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Abstract 

 

Characterizing the pathogenicity of DNA sequence variants of unknown significance (VUS) is a 

major bottleneck in human genetics, and is increasingly important in determining which patients 

with inherited retinal diseases could benefit from gene therapy. A library of 210 rhodopsin 

(RHO) variants from literature and in-house genetic diagnostic testing was created to efficiently 

detect pathogenic RHO variants that fail to express on the cell surface. This study, while focused 

on RHO, demonstrates a streamlined, generalizable method for detecting pathogenic VUS. A 

relatively simple next generation sequencing (NGS)-based readout was developed so that a flow 

cytometry-based assay could be performed simultaneously on all variants in a pooled format, 

without the need for barcodes or viral transduction. The resulting dataset characterized surface 

expression of every RHO library variant with a high degree of reproducibility (Z’=0.94, R2=0.92-

0.95), recategorizing 37 variants. For example, three retinitis pigmentosa pedigrees were solved 

by identifying VUS which showed low expression levels (G18D, G101V, P180T). Results were 
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validated across multiple assays and correlated with clinical disease severity. This study presents a 

parallelized, higher-throughput cell-based assay for the functional characterization of VUS in 

rhodopsin, and can be applied more broadly to other inherited retinal disease genes and other 

disorders. 
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Introduction 

 

With the increasing availability and use of human DNA sequencing, the problem of accurately 

characterizing newly-discovered DNA variants has become a major issue in human genetics 

(Lappalainen, 2015; Richards, 2015).   Difficulties in predicting the pathogenicity of DNA 

“variants of unknown significance” (VUS), even with all available bioinformatic, functional, and 

human data, routinely produce an ambiguous final result of genetic testing (Davies, 2012; Bean, 

2013; Richards, 2015). Dealing with this ambiguity is a major problem for medical geneticists and 

genetic counselors who have to manage this uncertainty with patients who are expecting clarity. 

For example, grading systems have been developed to rank each variant on a scale from one to 

five, representing “pathogenic”, “likely pathogenic”, “uncertain significance”, “likely benign”, and 

“benign”. Evidence supporting pathogenicity is divided into additional categories, and counting the 

number of evidence points from each evidence category results in a final rank (Richards, 2015).  

Such complex systems can attempt to manage uncertainty in pathogenicity, but clearly it would be 

preferable to have more information about a variant to decrease the uncertainty level.  

Current bioinformatic approaches to predicting variant pathogenicity are not sufficient to 

avoid these problems (Richards, 2015).  For example, most algorithms for predicting the 
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pathogenicity of missense mutations are only 65-80% accurate,(Thusberg, 2011) and specificity for 

the predictions of pathogenicity of missense and splice variants can be low (Vreeswijk, 2009; Choi, 

2012; Houdayer, 2012). The latest techniques are raising the quality of the predictions(Gray, 

2018), but in the end, the state-of-the-art is that “it is not recommended that these [bioinformatic] 

predictions be used as a sole source of evidence to make a clinical assertion” about a potentially 

pathogenic variant (Richards, 2015). In fact, “well-established functional studies showing a 

deleterious effect” is considered two levels-of-evidence higher than “multiple lines of 

computational evidence support[ing] a deleterious effect on the gene/gene product” (italics 

added)(Richards, 2015). 

VUS not only cloud the interpretation and utility of clinical diagnostic testing, but also can 

lead to outliers and ambiguities when analyzing structure-function relationships of proteins of 

interest (Rakoczy, 2011). For example, when correlating the computational prediction of 

misfolding propensity and the age of onset of disease among rhodopsin mutants, some mutations 

are considered outliers and excluded from the regression analyses(Rakoczy, 2011); however, it is 

not clear whether the outliers could be due to imperfect computational models or to 

miscategorization of the mutant. Thus, improving the characterization of DNA variants is scientific 

importance, and has been included U.S. federal research priorities and identified as a knowledge 

gap in the understanding of inherited retinal diseases (National Eye Institute, 2012; Duncan, 

2018).  

This study implements an improved method to characterize potentially pathogenic DNA 

variants causing retinitis pigmentosa (RP). RP accounts for up to 25% of blindness or visual 

impairment in working age people (21-60 years) (Hata, 2003; Buch, 2004; Al-Merjan, 2005; 

Hartong, 2006), and therefore is an important cause of vision loss. Although RP is a Mendelian 

disease, it is genetically very heterogeneous, with mutations in over 60 different genes that can 

cause nonsyndromic RP (Daiger, 1998; Berger, 2010; RetNet).  Genetic testing to identify the 

cause of disease has become increasingly important as more clinical trials for RP focus on patient 

populations with specific genotypes, e.g. studies recruiting MERTK-, MYO7A-, PDE6A-, PDE6B-, 

RPGR-, or RLBP1- affected RP patients (U.S. National Institutes of Health, 2017), as well as the 

occasional RP patient due to RPE65 mutations who would be eligible for the first FDA-approved 

gene therapy, voretigene neparvovec (Luxturna) (Russell, 2017).  Patients without a genetic 

diagnosis are not eligible for gene specific treatments. Despite the practical importance of 
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obtaining a genetic diagnosis, definitive causal variant(s) can be found in only about half of 

patients, and slightly more using the latest next generation sequencing (NGS) techniques 

(Neveling, 2012; Corton, 2013; Glockle, 2014; Wang, 2014; Consugar, 2015; Huang, 2015). For 

this reason, improving the characterization of DNA variants in RP is also of practical importance. 

This study focuses on rhodopsin (RHO) mutants because RHO has the largest set of known 

pathogenic variants of any dominant RP gene, and among those genes, the structural, biochemical, 

and cell biological understanding of RHO is unmatched (Dryja, 1990; Mendes, 2005; Mendes, 

2008; Krebs, 2010; Mendes, 2010; Rakoczy, 2011; McKeone, 2014; Athanasiou, 2018; Behnen, 

2018). The rich body of existing data provides a context for interpreting data on new variants, and 

conversely, provides an opportunity to refine existing models of RHO structure and function 

(Rakoczy, 2011).  A recent review (Athanasiou, 2018) notes that ongoing questions about the 

pathogenicity of RHO variants “reinforce the need for thorough genetics, such as segregation 

analyses, and in-depth functional analyses to confirm pathogenicity.” (Note that the term “variant” 

is used in this study to include any sequence change, whether that sequence change is a “mutant” 

that is known to be pathogenic, a VUS, or a benign change such as a synonymous control.) 

Standard experimental methods of assaying RHO variants include assessment of surface 

expression / subcellular localization in cell-based assays (Sung, 1993; Li, 1998; Chuang, 2004; 

Chen, 2011; Toledo, 2011; Davies, 2012; Hollingsworth, 2013; Liu, 2013; McKeone, 2014; 

Yamasaki, 2014; Behnen, 2018) and assessment of bulk biochemical properties (Bosch, 2003; 

Dizhoor, 2008; Krebs, 2010; Bosch-Presegue, 2011; Opefi, 2013).  These assays are performed 

on one variant at a time, and, especially for the biochemical assays, do not scale easily for larger 

numbers of variants.   

The purpose of this study was to develop higher-throughput cell-biological methods to 

evaluate RHO variants for pathogenicity e.g. a “functional genomics” approach. We 

hypothesized that this approach would result in improved categorization of RHO DNA variants 

compared to using computational information alone.  We also hypothesized that pedigrees with 

inconclusive genetic testing results and a RHO VUS could be solved using the functional data.  

This study presents a streamlined functional genomic screen (Figure 1) suitable for assaying 

hundreds of variants, using standard mutagenesis, transfection, flow cytometry, and NGS 

amplicon sequencing techniques that are broadly available. The bioinformatic analysis was 
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custom-built, but also straightforward. More intricate functional genomic screens have been 

recently developed that interrogate thousands of variants at once(Melnikov, 2014; Brenan, 2016; 

Gasperini, 2016; Findlay, 2018) but these methods require specialized library construction 

techniques, lentivirus packaging, and viral transduction followed by selection, which were not 

needed for this study. 

