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ABSTRACT:   Cytoskeletal filaments assemble into dense parallel, antiparallel or disordered 

networks, providing a complex environment for active cargo transport and positioning by 

molecular motors.  The interplay between the network architecture and intrinsic motor 

properties clearly affects transport properties but remains poorly understood.  Here, by using 

surface micro-patterns of actin polymerization, we investigate stochastic transport properties of 

colloidal beads in antiparallel networks of overlapping actin filaments.  We found that 200-nm 

beads coated with myosin-Va motors displayed directed movements towards positions where 

the net polarity of the actin network vanished, accumulating there. The bead distribution was 

dictated by the spatial profiles of local bead velocity and diffusion coefficient, indicating that a 

diffusion-drift process was at work.  Remarkably, beads coated with heavy mero-myosin-II 

motors showed a similar behavior. However, although velocity gradients were steeper with 

myosin II, the much larger bead diffusion observed with this motor resulted in less precise 

positioning. Our observations are well described by a three-state model, in which active beads 

locally sense the net polarity of the network by frequently detaching from and reattaching to 

the filaments. A stochastic sequence of processive runs and diffusive searches results in a biased 

random walk. The precision of bead positioning is set by the gradient of net actin polarity in 

the network and by the run length of the cargo in an attached state. Our results unveiled physical 

rules for cargo transport and positioning in networks of mixed polarity. 

 

Significance statement:  Cellular functions rely on small groups of molecular motors to 

transport their cargoes throughout the cell along polar filaments of the cytoskeleton. 

Cytoskeletal filaments self-assemble into dense networks comprising intersections and 

filaments of mixed polarity, challenging directed motor-based transport.  Using micro-patterns 

of actin polymerization in-vitro, we investigated stochastic transport of colloidal beads in 

antiparallel networks of overlapping actin filaments.  We found that beads coated with myosin 

motors sensed the net polarity of the actin network, resulting in active bead positioning to 

regions of neutral polarity with a precision depending on the motor type.  A theoretical 

description of our experimental results provides the key physical rules for cargo transport and 

positioning in filament networks of mixed polarity. 
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Introduction 

Controlling transport at microscopic scales poses a fundamental challenge in biology, 

engineering and physics.  In the cell, molecular motors use cytoskeletal filaments as polar tracks 

for directed transport (1).  However, the filaments are organized in dense networks with 

structural heterogeneities (2), which impart stringent physical constraints according to two 

basic mechanisms (3).  First, disorder in filament orientations, as well as branching, results in 

intersections that can affect the directionality of cargo transport (4).  Second, networks of mixed 

polarity foster bidirectional movements either because a given cargo can interact with multiple 

filaments simultaneously, resulting in a tug-of-war (5), or stochastically detach and reattach to 

a different filament (6, 7).  Conversely, the outcome of motor-driven transport in a given 

cytoskeletal architecture also depends on the single-molecule properties of the motors (8-10) 

and on their collective organization (8, 11, 12).   

Two types of theoretical approaches have been proposed to describe the collective behavior 

of motor assemblies attached to the same cargo.  Microscopic theories aim at determining the 

collective behavior from single motor properties (13-16).  Alternatively, coarse grained theories 

focus on global properties of cargo dynamics resulting from stochastic binding to and unbinding 

from cytoskeletal filaments (17).  The latter approach introduces only a few effective 

parameters, such as binding and unbinding rates as well as transport velocity of the cargo, and 

does not rely on detailed knowledge on single motors.  Thanks to its relative simplicity, the 

coarse-grained approach is well adapted for the study of cargo transport in complex 

environments (6, 7).   

In this work, we developed an in-vitro assay to study the interplay between the cytoskeletal 

organization and motor properties for cargo transport.  We monitored transport of beads that 

were actively propelled by either processive myosin-Va or non-processive heavy-mero myosin-

II motors in antiparallel networks of actin filaments with exponential density profiles.  We 

found that the myosin-coated beads were actively positioned to regions where the net polarity 

of the actin network vanished and with a higher precision than the characteristic length 

associated with polarity gradients of the network.  A theoretical description of the transport 

process at the coarse-grained level was able to clarify the physical rules underlying active cargo 

trapping in antiparallel networks depending on motor properties and filament-polarity 

gradients.   
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Results 

Antiparallel actin networks of controlled architecture.   We designed surface micro-patterns 

of the nucleation-promoting factor pWA to control the geometry and collective organization of 

growing actin filaments (18, 19).  Our patterns were composed of parallel nucleation lines 

spaced by a distance L ≈ 40 µm.  Actin filaments extended perpendicularly to the nucleation 

lines by monomer incorporation to their barbed ends; the pointed ends of the filaments were 

localized on the pattern, whereas the barbed ends moved away from the nucleation zones.  After 

~10 min of polymerization, filaments growing in opposite directions from adjacent lines 

overlapped, yielding an anti-parallel network (Fig. 1).  Inclusion of methylcellulose as a 

depleting agent ensured that most of the network remained within ~200 nm of the glass surface 

(20), thus forming an actin sheet. 

We took advantage of the nucleation line at one edge of the pattern to characterize the 

architecture of a parallel actin network, without interference from actin filaments coming in 

opposite direction from a neighboring nucleation line.  In this case, the actin density profile 

along an axis X perpendicular to the nucleation line followed an exponential decay 𝜌𝜌(𝑋𝑋) ∝

 exp(−𝑋𝑋 𝜆𝜆⁄ ) (Fig. 1B).  There, the decay length λ = 8.2±1.1 µm (n = 29) corresponds to the 

mean length of actin filaments in the network. 

