conventional biomarkers +/- the VGF.NSEP peptide are useful 236 

in disease-state classification, data-driven algorithms were used to derive the optimal signature 237 

that distinguished NL, MCI and AD. The performances of these signatures are summarized in 238 

Table 2. The signatures are grouped into six different categories, as described in the Methods 239 

section, and took relatively simple forms. The best performing signature for disease-state 240 

classification was a combination of HV + APO-E4 status, with an accuracy of 79.6%. Adding 241 

conventional CSF markers (Aβ1-42, tTau and pTau-181 and their ratios) did not enhance this 242 

value (accuracy = 76.3%), nor did the addition of VGF.NSEP peptide (accuracy = 75.7%). 243 

 244 

Prediction of the likelihood of MCI to AD progression: 245 
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As described above, for disease state classification, no advantage was found when adding the 246 

VGF.NSEP peptide to the conventional markers (overall accuracy of 76.3% vs. 75.7%, p > 0.05). 247 

However, the combined biomarkers signature (HV+AT+VGF) significantly outperformed 248 

conventional biomarkers (HV+AT) for the prediction of MCI to AD conversion over 36 months 249 

(p=0.00013). Most of the impact of the addition of VGF was in increasing the NPV (from 70.2% 250 

to 79.2%, p<0.0001) while the impact on PPV was more modest (60.2% to 62.1%, p=0.008).  251 

The signature derived from the conventional and novel markers took a simple form based on 252 

only a few markers, with a cut-point on each of them; HV < 7.81 cm3, pTau < 16.18 pg/mL, ratio 253 

of tTau to Aβ1-42 > 0.29 and VGF.NSEP peptide < 20.39 intensity units. Thus, the addition of a 254 

novel VGF peptide to the conventional AD markers provides a simple biomarker that improves 255 

the prediction of 36-month disease progression in MCI subjects at baseline. 256 

 257 

Prediction of time to AD progression from MCI: 258 

Using available information containing 3-10 year follow-up clinical data, future time to 259 

progression was computed using the optimal signatures defined above. Table 3 includes a 260 

summary of the median times to progression of the signature negative and signature positive 261 

subjects and the overall hazard ratios with 95% confidence intervals. All groups containing 262 

conventional biomarkers (combinations of CSF amyloid/tau, HV and APO-E4 status) had similar 263 

times to progression (range for 2nd quartile or median =  25.7-31.5 months for signature positive 264 

subjects) and hazard ratios (range = 1.9-2.2). By comparison, the signature containing 265 

VGF.NSEP + conventional markers performed considerably better with median time to 266 

progression of 24.1 months and 96.2 months for the signature positive and signature negative 267 

groups respectively, and hazard ratio of 3.9.  This difference in hazard ratio is illustrated in 268 

Figure 2A (without VGF) and Figure 2B (with VGF), where Kaplan-Meier curves demonstrate 269 

time to progression profiles of the signature positive versus signature negative MCI subjects at 270 

baseline. The increased separation of the time to progression curves in Figure 2B (with VGF) 271 

demonstrates the faster progression experienced by the MCI subjects meeting this signature 272 

criterion at baseline.  273 

 274 

Studies of VGF peptide: 275 
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In further evaluation of the VGF.NSEP peptide, we find that its levels are significantly correlated 276 

with pTau-181 and tTau in NL, MCI and AD subjects, and not significantly correlated with A1-277 

42 and brain HV in any of the three groups (see Figures 3A-D). To determine if the impact of 278 