This functional genomics approach was used to create a library of RHO variants and 

precisely assay their surface expression in an efficient, pooled format. 

 

Materials and Methods 

 

Identification of rhodopsin variants 

     A literature review (PubMed) and database search (HGMD, ClinVar) identified 211 known 

rhodopsin variants. Twenty-two database variants that were large insertions, large deletions, 

high-allele-frequency synonymous alleles, synthetic, or intronic (since the cDNA template has 

no introns) were not constructed. See Table S1. The remaining 189 variants were added to the 

variant library and of those, 175 were known as pathogenic, causing dominant RP, recessive RP, 

or congenital stationary night blindness. (Table S1) Fourteen variants were of uncertain 

significance or thought to be benign polymorphisms. All of the variants were well distributed 

across the cDNA, except that there were no variants between bp 664 and 745. 

     Eleven synonymous mutations, expected to have similar expression to wildtype and to serve 

as controls, were designed synthetically. The mutations were placed near the 3’ end of the gene 

in order to minimize any possible (though unexpected) changes to transcriptional or translational 

processes (Stoletzki, 2007).  In addition, a search for rare (detected <3 times in our internal 

database, ExAC allele frequency<10-4) rhodopsin variants of unknown significance (VUS) from 

patient DNA sequencing performed in our institution’s genetic testing service (Consugar, 2015), 

identified 10 variants spanning 11 probands. All of these variants were novel (previously 

unreported) at the beginning of this study.  Altogether, 232 rhodopsin variants were identified 

and 210 were ultimately constructed as a variant library: 189 variants from literature / databases, 

11 synonymous controls, and 10 novel VUS. 
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The study protocol adhered to the tenets of the Declaration of Helsinki and was approved by 

the Institutional Review Board of Massachusetts Eye and Ear. 

 

Rhodopsin variant cDNA library construction 

     A Gateway destination vector was created that contained: a CMV early enhancer/chicken β 

actin (CAG) promoter, V5 tag, Gateway cassette (Life Technologies), internal ribosome entry 

site (IRES), mCherry fluorescent protein marker (Addgene), and ampicillin resistance gene. 

Plasmids were propagated in ccdb survival cells (Life Technologies) with chloramphenicol and 

ampicillin. A pDONR entry clone containing the human rhodopsin cDNA sequence was 

purchased (GeneCopoeia #GC-T1321, Rockville, MD). Each of the 210 RHO variants was 

created via site-directed mutagenesis using a one-primer modification to the QuikChange II 

protocol from Agilent.((Braman, 1996) and (http://qb3.berkeley.edu/macrolab/quick-change-

mutagenesis/). Primers were synthesized in 96-well plates by Integrated DNA Technologies 

(Coralville, Iowa). Entry clone plasmids were propagated in One Shot Top10 chemically 

competent E.coli (Invitrogen) with kanamycin 50 micrograms/mL. The 1047 bp rhodopsin insert 

and flanking att sites were Sanger sequenced in both directions to exclude second-site mutations. 

Reracked positive clones were re-sequenced to verify the identity of each clone on each plate.  

     Expression clones (N=210) were created by recombination of destination vector and each of 

the mutagenized entry clones, using LR Clonase II (Invitrogen). The resulting expression clone 

consisted of: pCAG-V5-RHO(WT or variant)-IRES-mCherry and was propagated in Stbl3 cells 

(Invitrogen) with ampicillin 50-100 micrograms/mL. Clones were sequenced, reracked, and 

resequenced to verify the identity of each clone on each final library plate.  DNA purification 

and sequencing (96-well plate) was performed by the CCIB DNA Core Facility at Massachusetts 

General Hospital (Cambridge, MA). 

 

Cell Culture  

     HEK293 cells (ATCC) were cultured using aseptic technique and grown in 10% fetal bovine 

serum (FBS) in Dulbecco’s modified Eagle serum (DMEM) without antibiotics. Cells were 
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grown at 37°C and 5% CO2 in a standard cell culture incubator and passaged at subconfluent 

densities every 2-3 days as needed. 

 

RHO transfection and surface expression assays by immunofluorescence 

     All transfections were performed using Lipofectamine 2000 (ThermoFisher 11668019) on 

HEK293 cells seeded at a density of 200 cells/mm2 on tissue culture dishes. The day after 

seeding, the media were refreshed and the transfection mixture added as described below. 

Samples were collected 48 hours after transfection. 

Immunofluorescence microscopy: Glass coverslips were placed in wells before cell seeding into 

6-well dishes. Transfection was performed using 2 μg plasmid DNA and 3 μL Lipofectamine in 

150 μL Opti-MEM I (ThermoFisher 31985062). At collection, cells on coverslips were fixed in 

4% PFA for 20 min and blocked with 3% BSA in PBS for 10 min before applying Ret-P1 anti-

rhodopsin antibody (Sigma #O4886) at a final concentration of 1:1000 in blocking buffer for 1 

hr. After washing with PBS, Alexafluor-488 goat anti-mouse antibody (ThermoFisher A-11029) 

was applied at a final concentration of 1:300 in blocking buffer for 1 hr and Hoechst 33342 

(ThermoFisher #H3570) applied for 1-5 min at a concentration of 1:5000. Coverslips were 

mounted onto slides with Fluoromount G and dried overnight at room temperature. Slides were 

kept at 4C before viewing on a Nikon TI Eclipse microscope or Leica TCS SP5 confocal 

microscope.  

Flow cytometry: Transfection was performed in 24-well plates using 0.5 μg plasmid and 1.5 μL 

Lipofectamine in 50 μL Opti-MEM I. At collection, the cells were washed briefly with PBS and 

then 200 μL trypsin added and allowed to incubate for 4 min at 37ºC. A 300 μL aliquot full 

media was then added, and cells collected into 2.2 mL tubes. The cells were centrifuged at 400g 

in a floor centrifuge for 4 min and the supernatant aspirated. Cells were fixed in 4% PFA for 20 

min and blocked with 3% BSA in PBS before applying the Ret-P1 primary antibody at a final 

concentration of 1:1000 in blocking buffer for 30 min. After washing with PBS, Alexfluor-488 

secondary antibody was applied at a final concentration of 1:300 in blocking buffer for 30min. 

After a final PBS wash, cells were analyzed on a BD LSRII Flow Cytometer.  
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Flow cytometry results were analyzed with Flowing Software 

(http://www.flowingsoftware.com). The percentage of cells with high RHO surface expression 

was determined by setting the quadrants based on the WT and P23H controls in each experiment 

and then dividing the percent of cells in the top right quadrant (double-positives) by the sum of 

the top right and bottom right quadrants (all transfected cells). Resulting data were averaged over 

independent transfections from different weeks (N=1-3). 

Fluorescence-activated cell sorting (FACS): Cells were prepared as described for flow 

cytometry analysis but pooled after transfection and then fixed in zinc-based fixative (ZBF) (BD 

Pharmingen #550523) instead of 4% PFA. (ZBF was used because PFA fixation/crosslinking 

prevented downstream PCR amplification of residual plasmid DNA(Wester, 2003), while 

unfixed cells did not stain with Ret-P1 antibody.)  All subsequent washes substituted TBS (tris 

buffered saline) for PBS to reduce salt precipitation. Cells were sorted into TBS or PBS with 1% 

FBS using a BD SORP 5 Laser Vantage SE DIVA. Replicate samples were derived from 

independent transfections on different weeks (N=3). 

     Additional experiments to implement a pooled transfection method were not effective; at 

standard plasmid concentrations, large numbers of different variants entered each cell causing 

every cell to stain similarly, while at low plasmid concentrations, not enough RHO expression 

was achieved for robust staining and cell sorting (not shown). 