In between two parallel nucleation lines, the actin density profile of the anti-parallel network 

displayed mirror symmetry about the center, where the density was minimal.  In the following, 

the center was set at X = 0.  Corresponding to this symmetry, the profile 𝜌𝜌(𝑋𝑋) = 𝜌𝜌+(𝑋𝑋) +

𝜌𝜌−(𝑋𝑋) was described by the sum of two mirror-symmetric exponentials 𝜌𝜌±(𝑋𝑋) =

(𝜌𝜌0 2⁄ ) exp(∓𝑋𝑋 𝜆𝜆⁄ ); equivalently 𝜌𝜌(𝑋𝑋) = 𝜌𝜌0 cosh(𝑋𝑋 𝜆𝜆⁄ ) with 𝜌𝜌0 the total actin density at the 

center (Fig. 1C).  The mean filament length λ was indistinguishable from that measured with a 

single line at the edge of the pattern.  We define the net polarity of the actin network as Φ(𝑋𝑋) =

�𝜌𝜌+(𝑋𝑋) − 𝜌𝜌−(𝑋𝑋)� �𝜌𝜌+(𝑋𝑋) + 𝜌𝜌−(𝑋𝑋)�� = tanh(𝑋𝑋 𝜆𝜆⁄ ) (Fig. 1C, inset).  At the center of the actin 

density profile, the net polarity vanished (Φ(0) = 0) and the net-polarity gradient was given 

by the inverse of the mean actin length (Φ′(0) = 1 𝜆𝜆⁄ ).  Thus, the shorter the average length of 

the filaments, the steeper the gradient of net polarity.  Because the pattern spacing was 

significantly larger than the mean filament length (𝐿𝐿 ≫ 𝜆𝜆), all filaments had nearly the same 

polarity near each of the nucleation lines (Φ(±𝐿𝐿/2) = ∓1). 

Active centering of myosin-coated beads.   We tracked the trajectories of 200-nm beads that 

were coated with either myosin Va or heavy-mero myosin II (hereafter called ‘myosin V’ or 

‘myosin II’ for simplicity) after they landed on the actin network by sedimentation from the 
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bulk.  Both types of myosin-coated beads showed directed trajectories towards the midline of 

the network, hereafter called the center (Fig. 2A-B and E-F).  Remarkably, although there were 

enough long filaments in the network to guide myosin-based transport all the way to the other 

side of the pattern (SI Appendix, Fig. S1), the beads appeared unable to move a significant 

distance past the center, where the net polarity of the actin network vanished, accumulating 

there (Fig. 2C and G).  As a result, the steady-state distribution of bead positions was peaked, 

in contrast to the flat distribution of initial bead positions corresponding to the first detection of 

the beads in the network (Fig. 2D and H).  We considered that beads had reached steady state 

when their trajectories lasted at least 200 s (Fig. 2B and F; see Methods).  On average, active 

cargo transport by myosin V or myosin II positioned the beads precisely at the center of the 

antiparallel actin network. 

As a control, we also studied transport of beads passivated with BSA (Fig. 2I-L).  These 

beads displayed a diffusive exploration of the space between nucleation lines, with trajectories 

that could start near a nucleation line and later explore regions near the opposite nucleation line 

(Fig. 2I and J), travelling long distances across the midline of the pattern.  Accordingly, the 

distribution of bead positions at steady state was nearly flat (Fig. 2K and L).  We note that 

passive interactions with the actin network or the substrate nevertheless resulted in a small 

centering effect, as the steady state distribution was slightly, but significantly, more peaked than 

the distribution of initial positions (compare dashed and solid lines in Fig. 2L).   

Ensemble analysis of bead transport.   To characterize bead transport, we computed the time- 

and ensemble-averaged squared displacement of the beads—the mean squared 

displacement MSD(𝜏𝜏)—as a function of the lag time 𝜏𝜏.  We recall that MSD(𝜏𝜏) = 2𝐷𝐷 𝜏𝜏 for a 

purely diffusive one-dimensional transport characterized by a diffusion coefficient 𝐷𝐷, whereas 

a purely convective transport of velocity 𝑉𝑉 should obey MSD(𝜏𝜏) = 𝑉𝑉2 𝜏𝜏2.  In the case of beads 

coated with myosin V, motion analysis along the axis of the actin filaments (axis X; Fig. 1A) 

revealed that the relation MSD(𝜏𝜏) was intermediate between those expected for pure diffusion 

and convective transport, corresponding to persisting diffusion with MSD(𝜏𝜏) ∝ 𝜏𝜏1.2 (𝜏𝜏 <  50 s; 

Fig. 3A).  This behavior betrayed directed movements driven by myosin-V activity towards the 

midline of the pattern (Fig. 2A-B).  Along the perpendicular axis (axis Y; Fig. 1A), the mean 

squared displacement was smaller and displayed a sub-diffusive behavior MSD(𝜏𝜏) ∝ 𝜏𝜏0.8 

(𝜏𝜏 <  80 s; Fig. 3A). 

In contrast, with beads coated with myosin II and for lag times 𝜏𝜏< 100s, we observed that 

the bead ensemble had a transport behavior dominated by free diffusion (Fig. 3B).  The 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 8, 2019. ; https://doi.org/10.1101/512863doi: bioRxiv preprint 

https://doi.org/10.1101/512863


6 
 

diffusion coefficient was about 2.5 larger along the X-axis than along the Y-axis, reflecting the 

interaction of the beads with the anisotropic actin network.  Beads near the nucleation lines 

displayed clear directed movements towards the center of the pattern (Fig. 2E and F), as also 

observed with myosin V.  However, although there were signs of persistent diffusion along the 

X-axis and of sub-diffusion along the Y-axis, as observed with myosin-V-coated beads, the 

signatures of directed movements were weak in our ensemble analysis of myosin-II-coated 

beads.  At long times (𝜏𝜏> 100s), the mean squared displacement along the X-axis clearly 

saturated to a constant value: the beads were effectively trapped; confinement was not observed 

along the Y-axis, resulting in larger mean squared displacements along this axis than along the 

X-axis. With beads passivated by BSA, the mean squared displacement displayed anisotropic 

diffusion resembling that observed with myosin-II-coated beads, but with the important 

difference that no confinement was observed at long times for passive beads (Fig. 3C).  In 

return, the saturation of the mean squared displacement that we observed with myosin-II-coated 

beads betrayed the activity of the motors, which strived to maintain the beads near the center 

of the network. 