VGF was isolated to the particular peptide fragment (VGF.NSEP) that emerged from the 279 

multivariate analysis in Llano et al (2017),  the other two VGF peptides (AYQGVAAPFPK, 280 

referred to as VGF.AYQG and THLGEALAPLSK, referred to as VGF.THLG) in this 320-281 

peptide MRM panel were also assessed. The pairwise correlations are over 97% between the 282 

three VGF peptides (Figure 4), and therefore as expected, the other two VGF peptides have very 283 

similar effects across the disease states (NL vs. AD significant with p<0.05) and significantly 284 

different (p<0.05) between the stable and progressive MCI groups (Figures 5 A-D). When 285 

replacing the VGF.NSEP peptide by each of these other two peptides one at a time, the 286 

performance of the combined signature for the HV+AT+VGF scenario was quite similar in terms 287 

of the median time to progression of MCI subjects to AD (see Table 4 and Figure 6). However, 288 

the differences were greater in the overall time course of progression that resulted in larger 289 

hazard ratios (4.1 and 4.7). Thus, the considerable improvement we see in the prediction of MCI 290 

to AD progression by including VGF with the conventional markers is consistently evident for 291 

all three peptide fragments of VGF, and not isolated to a specific peptide fragment.  292 

 293 

Discussion 294 

Summary: 295 

Here, we examined the ability of CSF VGF-derived peptides, in combination with conventional 296 

AD biomarkers (Aβ1-42, tTau, pTau-181, their ratios and HV) to serve as a disease-state marker 297 

to distinguish between AD and NLn subjects, and to predict conversion from MCI to AD in a 298 

separate group of subjects. We observed that CSF levels of a VGF peptide, on its own, are lower 299 

in AD subjects than NLs and that lower levels predict MCI to AD conversion. When combined 300 

with conventional biomarkers, the VGF peptide significantly increased the ability of a 301 

combination of conventional biomarkers to predict MCI to AD conversion, with the hazard ratio 302 

increasing from 2.2 to 3.9. These data suggest that VGF may play a previously under-recognized 303 

role in the pathophysiology of AD and that CSF VGF may be useful to help predict MCI to AD 304 

conversion. 305 
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Total tau vs. phosphorylated tau in predicting MCI to AD conversion: 306 

It is notable that, when combined with HV, Aβ1-42 and VGF.NSEP, CSF tTau was found to 307 

more strongly predict MCI to AD conversion than pTau-181. tTau, but not pTau-181, elevations 308 

in the CSF have been observed in many non-AD conditions involving neuronal injury, including 309 

stroke, traumatic brain injury, Creutzfeldt-Jacob disease, multiple sclerosis as well as vascular 310 

dementia [50-55], suggesting that tTau is a general marker of neuronal injury, while pTau-181 311 

better reflects AD pathology. The finding in the current study that tTau is more strongly 312 

predictive of MCI-AD conversion than pTau-181 is consistent with previous data showing that 313 

total tau is more predictive than pTau-181 in predicting subsequent cognitive decline in MCI and 314 

AD [56, 57]. These findings suggest that while pTau-181 may be more useful as a disease-state 315 

marker, particularly when making a differential diagnosis, that tTau may be a better marker of 316 

disease activity and thus the current rate of clinical decline. In addition, because the database we 317 

used only captures the progression to AD of these MCI subjects, and not the other 318 

neurodegenerative diseases, is likely that the use of pTau-181 instead of tTau in our signature 319 

may have shown improved performance specificity if we had applied it to a broader group of 320 

MCI subjects that also experienced progression to the other forms of dementia. 321 

VGF and AD: 322 

The current finding that all peptides associated with VGF are diminished in the CSF of AD 323 

patients compared to controls is consistent with multiple previous studies comparing VGF 324 

peptide or protein levels in CSF [26-30, 32] and brain tissue (parietal cortex [22]) from AD and 325 

control subjects. The functional significance of this decrease is not yet clear but may relate to 326 

VGF’s potential role in synaptic plasticity and/or neuronal metabolism. VGF is found widely 327 

throughout the brain, including areas highly affected in AD such as cerebral cortex, 328 

hippocampus, entorhinal cortex, basal forebrain, amygdala, and brainstem [22, 58, 59]. Its 329 

expression is upregulated by neuronal activity [60] and can be induced by neuronal growth 330 

factors such as brain-derived neurotrophic factor (BDNF [58, 61]). In animal models, VGF has 331 

been shown to be important for the mediation of synaptic plasticity and neurogenesis in the 332 

hippocampus [58, 61-63], and knock out of this gene has been shown to cause significant 333 

anorexia [64], while overexpression may protect the brain against AD-related pathology [21]. 334 
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These functions align well with the loss of hippocampal function and significant anorexia seen in 335 