 

Rhodopsin cDNA or RNA extraction and amplification from sorted cells 

     Immediately after sorting, cells (from 4x104 to 2.3x106) were pelleted at 400xg for 4 min and 

resuspended in 700 μL RLT buffer (Qiagen) with beta-mercaptoethanol (1:100), mixed and 

aliquoted into two samples of 350 μL each and stored at -80o C until extraction. Plasmid DNA 

and total RNA were isolated. Preliminary experiments (not shown) demonstrated that RNEasy 

mini columns (Qiagen #74104) can isolate both RNA and the relatively low molecular weight 

plasmid DNA in one step using the manufacturer’s standard RNA isolation protocol. For total 

RNA extraction, the manufacturer’s standard RNEasy protocol was followed, including on-

column DNAse digestion (Qiagen #79254). For plasmid DNA extraction, a separate aliquot of 

cells in RLT buffer was purified using RNEasy mini columns without DNAse digestion, and 

PCR performed without reverse transcription to avoid amplifying RNA. The final RNA or 
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plasmid DNA/RNA mixture was eluted in 35 μL water, and 15 μL was used for the RT-PCR or 

PCR reaction described below. 

     For DNA-extracted samples, PCR amplification was performed using forward primer 5’-

GTTTGTACAAAAAAGCAGG-3’ and reverse primer 5’-GGAATTTACGTAGCGGC-3,’ 

which were complementary to regions of the plasmid DNA flanking the rhodopsin sequence. 

HotStarTaq polymerase (Qiagen #203203) was used with the following PCR program: 1) 95ºC 

for 15 min; 2) 36 cycles of: 94ºC for 30 sec, 50ºC for 30 sec, 72ºC for 1 min; 3) 72ºC for 10 min. 

For RNA-extracted samples, One-Step RT-PCR reagent (Qiagen # 210212) was used to create 

cDNA and then the cDNA was amplified by PCR. The following program was used: 1) 50ºC for 

30 min; 2) 95ºC for 15 min; 3) 36 cycles 94ºC for 30 sec, 50ºC for 30 sec, 72ºC for 1 min; 4) 

72ºC for 10 min.  One μL of each 100 μL reaction was run on a Tapestation (Agilent) to 

determine approximate size and concentration and to confirm presence of a single band of 

amplified template. Negative control reactions (minus RT for RNA, plus DNAse for DNA) 

showed no cross-amplification between samples that were intended to amplify RNA or DNA, 

respectively. PCR reactions were processed through a PCR clean-up column (Qiagen #28104), 

and the concentration determined using a QuBit dsDNA HS Assay (ThermoFisher Q32854).  

 

NGS amplicon sequencing without library barcodes 

     Smaller scale NGS sequencing (1/96 of a MiSeq run per sample) was performed by the CCIB 

DNA Core Facility at Massachusetts General Hospital (Cambridge, MA). For more read depth 

(~1/10 of a MiSeq run per sample), NGS sequencing was performed in the Ocular Genomics 

Institute facility (https://oculargenomics.meei.harvard.edu/index.php/gc) using the following 

protocol: the PCR product was sheared on a Covaris E220 focused ultrasonicator set to a 

treatment time of 360 sec, acoustic duty factor of 10%, peak incident power of 175 W and 200 

cycles per burst. Library preparation was performed with the Truseq nano LT kit (Illumina #FC-

121-4001), but modified to use AMpure XP beads for the clean-up steps (Beckman Coulter 

#A63881). Briefly, steps included: cleanup, quantification, end repair, clean up, A-tail, adapter 

ligation, clean up, PCR enrichment, clean up, quantification and normalization, denature, and run 

on MiSeq using 2x121 cycles with a 6 bp index. Because of relative overrepresentation of the 

amplicon ends, PhiX library (10%) was added to the final mixture. 
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Bioinformatic quantitation of low frequency variants in NGS amplicon sequencing 

     Most variant callers are designed to work with diploid genomes and do not call variants 

present at less than about 50% frequency. Extensive testing with specialized low-frequency 

variant callers (Spencer, 2014) showed that these variant callers, including “lofreq” (Wilm, 

2012), did not accurately call all variants, particularly small insertions/deletions (a known 

limitation of alignment algorithms) (Jiang, 2015).  Additional analyses with MuTect (Cibulskis, 

2013) or MuTect2 showed low sensitivity using default settings, and settings with appropriate 

sensitivity and specificity were not identified(not shown).  Multinucleotide polymorphisms (e.g. 

511_512delCCinsGA) were particularly problematic.  

     Therefore, an alignment-free approach was used to detect and quantify low frequency variants 

in NGS data when the variants are known. This algorithm uses no alignment step and simply 

counts the number of exact-match occurrences of a 20 bp “probe” sequence string designed for 

each known variant. The “probes” (in analogy to Southern blot probes), were designed in silico 

containing each of the known 210 nucleotide changes. In most cases, the primer used for 

QuikChange mutagenesis was simply trimmed to 20 bp to create the “mutant probe”. A 

corresponding “wildtype probe” was created to quantify and normalize for variations in 

coverage. To estimate signal-to-noise ratio in the context of NGS sequencing errors(Fox, 2014), 

a “noise probe” was manually created containing an alternate nucleotide change which was not 

present in the wildtype or mutant probes. Each occurrence of these 630 probes (wildtype, mutant, 

or noise x 210 variants) was counted in the text of each sample’s FASTQ file using the Linux 

tool grep, similar to a strategy previously published (Bujakowska, 2015). The coverage at both 

ends of the amplicon was overrepresented, presumably due to sequencing of residual unsheared 

amplicon.  

     Preliminary experiments showed that the signal-to-noise ratio was low for some variants, 

particularly at amplicon ends, where early MiSeq cycles had a lower base call quality value.  

Thus, before quantifying the frequency of each probe in each FASTQ file, a script was 

implemented to censor all FASTQ files on a base pair-by-base pair basis for a high-quality Q 

score from 36-41 (“E” to “J”), resulting in improved signal-to-noise ratio (not shown). For 

graphing, signal-to-noise ratios were capped at 1000 when zero noise probes were detected.  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 10, 2019. ; https://doi.org/10.1101/512897doi: bioRxiv preprint 

https://doi.org/10.1101/512897
http://creativecommons.org/licenses/by/4.0/


Run-time for quantification of the entire dataset was about 2 hours on our local computer cluster. 

These scripts are available at https://github.com/jcomand/VariantCounting . 

     The experimental design called for relative quantitation of each variant in two pools of 

transfected and sorted cells, in this case “high” versus “low” surface-RHO-expressing cells. The 

raw read counts of each mutant probe were normalized to the read depth of the wildtype probe. 

i.e. the final “NGS ratio” used for analysis was the number of read counts: (mutant 

probe_high/wildtype probe_high) / (mutant probe_low/wildtype probe_low). Three independent 

biological experiments (e.g. separate transfections on different weeks) were converted to log-

ratios for calculation of averages and standard errors for each variant. 

 

Predicting clinical disease severity 

     Clinical outcomes of subjects with RHO mutations have previously been published, including 

by our institution(Berson, 2002). Electroretinography (ERG) data were analyzed from these 

subjects and subsequent subjects with RHO mutations from later years. The baseline (first visit) 