Spatial diffusion and drift profiles.   Because the density and net polarity of the actin network 

varied with position along the X-axis, the transport properties of the beads were expected to be 

inhomogeneous.  Spatial heterogeneities were averaged in the calculation of the mean-squared 

displacements (Fig. 3), which corresponded to ensemble averages of bead displacements, 

irrespective of their position in the network.  To reveal the effects of the actin architecture on 

transport, we determined the local diffusion coefficient 𝐷𝐷(𝑋𝑋) and drift velocity 𝑉𝑉(𝑋𝑋) of the 

beads as a function of position 𝑋𝑋 (Methods; Fig. 4).  We observed that the drift velocity of the 

beads varied like the net polarity of the network (Fig. 1C, inset): the bead velocity saturated to 

a maximal (absolute) value near the nucleation line and declined (in absolute value) as the beads 

approached the center, changing sign there (Fig. 4A and D).  In addition, the local diffusion 

coefficient displayed a local minimum near the center, where there was less actin (Fig. 4B and 

E). 

Remarkably, the measured steady-state distributions of bead position (dashed lines in 

Fig. 4C and F) was well described by that predicted from a diffusion-drift process (𝑃𝑃𝐷𝐷𝐷𝐷) with 

the measured velocity and diffusion profiles (solid lines in Fig. 4C and F).  In a diffusion-drift 

process, a convective flux 𝐽𝐽𝐶𝐶 = 𝑃𝑃𝐷𝐷𝐷𝐷𝑉𝑉 transporting the beads towards the center of the network 

competes with a diffusive flux 𝐽𝐽𝐷𝐷 = −𝐷𝐷 𝑑𝑑𝑃𝑃𝐷𝐷𝐷𝐷/𝑑𝑑𝑋𝑋 that homogenizes the bead distribution.  At 

steady state, because there is no apparent collective directional movement, the total flux 𝐽𝐽𝐶𝐶 +
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𝐽𝐽𝐷𝐷 = 0, which yields 𝑃𝑃𝐷𝐷𝐷𝐷(𝑋𝑋) = 𝑃𝑃0 exp �∫ 𝑉𝑉(𝑢𝑢)/𝐷𝐷(𝑢𝑢)𝑋𝑋
0  𝑑𝑑𝑢𝑢�.  Because 𝑉𝑉(𝑋𝑋) is odd and 𝐷𝐷(𝑋𝑋) 

is even, the distribution 𝑃𝑃𝐷𝐷𝐷𝐷(𝑋𝑋) shows a peak at 𝑋𝑋 = 0.  The variance of bead position 

associated with a Gaussian approximation to the peak is given by 𝜎𝜎𝐷𝐷𝐷𝐷2 ≅ 𝐷𝐷(0)/𝑉𝑉′(0), where 

the prime corresponds to a spatial derivative.  Thus, the steeper the velocity gradient and the 

lower the diffusion, the narrower the distribution.  Notably, as the result of their larger speeds, 

myosin-II-coated beads displayed steeper gradients 𝑉𝑉′(0) than myosin-V-coated beads 

(Fig. 4G).  However, diffusion coefficients 𝐷𝐷(0) were also much larger with myosin II than 

with myosin V (Fig. 4H).  The standard deviation 𝜎𝜎 of bead position characterized the precision 

of bead positioning.  We found 𝜎𝜎MV = 3.3 ± 0.6 µm with myosin V and 𝜎𝜎MII = 4.1 ± 0.3 µm 

with myosin II (mean±SEM; n = 7 experiments; Fig. 4I).  Thus, active bead positioning at the 

center of the network was more precise with myosin V, by 25%.  Note that these standard 

deviations are significantly smaller, by a factor two or more, than the characteristic length 𝜆𝜆 of 

the net-polarity gradient.  Thus, bead positioning by motors was more precise than the 

lengthscale that characterizes structural heterogeneities of the actin network. 

3-state model of bead transport.   To understand the physical origin of active bead positioning 

in antiparallel filament networks, we worked within the framework of a 3-state model (6).  A 

bead could be in one of the following three states (Fig. 5A): (state 1) attached to a filament 

oriented in the positive direction and moving along this filament at velocity +𝑣𝑣, (state 2) 

attached to a filament oriented in the negative direction and moving along this filament at 

velocity – 𝑣𝑣, or (state 3) detached and freely diffusing with a diffusion coefficient 𝐷𝐷∅.  We 

considered a uniform detachment rate constant 𝑘𝑘𝑂𝑂𝑂𝑂𝑂𝑂 from the attached states 1 and 2 to the 

detached state 3.  In contrast, attachment rate constants depended on the local density 𝜌𝜌±(𝑋𝑋) of 

filaments of any given polarity: 𝑘𝑘3→1(𝑋𝑋) = 𝑘𝑘𝑂𝑂𝑂𝑂 𝜌𝜌+(𝑋𝑋) and 𝑘𝑘3→2(𝑋𝑋) = 𝑘𝑘𝑂𝑂𝑂𝑂 𝜌𝜌−(𝑋𝑋).  Thus in 

the model, beads are more likely to attach to a filament of a given polarity when the 

corresponding filament density is larger than the density of filaments with the opposite polarity; 

this ingredient is key, because it provides a mechanism for sensing the net polarity of the 

network.  Within this framework, we define two characteristic timescales: the mean time 𝜏𝜏𝑂𝑂𝑂𝑂 =

1 𝑘𝑘𝑂𝑂𝑂𝑂𝑂𝑂⁄  spent in an attached state (state 1 or 2) and the mean time 𝜏𝜏𝑂𝑂𝑂𝑂𝑂𝑂 = 1 (𝑘𝑘𝑂𝑂𝑂𝑂 𝜌𝜌0)⁄  spent in 

the detached state (state 3), were 𝜌𝜌0 = 𝜌𝜌+(0) + 𝜌𝜌−(0) is the total actin density at the center 