AD [65, 66]. 336 

The mechanism behind the drop in VGF levels in AD CSF is not yet clear. Given the parallel 337 

drop in the cerebral cortex [22], low levels in the CSF are likely not due to a shift of VGF from 338 

CSF to parenchyma, as has been hypothesized for the low levels of Aβ in the CSF of AD patients 339 

[67]. Low levels of VGF in CSF (and brain) may suggest that VGF is a general marker for 340 

neuronal loss, consistent the drop in CSF VGF in frontotemporal dementia [68], as such, 341 

potentially putting VGF into the “neurodegenerative/neuronal injury” class of biomarkers in the 342 

AT(N) framework previously described [69]. This notion that low CSF VGF may be a reflection 343 

of neuronal damage is consistent with the current data which demonstrate that VGF levels are 344 

correlated with hippocampal volume as well as tTau and pTau-181 levels (Figure 3). Future 345 

work examining VGF across other states of neuronal injury may help to add clarity to this issue. 346 

One previous study observed borderline elevations of VGF in the CSF of MCI compared to 347 

control and AD subjects, and that VGF elevations in MCI subjects predicted later conversion to 348 

AD [32]. Such transient elevations are reminiscent of “pseudonormalization” of other biomarkers 349 

whose values in MCI appear to change in the opposite direction of that seen in AD [20, 34, 70]. 350 

It is not clear from the Duits et al. report which specific peptides were elevated in MCI, though 351 

the two peptides examined in their study (NSEPQDEGELFQGVDPR and AYQGVAAPFPK) 352 

matched two of the three peptides in the current study, all of which showed decreases in MCI 353 

and AD (Figure 5). The source of the apparent discrepancy is not yet clear, though we note that 354 

all analytes, not just VGF, in the Duits et al. study showed elevations in the MCI group. It is 355 

notable that other analytes that are elevated in MCI subjects in the Duits et al. study such as 356 

Chromogranin A have been found to be unchanged in other studies [71] or, in the case of VGF, 357 

decreased in MCI patients that convert to AD [27], suggesting a more general difference in the 358 

databases or the analytical methodologies used between the Duits et al. study and other studies. 359 

Implications of the prediction of MCI-AD conversion: 360 

CSF Aβ1-42 and tau derivatives as biomarkers are well-established for the prediction of clinical 361 

decline in MCI [72-76] (for meta-analyses see [77, 78]). In addition, predictive accuracy of these 362 

markers increases when they are combined with volumetric imaging markers [79-83]. Both of 363 
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these findings were reproduced in the current study (Table 2). In addition, recently a number of 364 

non-Aβ, non-tau CSF markers have been found, often using proteomic approaches, that separate 365 

AD from NL subjects, and these markers have been implicated across a number of metabolic, 366 

inflammatory and synaptic physiology pathways [25-29, 31, 84-90]. A small number have also 367 

shown the ability to predict MCI to AD conversion. For example, heart fatty acid binding 368 

protein, chemokine receptor 2, neurogranin, calbindin, IL-1, thymus-expressed chemokine have 369 

all individually been shown to predict MCI to AD progression [14-20]. In addition, we and 370 

others identified panels of peptides that predict MCI to AD progression [19, 20]. These data 371 

point to a range of potential pathophysiological mechanisms implicated in AD outside of the 372 

classical amyloid-driven cascade. It will be important to replicate the findings in this study as 373 

well as others in independent cohorts. In addition, like most of the previous work, the current 374 

study did not examine non-AD dementia or other neurologic disease. This absence is particularly 375 

important in the current study which shows VGF levels that correlate with tTau levels (a marker 376 

of neurodegeneration, as described above) but not hippocampal volume (Figures 3C and D). 377 