30 Hz cone flicker ERG amplitude was used as the clinical outcome measure, as it has a broad 

dynamic range (>3 log units) across disease severities (Berson, 2002).  Other ERG parameters or 

other outcomes such as visual field area and visual acuity were not used, to avoid multiple 

testing. To maximize sample size, data from DNA variants with the same amino acid change 

were pooled. Of the amino acid changes represented in the clinical data, class 2 (misfolding) 

mutations were the only biochemical category(Rakoczy, 2011) that had more than two mutations 

represented. The analysis was therefore limited to subjects with class 2 mutations (N=69 

subjects). (Class 2 mutations also have the best biological rationale and precedent for correlating 

with disease severity in this assay (Rakoczy, 2011; Athanasiou, 2018).) Standard linear 

regression was used to predict the logged 30 Hz ERG amplitude based on the logged NGS-based 

final surface expression ratio. A multivariate model (ANOVA) was also used which adjusted for 

age at baseline visit, as younger subjects have higher baseline ERG amplitudes. For comparison 

to computationally-derived datasets, ΔΔG values (Rakoczy, 2011) and pathogenicity predictions 

from the Envision dataset (Uniprot P08100) (Gray, 2018) were tested as predictors of clinical 

severity as well. 
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Results 

Example of inconclusive genetic testing results including a rare RHO VUS 

 This study hypothesizes that functional studies can help interpret DNA variants of 

unknown significance found in patient samples.  Figure 2 shows an example of a clinical 

situation in which an inconclusive genetic testing result, including a rare rhodopsin VUS, was 

obtained for a proband with retinitis pigmentosa. Of the 210 RHO variants identified for this 

study, 10 variants were from rare RHO VUS that were discovered in DNA samples from subjects 

with inherited retinal diseases (See Methods and Table S1).  Figure 2A shows the fundus 

appearance of one of these 10 subjects (D00726) who was diagnosed with retinitis pigmentosa 

after a full clinical evaluation. In this Mendelian disorder, it is most likely that variant(s) in a 

single gene are truly pathogenic. Figure 2B shows the large number of VUS identified in genetic 

testing for this subject using panel-based sequencing of inherited retinal disease genes (GEDi 

test)(Consugar, 2015).  The RHO P180T variant (row 3) is predicted to be pathogenic, but so are 

other VUS to varying degrees, two of which are coding variants in genes that can cause 

dominantly-inherited retinitis pigmentosa (SNRNP200 and RP1). An expert in ocular genetics 

may suspect that the RHO variant is the most likely to be pathogenic, but it is not conclusive. 

Therefore, additional functional data are needed. 

 

Flow cytometry assay validation 

Rhodopsin variant plasmids (N=210) were created using site-directed mutagenesis and 

these were then cloned into an expression vector suitable for transfection into cultured cells. The 

next step (Figure 1) was to optimize a fluorescent assay to identify which variants have 

pathogenic surface expression levels. Based on the assay by McKeone et al (McKeone, 2014), 

Figure 3 shows that indirect immunofluorescence staining successfully distinguishes between 

wildtype RHO and known mutant (P23H) RHO. In this case, whereas the wildtype RHO was 

expressed well on the cell surface, the P23H mutant did not express on the cell surface, but rather 

was trapped inside the cell as expected. The results were validated using non-permeabilized cells 

to ensure that that only surface RHO was detected (Figures 3A and 3B); flow cytometry results 
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corresponded to the immunofluorescence staining patterns(Fig. 3C). By comparing flow 

cytometry results from wildtype and P23H mutant RHO as positive and negative controls, 

respectively, the assay to separate wildtype from mutant RHO was highly reproducible (Z’=0.94, 

Fig. 3D) and therefore appropriate for use in a “high-throughput screening” context. 

Each of the 210 variants in the library was then tested by flow cytometry using two 

methods for comparison: 1) the standard unpooled flow cytometry assay in which each variant is 

maintained in a separate tube and analyzed separately (Supplemental Figure 1), and 2) a pooled 

assay in which transfected cells are then pooled and FACS is used to sort RHO high-expressing 

versus low-expressing cells (Figure 4A).  The entire cDNA within the transfected plasmid (inside 

the cell) serves as the “barcode” and allows deconvolution/quantitation of the level of each 

variant that is represented in the high and low pools. The residual plasmid is isolated from each 

cell pool, amplified by PCR and sequenced by NGS. 

 

Validation of string-based pooled variant detection and quantification 

All 210 library variants were detected at a coverage-normalized frequency that was >1.5 

of that observed by sequencing a wildtype RHO amplicon with no variants (Figure 4B). Two 

hundred and seven of the 209 variants were seen at >2x.  One variant which was the used in the 

positive control sample during flow cytometry (diamond) showed overrepresentation, possibly 

due to cross-contamination at the flow cytometry stage; this was minimized in future iterations.  

Next, intra-sample quality control was performed by evaluating the level of the “noise probes” as 

described in the Methods. Customized computational filtering of sequencing quality scores was 

needed to obtain high signal-to-noise data. Figure 4C shows the signal-to-noise (S-N) ratio as a 

function of location in the cDNA.  All variants were detected with a S-N ratio >1.5x, and with 

208 of 210 detected at >2x (Figure 4C). 

The starred cluster of points (Figure 4C) with a lower, but acceptable, S-N ratio is from 

variants located near a sequencing error-prone sequence context that is GC rich with a poly-C 

repeat (GGCCCCGGCC). There are a large number of reported variants in this region (Table 

S1), and in the 3’ end of the coding region in general, forming a “hot spot” of reported variants.  

In contrast, there are no reported variants between bp 665-744. 
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Validation and quality control of the final NGS-based surface expression ratio 

The final surface expression ratio was high when cells with a particular variant are 

primarily found by flow cytometry within the “Hi” gate (Figure 4A), with good surface 

expression, similar to wildtype RHO. The final ratio was low when cells with a particular variant 

are primarily found in the “Lo” gate, similar to known RHO mutants which do not express well 

on the cell surface. The characteristics of this ratio were evaluated both by comparing it to the 

standard unpooled flow cytometry assay and by its analytical and biological variability.   

Figure 5 demonstrates that there was very good concordance between the standard 

unpooled assay and the NGS-based pooled assay, with an overall r2 of 0.92. The pooled assay 

drastically reduced the number of samples (per biological replicate) that had to be examined by 

flow cytometry; Unpooled: 210 samples analyzed plus three controls. Pooled: two samples 

sorted, plus three controls. For the minor discrepancies/outliers in the intermediate range of the 

assays, it is not known which assay was more accurate.  The red and pink areas contain variants 

with ‘very low’ and ‘low’ expression levels, respectively, consistent with those variants being 

pathogenic mutations.  While hard cutoffs of such regions have no exact biological meaning, for 

practical purposes the regions were defined by 40% and 80% surface expression on the x-axis, 

and the corresponding pooled assay ratios can be compared with positive and negative controls 

(Figure 6). 

To evaluate variability, the pooled assay was performed on DNA from three separate 

biological replicates performed in different months.  The resulting ratios showed high 

correlations between replicate experiments (r2=0.86-0.88; see Supplemental Figure 2). Of note, 

the data described above was derived from DNA amplification of the residual plasmid in the 

transfected cell. Ratios derived from RNA from the same sorted cells were much more variable, 

and while they showed similar trends, were less consistent (data not shown).   

Next, the pooled assay results were graphed by the variant class derived from preexisting 

literature and database annotations (Figure 6). The reported biochemical classes were obtained 

from the literature (Mendes, 2005; Rakoczy, 2011; Athanasiou, 2018).  (Additional historical 

categorizations have also been published (Sung, 1993; Krebs, 2010), as well as classifications 

that integrate pharmacologic response (Behnen, 2018).)  The synonymous controls (top row) 
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demonstrated high surface expression, as expected.  Most of the known class 2 mutants exhibited 

very low surface expression as expected, but a minority (19%) expressed at levels that were 

unexpectedly high (L125R, E150K), intermediate (A164V, G51V, F52Y, F56Y, T58M, K296M, 

K296N) or moderately low (G51R, T58R, L88P, G109R, C167R, S186W, M207R, M216K, 

K296E). Class 3 variants showed intermediate levels. Class 4 variants showed low and high 

levels (see Discussion).  Class 5-7 variants and benign variants show intermediate to high levels.  

Labeled variants that were previously considered VUS (L47R, G18D, G101V, and P180T) have 

now been demonstrated to express at pathogenic levels. Note that the variants with high 

expression levels are not necessarily all benign, as the assay does not detect all classes of 

mutations. 

Next, six variants with new or unexpected findings were selected for further validation 

using immunofluorescence with confocal microscopy. A164V and G109R are class 2 mutants 

according to Rakoczy and Athanasiou(Rakoczy, 2011; Athanasiou, 2018), but unexpectedly 

showed intermediate or relatively preserved surface RHO staining in all three assays- standard 

and pooled flow cytometry (Table 1) as well as confocal microscopy (Figure 7). The following 

variants were originally of unknown pathogenicity: L47R (literature) and G18D, G101V, P180T 

(internal VUS). All four of these variants showed low or very low surface expression in the 

standard and pooled flow cytometry assays and were further validated to have low surface 

expression in the confocal immunofluorescence assay (Figure 7). 