(𝑋𝑋 = 0) of the network.  Note that the mean time spent in the detached state depends on the 

total actin concentration and thus on position in the network; we use here as a reference the 

value of this characteristic time at the center, 𝜏𝜏𝑂𝑂𝑂𝑂𝑂𝑂.   We also define two characteristic 
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lengthscales: the mean distance ℓ𝐵𝐵 = 𝑣𝑣𝜏𝜏𝑂𝑂𝑂𝑂 by which a bead travels along a filament in an 

attached state—the ballistic length—and the distance ℓ𝐷𝐷 = �𝐷𝐷∅ 𝜏𝜏𝑂𝑂𝑂𝑂𝑂𝑂 that controls the mean-

squared displacement of a bead in the detached state as a result of Brownian motion—the 

diffusion length.  In practice, we used exponential density profiles 𝜌𝜌±(𝑋𝑋) =

(𝜌𝜌0 2⁄ ) exp(∓𝑋𝑋 𝜆𝜆⁄ ), as observed in experiments (Fig. 1C).   

We simulated the stochastic dynamics of beads—called ‘model beads’ in the following (SI 

Appendix); at the start of the simulations, the model beads were randomly distributed in the 

antiparallel network.  With two lengthscales and two timescales, we could operate in four 

distinct regimes of motion (SI Appendix, Fig. S3).  In the regime of high attachment rates 

(𝜏𝜏𝑂𝑂𝑂𝑂 ≫ 𝜏𝜏𝑂𝑂𝑂𝑂𝑂𝑂), model beads are expected to move at velocity ±𝑣𝑣 near the edges of the 

antiparallel network, where |𝑋𝑋| ≅ 𝐿𝐿/2 ≫ 𝜆𝜆 and the net polarity Φ(𝑋𝑋) ≅ ±1.  However, the 

ensemble-averaged bead velocities that were measured at these positions in the antiparallel 

network (Fig. 4A and D) or at all positions in parallel networks (SI Appendix, Fig. S1) were 

almost one order of magnitude smaller than the natural velocity of the motors, as estimated in 

standard gliding assays (1).  To account for this observation, we had to ensure in our simulations 

that the attachment probability of a bead was low, on the order of 10%, and thus choose 𝜏𝜏𝑂𝑂𝑂𝑂 ≪

𝜏𝜏𝑂𝑂𝑂𝑂𝑂𝑂.  With this choice, we were able to reproduce (Fig. 5C) the active funneling observed with 

myosin-coated beads (Fig. 2B and F) when the model beads in our simulations traveled 

comparable distances in the attached and detached states (ℓ𝐵𝐵~ℓ𝐷𝐷).  In this regime, the steady-

state distribution of the model beads was peaked at the center of the network (Fig. 5C and F).  

Strikingly, by continuously increasing ℓ𝐵𝐵 while keeping ℓ𝐷𝐷 at a fixed value, we found that the 

standard deviation of model-bead position at steady state first decreased and reached a 

minimum at ℓ𝐵𝐵 ≅ 1.65 ℓ𝐷𝐷, corresponding to an optimum of centering precision (Fig. 5H-I), 

before increasing again. 

A hierarchy of lengthscales emerged naturally in the model: 𝐿𝐿 > 𝜆𝜆 > ℓ𝐵𝐵~ℓ𝐷𝐷.  The mean-

actin length 𝜆𝜆, which sets the lengthscale of the net-polarity gradient of the antiparallel network, 

had to be smaller than the size 𝐿𝐿 of the network to ensure that the network was structurally 

inhomogeneous.  Importantly, the condition 𝜆𝜆 > ℓ𝐵𝐵 ensured that the bead trajectories in the 

attached state were short enough to sample the net-polarity gradient from detachment-

reattachment events.  Finally, centering required that the beads did not diffuse too far in the 

detached state (ℓ𝐵𝐵~ℓ𝐷𝐷; Fig. 5 and SI Appendix, Fig. S4) in order to keep a directionality of 

motion towards the center.   
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Provided that the density of the network varies slowly with position (𝜆𝜆 ≫ ℓ𝐵𝐵, ℓ𝐷𝐷), we could 

calculate analytically an effective drift velocity 𝑉𝑉𝐸𝐸𝑂𝑂𝑂𝑂(𝑋𝑋) and an effective diffusion coefficient 

𝐷𝐷𝐸𝐸𝑂𝑂𝑂𝑂(𝑋𝑋) for the model beads (SI Appendix, section 3).  In the experimentally-relevant limit of 

frequent detachment (𝛼𝛼 = 𝜏𝜏𝑂𝑂𝑂𝑂 𝜏𝜏𝑂𝑂𝑂𝑂𝑂𝑂⁄ ≪ 1), we found 𝑉𝑉𝐸𝐸𝑂𝑂𝑂𝑂(𝑋𝑋) ≅ −𝑣𝑣 𝛼𝛼 sinh(𝑋𝑋 𝜆𝜆⁄ ) and 

𝐷𝐷𝐸𝐸𝑂𝑂𝑂𝑂(𝑋𝑋) ≅ 𝐷𝐷∅ + (ℓ𝐵𝐵2 𝜏𝜏𝑂𝑂𝑂𝑂⁄ ) α cosh(𝑋𝑋 𝜆𝜆⁄ ).  Notably, over a broad range of parameter values 