These data suggest that VGF levels may correlate with a more general neurodegenerative 378 

phenotype. Therefore, it will be important in future studies to include non-AD dementias as well 379 

as other neurological illness such as stroke or encephalitis, to determine the specificity of VGF as 380 

a biomarker for AD and predictor of MCI to AD progression. 381 

 382 

Figure legends: 383 

 384 

Figure 1: Distributions of biomarkers of in NL, MCI and AD subjects: A) HV, B) Aβ1-42, C) 385 

tTau, D) pTau-181, E) VGF.NSEP levels (shown in normalized and log2 transformed intensity 386 

units) and F) baseline VGF.NSEP levels in MCI to AD converters and stable MCI subjects over 387 

36 months. In A-E, for the MCI subjects, those that progressed to AD over 36 months are shown 388 

in red. The bottom and top ends of the box represent the first and third quartiles respectively, 389 

with the line inside the box representing the median.  Lines extending out of the ends of the box 390 

indicate the range of the data, minus the outliers. The points outside the lines are the low and 391 

high outliers. 392 

 393 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 7, 2019. ; https://doi.org/10.1101/512939doi: bioRxiv preprint 

https://doi.org/10.1101/512939
http://creativecommons.org/licenses/by/4.0/


14 
 

Figure 2: Time to progression profiles of the signature positive versus signature negative MCI 394 

subjects with the shaded 95% confidence intervals are shown here via Kaplan-Meier analysis. 395 

The effect of signature based on only the conventional markers (HV and AT) is illustrated in 396 

Figure 2A and the signature with both the conventional markers and the novel VGF.NSEP 397 

peptide from the MRM panel is shown in Figure 2B. Patients meeting the signature criterion that 398 

includes the VGF.NSEP peptide experience 3.9-fold faster progression to AD (hazard ratio = 399 

3.9), relative to the 2.2-fold faster progression without this peptide.  400 

 401 

Figure 3:  Correlation of the VGF.NSEP peptide levels (shown in normalized and log2 402 

transformed intensity units) versus conventional markers of AD, brain hippocampal volume HV 403 

(A), A1-42 (B), pTau-181 (C), and tTau (D), with the least squares regression lines overlaid on 404 

individual subject results from the three groups; Normal (in green), MCI (in blue) and AD (in 405 

red). The rank correlation values for each of the groups are shown, with * representing 406 

significant correlations (p < 0.05).  407 

 408 

Figure 4:  Scatterplot matrix with rank correlation values overlaid for the three VGF peptides 409 

levels (shown in normalized and log2 transformed intensity units) from the 320-peptide MRM 410 

panel for all subjects.  411 

 412 

Figure 5:  A) Distribution of VGF.AYQG peptide (shown in normalized and log2 transformed 413 

intensity units) is shown across the NL, MCI and AD groups, and B) among the baseline MCI 414 

subjects that either progressed to AD or remained stable over the next 36 months. C) Distribution 415 

of VGF.THLG peptide (shown in normalized and log2 transformed intensity units) is shown 416 

across the NL, MCI and AD groups, and D) among the baseline MCI subjects that either 417 

progressed to AD or remained stable over the next 36 months.  418 

 419 

Figure 6: Time to progression profiles for the two additional VGF peptides + conventional 420 

biomarkers: (A) AT+HV+VGF.AYQG and (B) AT+HV+VGF.THLG. In both cases, the 421 

signature positive versus signature negative MCI subjects with the shaded 95% confidence 422 

intervals are shown via Kaplan-Meier analysis. 423 

  424 
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Figure 1: 663 
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Figure 2: 666 
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Figure 3: 669 
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Figure 4: 672 
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Figure 6: 678 
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Table 1: Disease-state demographics 681 
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Table 2: Performance summary of optimal signatures 684 
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Table 3: Time to progression (T2P) of MCI subjects to AD using optimal signatures 687 
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Table 4: Time to progression (T2P) of MCI subjects to AD using optimal and other candidate 690 

signatures for the AT+HV+MRM scenario 691 
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