 

Probands with a rare RHO VUS 

Ten probands that had genetic testing through our departmental genetic testing service had a 

novel RHO VUS, as listed in Table 2.  These represent nine unique VUS (as G18D was found in 

two probands).  (Since the start of this project, the p.R147C variant has been added to the 

HGMD database as a pathogenic variant.)  Of the nine VUS, three (33%) showed pathogenic 

surface expression levels. The variants that were pathogenic by the functional assay were not 

uniformly predicted to be damaging based on computational predictions alone (Table 2). Both of 

the subjects with the G18D mutation and the one subject with the G101V mutation had a 

phenotype of pericentral retinitis pigmentosa, as described in further detail (Comander, 2017). 
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The subject shown in Figure 2 who had retinitis pigmentosa and a P180T RHO variant now has 

been demonstrated to have a pathogenic RHO mutation. 

 

Predicting clinical disease severity data from surface expression levels 

 Among known class 2 mutants, the level of surface RHO expression measured in vitro 

can predicted the clinical disease severity of class 2 mutants, with an observed increase of 0.67 

of Ln ERG amplitude for each log of surface expression ratio (p=0.0008; Figure 8).  A 

multivariate model that takes age-at-baseline visit into account gives similar results, with a 0.59 

increase of ln ERG amplitude for each log of surface expression ratio (p=0.016).  In contrast, 

∆∆G values from Rakoczy et al(Rakoczy, 2011), representing the computationally predicted 

misfolding propensity, did not predict ERG amplitudes alone, or in a combined model with age 

or age and NGS ratio (all p>0.05). Similarly, computational pathogenicity predictions from the 

Envision dataset(Gray, 2018) did not correlate with clinical severity, with or without restriction 

to class 2 mutants (p>0.05). 

 

Discussion 

This study demonstrates the feasibility of a higher-throughput cell-based assay for the 

functional characterization of VUS in IRDs, compared to the standard approach of using a cell-

based assay for each variant individually (Sung, 1993; Li, 1998; Chuang, 2004; Chen, 2011; 

Toledo, 2011; Davies, 2012; Hollingsworth, 2013; Liu, 2013; McKeone, 2014; Yamasaki, 2014). 

A pooled, multiplexed assay for rhodopsin variants can efficiently identify class 2, 3, or 4a 

mutants. This assay was used to identify pathogenic variants within a group of VUS, 

provisionally solving 3 pedigrees of typical or pericentral retinitis pigmentosa, including the 

proband in Figure 2.  

The barcode-free, pooled, NGS-based assay for evaluating RHO surface expression was 

highly reproducible and quantitative, with good agreement with the standard unpooled assay. 

This was achieved by optimizing several segments of the schema in Figure 1, including 

extensive library validation, with sequencing on both DNA strands after mutagenesis and after it 

was recombined into the final expression vector; optimization of fixation and staining conditions 
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to maintain high discrimination between positive and negative controls, while also using a 

fixative that preserved DNA integrity for subsequent PCR; and quality filtering of NGS basecalls 

to maintain signal-to-noise in variant quantification. 

The data in Tables 1 and S1 provide new information about previously-uncharacterized 

variants, identify apparently misclassified variants, and confirm pathogenicity of known 

mutations. Of 80 known class 2 mutants, 71 (89%) were confirmed to show pathogenically low 

levels of RHO surface expression. However, 9 (11%) class 2 mutants unexpectedly showed high 

or intermediate levels, especially those found in transmembrane helix I. 8 of 66 (12%) mutants in 

other mutation classes also showed pathogenic RHO surface expression levels, especially in 

class 3 and 4 mutants, which tended to have an intermediate phenotype. 14 of 33 (42%) 

unclassified pathogenic variants showed pathogenic expression levels, which are likely class 2, 

3, or 4 mutants. 

For example, RHO A292E does not cause RP but instead causes the milder disease 

congenital stationary night blindness.  RHO A292E is known to be constitutively active in 

activating transduction without a chromophore (class 6) (Dryja, 1993). Computation predictions 

based on misfolding propensity (ΔΔG)(Rakoczy, 2011) led to the conclusion that this mutant 

should also be grouped in class 2 (IIa), but the relatively normal actual expression level of this 

variant indicates that it should be categorized as class 6 only. Conversely, T193M was predicted 

to fold correctly (Rakoczy, 2011), but in this study T193M is not expressed well on the cell 

surface.  It is not known if this defect is due to misfolding or a hypothesized defect in 

dimerization (Rakoczy, 2011).  

This expanded dataset also provides more confidence in variant interpretation based on 

smaller numbers of variants or among different experimental systems.  For example, D190N 

showed low expression levels in this study, in contrast to smaller studies showing moderate 

expression using a GFP fusion tag (McKeone, 2014) or normal localization using a bovine 

sequence backbone (Liu, 2013). 

Some special variant classes deserve further discussion. Even though RHO surface 

expression in HEK293 cells has been widely used to demonstrate pathogenicity (Sung, 1993; Li, 

1998; Chuang, 2004; Chen, 2011; Toledo, 2011; Davies, 2012; Hollingsworth, 2013; Liu, 2013; 

McKeone, 2014; Yamasaki, 2014), recessive mutations do not show any special features in this 
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assay, and are not distinguished from the dominant mutations. The recessive mutations are not 

clustered in a certain segment of the gene. However, because the number of known recessive 

mutants is small (6.6%; 12 of 181 according to Table S1), it is much more likely that any 

particular low-expressed mutation is dominant. Therefore, this study provides good evidence that 

the “very low” and “low” expressing variants are pathogenic mutations, but cannot conclusively 

state that they are dominant pathogenic mutations. (Thus, the three families mentioned above are 

“provisionally” solved.) Our initial experiments mixing together a known dominant mutation 

with a wildtype construct showed no effect on trafficking of the wildtype protein in this system 

(Supplemental Figure 3). Modifications of the cell type used or of expression levels may be able 

to reveal such dominant negative or gain of function effects to distinguish dominant pathogenic 

mutations from recessive pathogenic mutations.  In a different system using the SK-N-SH cell 

type, dominant negative effects of dominant mutants have been demonstrated (Mendes, 2008). 

This assay was focused on identifying class 2 (misfolding) mutations, which is the most 

common class. Figure 6 shows that class 3 mutations (endocytosis) and some class 4 mutations 

(altered post-translational modifications and reduced stability) also displayed low expression, 

though not quite as low as class 2, on average. Interestingly, the older Rakoczy classification 

separates the class 4 mutants slightly better, with the class IVa (affecting a glycosylation site; 

T4K, T17M, N15S) all showing pathogenic surface expression levels. 

Additional assays are needed to detect and distinguish other mutation classes. For 

example, to identify mutations that are rescued by retinal binding(Mendes, 2008; Krebs, 2010; 

Mendes, 2010; Behnen, 2018), the assay could be repeated in the presence of retinal (which was 

too toxic for use in the current transient transfection system; not shown). For the purpose of 

evaluating pathogenicity, general toxicity- or stress-based assays would be ideal. In this cell 

culture system, expression of P23H or T17M mutants had no effect on cell death as measured by 

membrane permeability dyes, on apoptosis as measured by annexin V labeling, or on ER stress 

as measured by the pCAX-XBP1delDBD-venus reporter(Iwawaki, 2004)(not shown). Other 

approaches to look for these more general effects might use different cell types or even in vivo. 