(0.1 < ℓ𝐵𝐵 ℓ𝐷𝐷⁄ < 10; SI Appendix, Fig. S6), the steady-state distribution of model-bead 

position was well approximated by that given by a diffusion-drift process using these velocity 

and diffusion profiles: 𝑃𝑃th(𝑋𝑋) ≅ 𝑃𝑃0 exp �∫ [𝑉𝑉𝐸𝐸𝑂𝑂𝑂𝑂(𝑥𝑥)/ 𝐷𝐷𝐸𝐸𝑂𝑂𝑂𝑂(𝑥𝑥)] 𝑑𝑑𝑥𝑥𝑋𝑋
0 �.  As in experiments, this 

distribution peaked in the center (𝑋𝑋 = 0): the active transport process brought the beads, on 

average, to the position where the net polarity of the network vanishes.  Using a Gaussian 

approximation of the peak (SI Appendix, Eq S13), we estimate the variance of model-bead 

position 

𝜎𝜎th2 ≅ ℓ𝐵𝐵(1 + (ℓ𝐷𝐷 ℓ𝐵𝐵⁄ )2) Φ′(0)⁄ ,   (1) 

where the polarity gradient at the center Φ′(0) = 1/𝜆𝜆 is given by the mean filament length.  In 

qualitative agreement with numerical estimates (Fig. 5H-I), the relation between the variance 

𝜎𝜎th2  and the ballistic length ℓ𝐵𝐵 (Eq. 1) shows a minimum; the minimal variance occurs here at 

ℓ𝐵𝐵 = ℓ𝐷𝐷, where 𝜎𝜎th2 (ℓ𝐵𝐵 = ℓ𝐷𝐷) = 2ℓ𝐵𝐵/ Φ′(0).  Clearly, at fixed ℓ𝐵𝐵, 𝜎𝜎th2  is minimal at ℓ𝐷𝐷 = 0. 

By fitting the theory to our experiments, we were able to get numerical values for the 

parameters in the model.  The actual value ℓ𝐷𝐷 ℓ𝐵𝐵⁄  is uncertain but our theory indicates that this 

ratio must display an upper bound (~4 for myosin V, ~1.5 for myosin II; see SI Appendix, 

section 3) to account for the observed minimum of the effective diffusion coefficient at the 

center of the network (Fig. 4B and E; SI Appendix Fig. S5D).  In the limit of small ℓ𝐷𝐷, 

parameter values are listed in Table 1.  In particular, we inferred the ballistic length ℓ𝐵𝐵 = 𝜎𝜎2 𝜆𝜆⁄  

from the measured values of the variance 𝜎𝜎 of bead position (Fig. 4I) and of the mean actin 

length 𝜆𝜆 (Fig. 1B).  We found ℓ𝐵𝐵 = 0.77 ± 0.39 µm (n = 11) for myosin V that was smaller 

than the value ℓ𝐵𝐵 = 1.25 ± 0.47 µm (n = 16) for myosin II, as required by Equation 1 (with 

ℓ𝐷𝐷 ℓ𝐵𝐵 ≅ 0⁄ ) to ensure that bead positioning in a given actin network was more precise for with 

myosin V (Fig. 4).  Near the optimal precision of positioning (ℓ𝐷𝐷 ℓ𝐵𝐵 ≅ 1⁄ ), the ballistic length 

is half the value estimated when passive diffusion is ignored (ℓ𝐷𝐷 ℓ𝐵𝐵 ≅ 0⁄ ). 

Irrespective of the actual value of ℓ𝐷𝐷 ℓ𝐵𝐵⁄ , the model predicts that the precision of bead 

positioning (Eq. 1) should not depend on the size (L) of the actin network.  This prediction was 

actually confirmed experimentally (SI Appendix, Fig. S2A).  In addition, the standard deviation 

𝜎𝜎 of bead position is expected to depend on the total actin density 𝜌𝜌0 at the center, as can be 
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seen by rewriting Equation 1 as 𝜎𝜎th2 ≅ 𝜆𝜆ℓ𝐵𝐵 (1 + 𝜌𝜌𝐶𝐶 𝜌𝜌0⁄ ), in which 𝜌𝜌𝐶𝐶 =

𝐷𝐷∅ (ℓ𝐵𝐵2𝑘𝑘𝑂𝑂𝑂𝑂) = 𝜌𝜌0 (ℓ𝐷𝐷 ℓ𝐵𝐵⁄ )2⁄  corresponds to the critical actin density at which ℓ𝐷𝐷 = ℓ𝐵𝐵.  In the 

regime where the actin density is low enough (𝜌𝜌0 ≪ 𝜌𝜌𝐶𝐶), the variance of bead position ought to 

be inversely proportional to the actin density 𝜌𝜌0.  Conversely at high actin densities (𝜌𝜌0 ≥ 𝜌𝜌𝐶𝐶), 

the positioning precision should only weakly depend on the total actin density 𝜌𝜌0.  Increasing 

the concentration of monomeric actin in the polymerization mix from 2 µM to 5 µM had no 

significant effect on the measured value of 𝜎𝜎 (SI Appendix, Fig. S2B), suggesting that the 

condition 𝜌𝜌0 ≥ 𝜌𝜌𝐶𝐶 was satisfied and therefore that ℓ𝐵𝐵 ≥ ℓ𝐷𝐷 in our experiments.  

Discussion 

In this paper, we have presented a minimal in-vitro assay to study active cargo transport in 

mixed-polarity networks of cytoskeletal filaments.  Focusing on the acto-myosin system, we 

found that myosin-coated beads can sense the net polarity of the network, which provides a cue 

for directed movements.  Accordingly, the velocity of bead motion varied with the net actin 

polarity and went to zero at positions where the polarity vanished (Inset of Fig. 1C, Fig. 4A and 

D).  As a result, the beads were actively trapped at these positions, providing a general 

mechanism of cargo positioning in mixed-polarity networks that does not depend on specific 

molecular recognition between a cargo and its target (21). 