Thus, a panel of both general and specific assays is likely the best approach to identify all types 

of pathogenic mutations. 
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Truncating mutations (nonsense or frameshift) were expressed in the context of a cDNA 

without internal introns, after the synthetic intron in the CAG promoter. Because internal introns 

and their potential effects of nonsense mediated decay (Roman-Sanchez, 2016) were not 

included, the results for those mutants should be interpreted with caution. All truncating variants 

5’ of a.a. 315 showed pathogenic expression levels, while all variants 3’ to a.a. 332, including 10 

truncating variants, showed wildtype expression levels. These variants should preferably be 

retested in their full genomic context (Roman-Sanchez, 2016), which would also allow for 

testing of splice variants. 

Screening small versus large variant libraries 

This library construction strategy differs from larger-scale screening strategies(Melnikov, 

2014; Brenan, 2016; Gasperini, 2016) (thousands of variants) in that this library, with 210 

variants, was created with widely-available techniques at lower technical complexity. The library 

itself was constructed using modified Quikchange mutagenesis reactions using inexpensive short 

oligos ordered in 96 well plates. (Synthetic DNA variant libraries may replace this step as prices 

continue to decrease.) Each variant plasmid was introduced into cells using a standard 

transfection protocol, without need for viral vectors. The disadvantage of this approach is that it 

does not scale well to larger sized libraries. Sequencing and reracking of individual clones, as 

well as the unpooled transfection, become more cumbersome with increasing number of variants 

and wells. However, for biological questions such as the one addressed in this study involving 

about 200 variants or less, this approach is feasible and has the above advantages. 

A smaller library size also has advantages in achieving a quantitative readout. In a very 

large, barcode-free, pooled assay, NGS sequencing errors would set a lower boundary so that the 

rarest variants are harder to quantify, and therefore these assays would best be used to find 

highly enriched “hits”. In this study, because of the smaller number of variants, the quantitation 

of each variant could be maintained above the noise floor caused by sequencing errors. 

Therefore, smaller gradations in expression level were reproducibly quantified over the entire 

dynamic range of the assay (Figure S2), allowing for observations such as the “intermediate” 

expression phenotype of the Class 3 and 4 mutations described above. More specifically, for the 

quantitation of each of 210 plasmids in a mixed pool, the frequency of an individual plasmid 

(ideally ~1/210 = ~0.5%) has to be greater than the background noise of sequencing errors-- 
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theoretically 0.1% on the Illumina MiSeq at Q=30, though sequence-context and cycle number 

dependent. With library inhomogeneity and context-dependent sequencing error rates, this ratio 

is not guaranteed to be maintained. Careful masking of low quality basecalls allowed for low 

frequency variant quantitation above the noise level (Methods and Figure 4B-C).  For larger 

barcode-free libraries, maintaining accurate quantification at low levels in the presence of read 

errors would not be solved by simply increasing read depth; specialized wet lab assays to lower 

the actual sequencing error rate (e.g. (Schmitt, 2012)) could be considered. Alternatively, 

barcoded libraries designed to avoid barcode collisions in the presence of sequencing errors 

could be used.  

Predicting clinical disease severity data from surface expression levels 

Among known class 2 mutants, the level of RHO surface expression measured in this 

study was better at predicting disease severity than computational folding predictions (Figure 8 

and Results). These approaches are not mutually exclusive, however, and structural biology can 

be used as a complementary approach to experimental observations.  For example, folding 

calculations can be refined based on empirical data and then extended to new mutants.  For 

variants that express well on the cell surface or where the mechanism is different (e.g. class 7 

dimerization mutations) other classes of bioinformatic predictors are needed. 

The outliers in Figure 8 that do not follow the general trend of less severe disease with 

increasing surface expression can be informative as well.  For example, Q184P shows low 

severity despite low expression, and L125R shows high severity despite high expression (Figure 

8).  These data suggests that these variants are likely not classic class 2 mutations and influence 

disease course through a different mechanism than simple misfolding. 

The correlation between surface expression and disease severity can produce some 

clinically-useful estimates.  For example, a typical class 2 mutation with a low surface 

expression ratio of -1.5 would have a predicted baseline ERG which is 1.34 natural log units 

lower than a mutation with a higher expression ratio of 0.5.  At an average rate of progression 

(0.091 ln units per year(Berson, 2002)), this corresponds to an extra 15 years of vision. If outliers 

(e.g. Q184P, L125R) in the regression had been excluded, this estimated effect would be larger.  

These estimates are based on the average severity for a mutant.  However, there is a large 

amount of variation between individual subjects, particularly notable for the P23H mutation 
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which is common in our cohort; additional modifying factors are yet to be identified, whether 

genetic, environmental, or stochastic. 

In summary, a functional genomics approach can be used to address the problem of VUS 

in inherited retinal diseases, which in general is currently one of the major bottlenecks in the 

diagnosis of human Mendelian diseases.  Future studies may include generalizing these assays to 

more genes and more mutation types, as well as using more complex methods to screen larger 

numbers of variants. 
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Tables 
Table 1. New findings based on RHO surface expression assay results.   
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Conclusions based on new data from this 

study Revised class 

81 578C>T T193M Unclassified Unclassified 75.7 1.10 low Previously unclassified; now likely class 2, 3, or 4 likely class 2, 3, or 4 

88 641T>A I214N Unclassified Unclassified 71.8 1.94 low Previously unclassified; now likely class 2, 3, or 4 likely class 2, 3, or 4 

169 500G>A C167Y Unclassified Unclassified 48.6 0.31 low Previously unclassified; now likely class 2, 3, or 4 likely class 2, 3, or 4 

182 236T>C L79P Unclassified Unclassified 70.8 0.90 low Previously unclassified; now likely class 2, 3, or 4 likely class 2, 3, or 4 

19 170T>G L57R Unclassified Unclassified 17.7 0.15 very low Previously unclassified mutant; now likely class 2 likely class 2 

23 233A>T N78I Unclassified Unclassified 22.7 0.13 very low Previously unclassified mutant; now likely class 2 likely class 2 

66 535A>T I179F Unclassified Unclassified 23.5 0.13 very low Previously unclassified mutant; now likely class 2 likely class 2 

68 538C>T P180S Unclassified Unclassified 10.9 0.18 very low Previously unclassified mutant; now likely class 2 likely class 2 

135 505G>C A169P Unclassified Unclassified 26.0 0.13 very low Previously unclassified mutant; now likely class 2 likely class 2 

168 509C>A P170H Unclassified Unclassified 9.4 0.27 very low Previously unclassified mutant; now likely class 2 likely class 2 

159 53G>A G18D VUS, novel VUS, novel 27.4 0.27 very low newly determined as pathogenic likely class 2, 3, or 4 

197 302G>T G101V VUS, novel VUS, novel 63.5 0.48 low newly determined as pathogenic likely class 2, 3, or 4 

203 538C>A P180T VUS, novel VUS, novel 10.1 0.33 very low newly determined as pathogenic likely class 2 

13 151G>C G51R IIa/II/2 2 47.2 0.24 low low level - but higher than typical class 2 was IIa/II/2, now probably unclassified 

20 173C>G T58R IIa/II/2 2 69.1 1.28 low low level - but higher than typical class 2 was IIa/II/2, now probably unclassified 

25 263T>C L88P II/Unclassified 2 58.8 0.36 low low level - but higher than typical class 2 

was II/Unclassified/2, now probably 

unclassified 

33 325G>A G109R IIa/Unclassified 2 76.9 1.03 low low level - but higher than typical class 2 

was IIa/Unclassified/2, now probably 

unclassified 

56 499T>C C167R IIb/II/2 2 52.9 0.53 low low level - but higher than typical class 2 was IIb/II/2, now probably unclassified 

74 557C>G S186W IIa/Unclassified 2 63.8 1.23 low low level - but higher than typical class 2 

was IIa/Unclassified/2, now probably 

unclassified 

83 620T>G M207R IIa/Unclassified 2 74.8 1.07 low low level - but higher than typical class 2 

was IIa/Unclassified/2, now probably 

unclassified 

92 647T>A M216K 

IIb+IIc/Unclassi

fied 2 76.8 1.62 low low level - but higher than typical class 2 

was IIb+IIc/Unclassified/2, now probably 

unclassified 

106 886A>G K296E 

Unclassified/II/

2 2 61.3 0.80 low low level - but higher than typical class 2 

was Unclassified/II/2, now probably 

unclassified 

178 302G>A G101E Unclassified Unclassified 74.7 0.57 low 

literature report unclear - now suggests likely  

pathogenic likely class 2, 3, or 4 
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186 140T>G L47R 

VUS, 

database/Uncl

assified 

VUS, 

database 11.2 0.15 very low literature correct over databases- pathogenic likely class 2 

55 491C>T A164V IIa/II/2 2 85.0 2.10 

indeterm

inate intermediate level - not typical of class 2 was IIa/II/2, now unclassified 

15 152G>T G51V IIa/II/2 2 95.5 1.69 

indeterm

inate intermediate level - not typical of class 2 was IIa/II/2, now unclassified 

16 155T>A F52Y 

IIc+IVb/Unclass

ified 2 83.3 1.79 

indeterm

inate intermediate level - not typical of class 2 was IIc+IVb/2, now IVb 

18 167T>A F56Y 

IIc+IVb/Unclass

ified 2 94.9 1.72 

indeterm

inate intermediate level - not typical of class 2 was IIc+IVb/2, now IVb 

21 173C>T T58M Unclassified/2 2 94.9 1.91 

indeterm

inate intermediate level - not typical of class 2 was 2, now unclassified 

107 887A>T K296M Unclassified/2 2 65.3 2.69 

indeterm

inate intermediate level - not typical of class 2 was 2, now unclassified 

108 888G>T K296N Unclassified/2 2 79.4 2.97 

indeterm

inate intermediate level - not typical of class 2 was 2, now unclassified 

40 374T>G L125R IIa/II/2 2 91.6 2.57 high high - not consistent with class 2 was IIa/II/2, now unclassified 

50 448G>A E150K IIa 2 97.3 2.26 high high - not consistent with class 2 was IIa/2, now unclassified 

26 266G>A G89D IIa/II/2 2 33.8 0.23 very low databases correct over literature - pathogenic likely class 2 

57 501C>G C167W IIb/II/2 2 17.5 0.18 very low databases correct over literature - pathogenic likely class 2 

67 538C>G P180A IIa/Unclassified 2 25.3 0.16 very low databases correct over literature - pathogenic likely class 2 

101 810C>A S270R IIc/II/2 2 18.4 0.19 very low databases correct over literature - pathogenic likely class 2 

 

Previously-reported RHO mutation categories (“Previous class, detailed”) were revised (“Revised Class”) based on RHO surface expression results.  
Color coded gradients show pathogenic levels (red) and wildtype levels (green). For standardized variant descriptions (HGVS format), add prefixes 
NM_000539.3:c. for DNA and RHO_v001:p. or NP_000530.1:p. for protein descriptions. 
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Table 2. Comparison of information from computational methods and function assays to solve patient pedigrees.  
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c.53G>A p.G18D 0.000077 2 tolerated probably_damaging 24.7 1 5.5 159 27.4 0.27 very low newly determined as pathogenic 

c.178T>C p.Y60H 0.000037 1 tolerated probably_damaging 23.6 1 5.5 194 90.4 3.95 high not informative 

c.185C>A p.T62N 0.000016 1 deleterious probably_damaging 27.4 1 5.5 195 94.9 4.54 high not informative 

c.218A>G p.N73S 0.000004 1 deleterious probably_damaging 25.1 1 5.5 196 94.8 2.94 high not informative 

c.302G>T p.G101V 0 1 deleterious probably_damaging 25.6 1 4.4 197 63.5 0.48 low newly determined as pathogenic 

c.439C>T p.R147C 0.000183 1 deleterious probably_damaging 35 1 4.3 198 87.6 3.25 high not informative 

c.538C>A p.P180T 0 1 deleterious probably_damaging 24 1 4.2 203 10.1 0.33 very low newly determined as pathogenic 

c.755G>A p.R252H 0.000016 1 deleterious probably_damaging 33 1 5.5 199 94.5 2.57 high not informative 

c.895G>A p.A299T 0.000020 1 tolerated benign 0.01 0.01 -11.0 200 88.1 2.06 indeterminate not informative 

c.913A>G p.I305V 0.000004 1 deleterious probably_damaging 26.1 1 5.5 201 96.0 2.49 high not informative 

 

Among nine rare VUS that were identified from our genetic testing service, three variants had measured pathogenic expression levels. Color coding 
for computational methods are based on arbitrary cutoffs for SIFT (Ng, 2003), PolyPhen (Adzhubei, 2013), CADD scores (Kircher, 2014), 
PhastCons (Siepel, 2005), and GerpRS (Cooper, 2005). Color coding for functional assays is based on the RHO surface expression final category. 
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Figure Legends 
Figure 1. Experimental design of library screening for VUS characterization. An expression 
plasmid library of RHO variants was constructed using mutagenesis. (Four variants are shown as 
an example.) Each variant plasmid was transfected into cells, which were then pooled after 
transfection. The cells, after expressing the desired variant (grey), were stained using a 
fluorescent pathogenicity assay based on RHO surface expression (green). Fluorescence 
activated cell sorting (FACS) was used to separate high- and low-expressing cells. Each 
transfected cell carries with it the DNA of the variant of interest, and this “tag” can be sequenced 
using NGS and therefore count the relative frequency of each DNA variant in each pool, 
quantifying the pathogenicity of each variant in parallel. 

Figure 2. Example subject (ID# D00726) with multiple VUS.  (A) Fundus photographs show 
midperipheral bone spicule pigmentation consistent with a diagnosis of RP.  (B) DNA 
sequencing using the Gene Eye Disease panel revealed a large number of VUS, with annotations 
color coded (red= supporting pathogenicity; green= supporting benign).  Variants above the 
horizontal line are coding variants. *splice site potentially broken, Human Splice Finder -34%. 

Figure 3. Unpooled assay validation. (A) Indirect immunofluorescence without 
permeabilization using Ret-P1/Alexafluor-488 antibodies shows strong RHO surface expression 
(green) using the wildtype plasmid (WT; left column), but not with a known mutant construct 
(P23H; middle column) or no plasmid control (right column).  Red: mCherry transfection 
control. Blue: nuclei (Hoechst).  (B) With permeabilization , mutant RHO is detectable inside the 
cell (middle column).  (C) When the same antibodies were used in flow cytometry (without 
permeabilization), the percentage of RHO+/transfection+ cells (inset) correlates to the results 
obtained using immunofluorescence.  (D) Replicate flow cytometry assays show high separation 
between positive and negative controls, and low noise, Z’= 0.94. 

Figure 4. Pooled assay workflow and signal-to-noise ratio. (A) Gates used for FACS sorting 
cells with high or low rhodopsin surface expression, based on a positive control wildtype 
rhodopsin sample (green) and a negative control mutant sample (red). (B) Variant detection 
above background is demonstrated for each of 210 library variants, comparing sequencing results 
from of a pool of all variants (x-axis) to those from a wildtype RHO amplicon with no variants 
(y-axis). (C) Signal-to-noise ratio of the 210 variants as a function of location in the cDNA 
sequence. Error bars represent standard error of three independent replicates.  Star = cluster of 
lower signal-to-noise probes- see text. 

Figure 5. Concordance between unpooled and pooled assays.  The unpooled RHO surface 
expression flow cytometry assay performed on individual tubes (x-axis) showed highly 
correlated results (quadratic fit; r2=0.92) to the NGS-based, pooled assay (y-axis, log scale).  
Each point represents one variant.  Red=very low expression; pink=low expression; green=high 
expression. 