At steady state, the myosin-coated beads were confined within a region (Fig. 4) that was 

significantly smaller than the characteristic lengthscale associated with the net-polarity gradient 

of the antiparallel network, which was here set by the mean actin length 𝜆𝜆 (Fig. 1).  Theoretical 

analysis via a coarse-grained model revealed that positioning depends not only on the steepness 

of the net-polarity gradient, but also on an interplay between the ballistic length ℓ𝐵𝐵 and the 

diffusive length ℓ𝐷𝐷 of the myosin-coated beads (Eq. 1).  The ballistic length corresponds to the 

mean length that the myosin-coated beads travel in an attached state to actin before detaching 

and in turn probe the net polarity of the network.  As long as ℓ𝐵𝐵 > ℓ𝐷𝐷, the shorter the ballistic 

length, the finer the sampling of the net-polarity profile of the network, and thus the more 

precise the positioning (Fig. 5).  However, the ballistic length cannot be too short for precise 

positioning: diffusive transport becomes limiting when ℓ𝐵𝐵 < ℓ𝐷𝐷.  Our model suggests that 

precise positioning emerges because the ballistic length ℓ𝐵𝐵 (~1µ𝑚𝑚) is shorter than the mean-

actin length 𝜆𝜆 (~8 µ𝑚𝑚).  Within our theoretical framework, active transport is described as a 

stochastic sequence of processive runs and diffusive searches that results in biased random walk 

towards a direction dictated by the net-polarity gradient.   
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An even simpler theoretical approach had been previously developed to describe dynein-

driven transport in the mixed-polarity network of microtubules found in dendrites (7).  

However, this earlier work ignored diffusion in a detached state of the cargo and thus cannot 

describe the condition for optimal bead positioning that we reveal here (Fig. 5H-I).  Our 

description extends a theory developed originally to capture endosomal transport during the 

asymmetric division of sensory organ precursors in Drosophila (6); we here consider slowly 

varying density profiles of antiparallel filament networks instead of overlapping homogeneous 

networks of opposite polarities.   

Excluded-volume interactions between motor particles can lead to traffic jams, which shape 

the particle distribution at steady state (22).  However, in our experiments, the surface fraction 

of the network occupied by the myosin-coated beads  was so low (e.g. ~10-4 for the myosin-II 

coated beads shown in Fig. 2G) that we could safely neglect steric bead interactions.  

Unidirectional transport has also been extensively studied in the context of cylindrical 

organelles such as filopodia or stereocilia.  There, predicted motor distributions are critically 

controlled by boundary conditions, due to the influx of motors at the open end of the half-closed 

tube describing the geometry of those systems (23-25).  In our experiments, beads instead enter 

the network by sedimentation from the bulk, in a direction perpendicular to the actin sheet.  The 

sedimentation flux is uniform and very small (e.g. 0.025 bead/sec distributed over an area 

40 µm × 350 µm of the actin network in the experiment corresponding to data shown in Fig. 2F, 

G and H).  In addition, the width of the experimental bead distribution is one order of magnitude 

smaller than the width of the actin network (L = 40µm) and is vanishingly small at the 

boundaries (nucleation lines; Fig. 2).  Thus at the edges, the bead influx along the axis of the 

filaments must be small. 

Myosin-coated beads could in principle interact with multiple filaments of mixed polarity, 

resulting in a tug-of-war (26, 27).  However, a tug-of-war is inherently unstable, resulting in bi-

directional movements and bead switching between filaments (5, 13).  Although we did not 

explicitly account for bead interaction with multiple filaments in our description of transport 

(SI Appendix), we observed that positioning was more precise in our simulations (SI Appendix, 

Fig. S7) when the beads were allowed to switch directly between the two attached states (States 

1 and 2; Fig. 5A).  In this case, analytical calculations in the small-diffusion limit 

(𝐿𝐿 > 𝜆𝜆 > ℓ𝐵𝐵 ≫ ℓ𝐷𝐷) revealed that the variance of the steady-state distribution of bead position 

was also given by Equation 1, albeit with a renormalized ballistic length ℓ𝐵𝐵eff = 𝑣𝑣 𝜏𝜏ONeff  (SI 

Appendix).  With direct filament switching, the ballistic length was reduced.  This is because 
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the effective mean time 𝜏𝜏ONeff  of a run in a given direction when the beads are attached to the 

filaments—the persistence time—is reduced by direct filament switching.  Note that in the 

absence of switching, the persistence time is simply given by the mean attachment time 1 𝑘𝑘off⁄ .  

The beads may also sense the net polarity of the network by switching only, i.e. without ever 

detaching from the filaments, and thus position themselves at the center of the antiparallel 

network (SI Appendix, Fig. S8).  However, this mechanism would produce much steeper 

velocity gradients that those reported here and the diffusion profile would display a maximum 

at the center, in contradistinction to our observations (Fig. 4B and E; SI Appendix, Fig. S9). 

We studied active transport of beads coated either with myosin Va or skeletal heavy-mero 

myosin II.  Both types of motors are double-headed molecular motors with movements directed 

towards the barbed ends of the actin filaments, thus away from the nucleation lines of actin 

polymerization (Fig. 1).  However, their biophysical properties, as well as their functions in 

vivo, differ strongly (28).  Myosin V is a processive molecular motor involved in intracellular 

transport (29), whereas skeletal myosin II is a non-processive motor involved in muscle 

contraction, not in cargo transport.  Yet, both types of myosin-coated beads displayed similar 

transport behaviors down the net-polarity gradients of antiparallel actin networks, resulting in 

bead positioning (Fig. 2).  Our data adds to the available evidence (30-32) that non-processive 

motor molecules, here myosin II, can be turned into a processive transporter if the motors work 

as a group on the cargo. 

Positioning was more precise with beads coated with processive myosin-V than with non-

processive myosin-II motors.  Local analysis of bead velocity and diffusion revealed that the 

positioning could be described by a diffusion-drift process, for which the standard deviation of 

bead position is set by the ratio of an effective diffusion coefficient and an effective velocity 

gradient (Fig. 4).  The velocity gradient was larger by a factor ~1.5 with myosin II than with 

myosin V.  However, the effective diffusion coefficient was larger by a bigger factor (~2.2) 

with myosin II, resulting in less precise cargo positioning with this motor type.  Our 3-state 

model of active bead transport reveals that the key motor property that controls positioning 

precision (Eq. 1) is actually the ballistic length ℓ𝐵𝐵 = 𝑣𝑣 𝑘𝑘OFF⁄ , which is given by the ratio of the 

bead velocity 𝑣𝑣 in an attached state to actin and the bead detachment rate 𝑘𝑘OFF.   