Figure 6. Pooled assay results by variant class. RHO surface expression results are plotted by 
previously-described biochemical classes.  The color gradient (red-black) is based on the x-axis 
value, with pathogenic levels of expression to the left, and wildtype levels to the right. A vertical 
line is drawn at the lower bound of the box-and-whiskers plot, which shows the interquartile 
range and upper and lower data point values of the synonymous controls. Class 2*, following 
Athanasiou et al, might behave as class 4 after 11-cis-retinal rescue and Class 2** might behave 
as class 2 on overexpression, but class 4 in vivo. Labeled points are examples of variants 
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previously considered class 2 mutants that unexpectedly show intermediate or high expression 
levels (upper) or VUS that were previously unclassified that are now likely to be class 2, 3, or 4 
mutations (lower). 

Figure 7. Confocal immunofluorescence of selected mutants validates flow cytometry 
results.  (A) Each column represents a transfection with a particular labeled variant, arranged 
from highest (left) to lowest (right) RHO expression (WT=wildtype).  Top row: Flow cytometry 
results showing surface RHO staining (Y axis) and transfection marker (X axis), with percent of 
transfected cells with high surface RHO as inset.  Confocal staining: Green = RHO cell surface 
staining, Purple = total RHO staining after cell permeabilization, blue = nuclear stain.  Row A: 
single-slice confocal images demonstrate cell membrane staining for the left-most three variants 
but fainter, punctate perinuclear staining for the other variants.  A similar pattern of decreasing 
RHO intensity is seen in maximum projection images of (B) surface RHO and (C) total RHO. 
Row D shows a composite of all channels.  

Figure 8. Correlating RHO surface expression and clinical disease severity.  Among known 
class 2 RHO mutants, increasing amounts of RHO surface expression correlated with a milder 
clinical phenotype, as represented by the baseline cone flicker ERG response amplitude 
(p=0.012).  Each point represents one patient. 

Supplemental Data 1.  Detailed spreadsheet of all variant information and results. See 
annotation within the file. 

Supplemental Figure 1.  Detailed display of unpooled flow cytometry results. Individual 
flow cytometry plots (N=315) were sorted by the average NGS-based expression ratio (pooled 
assay), which visually demonstrated the good correlation between the unpooled and pooled 
assays.  X-axis: mCherry co-transfection positive control Y-axis: anti-rhodopsin/AF-488.  Plots 
at the top of the figure have a high NGS ratio, reflecting more cells in the upper-right quadrant of 
the flow cytometry plot (diagonal cloud of points).  Plots at the bottom of the Figure shows a low 
NGS ratio, and a corresponding lack of points in the upper-right quadrant (horizontal cloud of 
points). Labels: “VAR”=variant number. “T”= transfection batch number 

Supplemental Figure 2. Pooled assay reproducibility. Correlation coefficients (top) and 
scatterplot matrices (bottom) show good reproducibility between each replicate of the pooled, 
NGS-based assay (“NGS log ratio replicate” numbers 1, 2, and 3).  The unpooled assay (“FACS 
average % high”) also shows good correlation with the mean pooled value (“NGS log ratio 
average”) and with the individual pooled replicates. 

Supplemental Figure 3. Dominant negative effect not observed. Compared to expression of 
wildtype RHO alone (left), co-expression of the known dominant mutant RHO-P23H (right) 
does not prevent wildtype RHO from reaching the cell surface. X-axis: mCherry transfection 
control. Y-axis: anti-rhodopsin/AF-488.   
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Experimental design of library screening for VUS characterization. An expression plasmid 
library of RHO variants was constructed using mutagenesis. (Four variants are shown as 
an example.) Each variant plasmid was transfected into cells, which were then pooled after 
transfection. The cells, after expressing the desired variant (grey), were stained using a fluo-
rescent pathogenicity assay based on RHO surface expression (green). Fluorescence activated 
cell sorting (FACS) was used to separate high- and low-expressing cells. Each transfected cell 
carries with it the DNA of the variant of interest, and this “tag” can be sequenced using NGS 
and therefore count the relative frequency of each DNA variant in each pool, quantifying the 
pathogenicity of each variant in parallel.

Figure 1
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Example subject (ID# D00726) with multiple VUS.  (A) Fundus photographs show midperipheral bone spicule 
pigmentation consistent with a diagnosis of RP. 

Figure 2A
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Example subject (ID# D00726) with multiple VUS.  (B) DNA sequencing using the Gene Eye Disease panel revealed a large number of VUS, with 
annotations color coded (red= supporting pathogenicity; green= supporting benign).  Variants above the horizontal line are coding variants. *splice 
site potentially broken, Human Splice Finder -34%.

Figure 2B
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Unpooled assay validation. (A) Indirect 
immunofluorescence without permeabilization 
using Ret-P1/Alexafluor-488 antibodies shows 
strong RHO surface expression (green) using 
the wildtype plasmid (WT; left column), but 
not with a known mutant construct (P23H; 
middle column) or no plasmid control 
(right column).  Red: mCherry transfection 
control. Blue: nuclei (Hoechst).  (B) With 
permeabilization , mutant RHO is detectable 
inside the cell (middle column).  (C) When the 
same antibodies were used in flow cytometry 
(without permeabilization), the percentage of 
RHO+/transfection+ cells (inset) correlates to 
the results obtained using immunofluorescence.  
(D) Replicate flow cytometry assays show 
high separation between positive and negative 
controls, and low noise, Z’= 0.94.

Figure 3
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Pooled assay workflow and signal-to-noise ratio. 
(A) Gates used for FACS sorting cells with high 
or low rhodopsin surface expression, based on 
a positive control wildtype rhodopsin sample 
(green) and a negative control mutant sample 
(red). (B) Variant detection above background 
is demonstrated for each of 210 library variants, 
comparing sequencing results from of a pool 
of all variants (x-axis) to those from a wildtype 
RHO amplicon with no variants (y-axis). (C) 
Signal-to-noise ratio of the 210 variants as a 
function of location in the cDNA sequence. 
Error bars represent standard error of three 
independent replicates.  Star = cluster of lower 
signal-to-noise probes- see text.

Figure 4
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Concordance between unpooled and pooled assays.  The unpooled RHO surface expression flow cytometry 
assay performed on individual tubes (x-axis) showed highly correlated results (quadratic fit; r2=0.92) to the 
NGS-based, pooled assay (y-axis, log scale).  Each point represents one variant.  Red=very low expression; 
pink=low expression; green=high expression.

Figure 5
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Pooled assay results by variant class. RHO surface expression results are plotted by previously-described 
biochemical classes.  The color gradient (red-black) is based on the x-axis value, with pathogenic levels of 
expression to the left, and wildtype levels to the right. A vertical line is drawn at the lower bound of the 
box-and-whiskers plot, which shows the interquartile range and upper and lower data point values of the 
synonymous controls. Class 2*, following Athanasiou et al, might behave as class 4 after 11-cis-retinal rescue 
and Class 2** might behave as class 2 on overexpression, but class 4 in vivo. Labeled points are examples of 
variants previously considered class 2 mutants that unexpectedly show intermediate or high expression levels 
(upper) or VUS that were previously unclassified that are now likely to be class 2, 3, or 4 mutations (lower).

Figure 6
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Confocal immunofluorescence of selected mutants validates flow cytometry results.  (A) Each column 
represents a transfection with a particular labeled variant, arranged from highest (left) to lowest (right) RHO 
expression (WT=wildtype).  Top row: Flow cytometry results showing surface RHO staining (Y axis) and 
transfection marker (X axis), with percent of transfected cells with high surface RHO as inset.  Confocal 
staining: Green = RHO cell surface staining, Purple = total RHO staining after cell permeabilization,  
Blue = nuclear stain.  Row A: single-slice confocal images demonstrate cell membrane staining for the left-most 
three variants but fainter, punctate perinuclear staining for the other variants.  A similar pattern of decreasing 
RHO intensity is seen in maximum projection images of (B) surface RHO and (C) total RHO. Row D shows a 
composite of all channels. 

Figure 7
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Correlating RHO surface expression and clinical disease severity.  Among known class 2 RHO mutants, 
increasing amounts of RHO surface expression correlated with a milder clinical phenotype, as represented by the 
baseline cone flicker ERG response amplitude (p=0.012).  Each point represents one patient. 

Figure 8
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