Although myosin-II and myosin-V motors have been extensively characterized at the single 

molecule level (28), beads are each transported by a group of motors.  How multiple motor 

molecules coordinate or impede their movements to collectively mediate cargo motion remains 

unclear (11, 33).  Relating the stochastic properties of bead dynamics to known properties of 
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single motors is an avenue for future research but is beyond the scope of this work.  Generally, 

increasing the number of motors on a bead is expected to increase the ballistic length ℓ𝐵𝐵 (32).  

As already discussed above, whether or not increasing ℓ𝐵𝐵 results in more precise positioning 

actually depends on how the ballistic length compares with the diffusive length ℓ𝐷𝐷 (Fig. 5). 

Our analysis of active transport indicates that bead positioning not only depends on intrinsic 

motor properties but also on the architecture of the actin network (Eq. 1).  In particular, the 

lower the mean actin length 𝜆𝜆, and thus the steeper the net-polarity gradient (Fig. 1C, inset), the 

sharper the positioning of the beads at the center of the antiparallel network.  This condition 

holds true as long as the ballistic length ℓ𝐵𝐵 remains smaller than 𝜆𝜆 to ensure centering (i.e. 𝜎𝜎 <

𝜆𝜆).  In addition, the precision of bead positioning can depend on the total actin density, but only 

at densities that are low enough that 𝜌𝜌0 ≪ 𝜌𝜌𝐶𝐶 = 𝐷𝐷∅ (ℓ𝐵𝐵2𝑘𝑘𝑂𝑂𝑂𝑂)⁄ .  In this case, the higher the actin 

density, the more precise the positioning.  At high actin densities (𝜌𝜌0 ≥ 𝜌𝜌𝐶𝐶), positioning instead 

becomes independent on the total actin density, as observed in our experiments (SI Appendix, 

Fig. S2B).  Altogether, our results emphasize the interplay between intrinsic motor properties 

and the architecture of the actin network for active positioning of myosin-transported cargoes. 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 8, 2019. ; https://doi.org/10.1101/512863doi: bioRxiv preprint 

https://doi.org/10.1101/512863


14 
 

Materials and Methods 

Micro-patterning of an actin nucleation-promoting factor (pWA).   Details of the micro-

patterning protocol have been published elsewhere (18, 19).  In short, glass coverslips were 

oxidized with an oxygen plasma for 3 min and incubated with 0.1 mg/ml Poly(L-lysine)-graft-

poly(ethylene glycol) (PLL-g-PEG; Jenkem Technology) in 10 mM HEPES at pH = 7.4 for 

30 min.  The passivated surface was exposed to deep UV light (wavelength: 180 nm; UVO 

Cleaner Unit 342, Jelight Company INC) for 5 min through a transparent micropattern that was 

drawn on a chromium synthetic-quartz photomask (Toppan Photomasks).  The coverslips were 

then incubated with 1 µM pWA in a buffer containing 50 mM KCl, 1 mM MgCl2, 1 mM EGTA 

and 10 mM imidazole-HCl (pH = 7.8) for 10 min.  In our experiments, the pattern was typically 

composed of seven parallel lines that were 3-µm wide, 350-µm long and spaced by 40 µm.   

Actin polymerization.   To induce actin polymerization from surface micro-patterns of the 

nucleation-promoting factor pWA, 4 µM globular actin (Tebu-Bio), 12µM profilin and 10 nM 

Arp2/3 complex (Tebu-Bio) were mixed in a buffer containing 10 mM imidazole-HCl 

(pH = 7.8), 50 mM KCl, 1 mM MgCl2, 2.6 mM Na2ATP, 56 mM dithiothreitol, 0.1 mg/ml 

glucose, 3.7 Units/ml catalase, 37.3 Units/ml glucose oxidase and 0.4% (w/w; macrocospic 

viscosity 800 cP) methylcellulose.  To visualize actin filaments, 20% of the monomers were 

labelled with a fluorophore (Alexa568; Life Technologies).  A Peltier element and feedback 

control (Warner Instruments) ensured that experiments were performed at a temperature of 

27°C.  A surface micropattern of seven parallel actin-nucleation lines resulted in six identical 

antiparallel networks of overlapping actin filaments. 

Bead functionalization with myosins.   To study cargo transport in actin networks, we added 

functionalized beads to the actin-polymerization solution described in the preceding section.  

We used polystyrene beads of 200 nm in diameter (Life Technologies).  A 1-µl volume of a 

bead stock at 0.1% (w/w), corresponding to ~2.3×108 beads, was added to 24 µl of a buffer 

containing 80 mM KCl, 10 µM EDTA, 1 mM EGTA and 10 mM imidazole-HCl.  The bead 

suspension had a concentration of 40 µg/ml.  The beads were washed by centrifuging the 

solution at 20,000 g for 30 min at 4°C and by then replacing 19 µl of the supernatant with the 

same volume of buffer.  After dispersing the beads in the solution by manual trituration 

followed by sonication during 30 s, we added 3 µl of a myosin solution at 0.44 µM and allowed 

the myosin molecules to absorb onto the surface of the beads for an incubation time of 10 min.  

Finally, a volume of 3 µl of BSA at 10% (w/w) was added to passivate the portion of the beads’ 
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surface that was not occupied by the myosin.  The initial concentration of the myosin in the 

solution was 47 nM.  For bead-transport studies, the concentration of functionalized beads was 

adjusted by dilution to ~6×105 µl-1. 

We used either of two types of myosin molecules.  First, recombinant double-headed myosin 

Va missing the C-terminal globular tail were produced as described (34).  Second, heavy-mero 

myosin II, purified from rabbit pectoral muscle, was kindly provided by Matthias Rief’s group 

(TUM, Germany).  In control experiments with passive beads, we omitted to add myosin and 

instead fully passivated the bead surface with BSA.   

Microscopic observation.   Our samples were viewed through a ×20 objective (NA=0.75) of 

a spinning-disk confocal microscope (Eclipse Ti, Nikon); this low magnification allowed us to 

record hundreds to thousands of bead trajectories.  We recorded time-lapse videos with a CCD 

camera (CoolSNAp HQ2, Photometrics) at a framerate of 3 s.  In the sample plane, the pixel 

size of the camera was 322.5 nm × 322.5 nm.  Time-lapse recordings started 10 min after the 

injection of the polymerization mix into the flow chamber and lasted for 20 min.  Note that the 

functionalized beads were already present in the solution used for actin polymerization at the 

initiation of the polymerization process.  For the characterization of the actin-network 

florescence profiles (Fig. 1), we used a ×40 objective (NA=0.75).   

Single-particle tracking.   We automatically measured bead trajectories using TrackMate (35), 

a single-particle tracker developed as a plugin for the image-processing software Image J 

(National Institute of Health, Bethesda, USA).  Bead tracking was performed with a time 

resolution of 3 s, corresponding to the framerate of our time-lapse videos.  An experiment 

produced up to 5,000 trajectories.  We filtered the data in two ways.  First, we cut the portions 

of any trajectory for which the standard deviation of the bead position remained below 0.1 µm 

during at least 45 s.  Some beads took several minutes to start moving after they appeared in 

the field of view, or showed long pauses in their trajectory before moving again, or stopped 

until the end of the video.  Any given trajectories could thus be parsed in 2‒5 tracks per 

trajectory during a 20-min recording.  Second, we retained only the tracks that explored a region 

that could be inscribed in a disk with a diameter larger than 2 µm, thus rejecting shorter tracks.  

This procedure rejected about half of the available tracks.  Tracks were typically collected from 

six identical lanes of the surface micropattern (see above), corresponding each to an area 

350 µm × 40 µm.  We assumed translational invariance of the actin network in a direction 

parallel to the nucleation lines as well as periodicity in the perpendicular direction (defined 
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respectively as Y- and X-axis, see Fig. 1).  These features allowed for data folding as well as 

spatial averaging. 

In our experiments, there was a slow continuous flux of beads from the bulk to the plane of 

observation within the actin network.  Different beads thus appeared at different times on the 

actin network.  Any given frame of a time-lapse video in turn showed a mix of ‘old’ beads that 

were given enough time to reach steady state and of ‘young’ beads, mainly positioned near the 

nucleation lines, which were en-route towards the center of the antiparallel actin network 

(Fig. 2).  To estimate the steady-state distribution of bead positions, we scanned all the tracks 

of the mobile beads to select those (~100 tracks) that lasted at least 200 s; each bead position 

𝑋𝑋�𝑡𝑡 = 𝑇𝑇EQ� was then registered at time 𝑡𝑡 = 𝑇𝑇EQ = 200 s after the start of its track and we 

computed the corresponding distribution 𝑃𝑃M(𝑋𝑋).  The duration 𝑇𝑇EQ corresponds to the travel 

time of a bead moving at a mean velocity 0.1 µm/s from a nucleation line to the center of an 

antiparallel network if the spacing between nucleation lines is 40 µm.  To allow for easy 

comparison of the bead trajectories along the X-axis (Fig. 2B, F and J), the time origin of each 

track was reset to the time were the bead first appeared on the time-lapse video.   

Profiles of drift velocity and diffusion coefficient.   We computed the profiles of the local 

drift velocity V(X) and of the local diffusion coefficient D(X) of the beads as a function of bead 

position X.  To estimate V(X) and D(X), we measured the distribution of displacements ∆𝑋𝑋𝑖𝑖(𝑋𝑋) 

during a fixed time-interval τ of all the beads 𝑖𝑖 = 1, … ,𝑁𝑁𝑋𝑋 that are found during their trajectory 

at a given position X with a precision of 0.1 µm and computed the mean value 〈∆𝑋𝑋〉 =

(1/𝑁𝑁𝑋𝑋)∑ ∆𝑋𝑋𝑖𝑖 = 𝑉𝑉(𝑋𝑋) 𝜏𝜏𝑂𝑂𝑋𝑋
1  and its variance 〈(∆𝑋𝑋)2 − 〈∆𝑋𝑋〉2〉 = 2𝐷𝐷(𝑋𝑋) 𝜏𝜏.  Knowing the 

profiles V(X) and D(X), we calculated the probability density 𝑃𝑃𝐷𝐷𝐷𝐷(𝑋𝑋) =

𝑃𝑃0 exp �∫ 𝑉𝑉(𝑥𝑥) 𝐷𝐷(𝑥𝑥)⁄  d𝑥𝑥𝑋𝑋
0 � of bead positions expected from a diffusion-drift process at steady 

state (see main text).  In practice, we used τ = 12 s; we checked that the estimated probability 

density 𝑃𝑃𝐷𝐷𝐷𝐷(𝑋𝑋) remained nearly unchanged for variations of τ in the range 3-24 s.  Over a 

timescale τ, the beads moved on average by less than 100 nm and the net polarity of the actin 

network (Fig. 1C, inset) varied by less than 2%.  The calculated distribution 𝑃𝑃𝐷𝐷𝐷𝐷(𝑋𝑋) was 

confronted to the bead distribution 𝑃𝑃M(𝑋𝑋) measured directly by the procedure described in the 

preceding paragraph (Fig. 4C and F).  
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Figure 1:  Bi-dimensional network of antiparallel actin filaments in vitro.   A:  Fluorescence 

imaging (top) and schematic representation (bottom) of the actin architecture.  Actin filaments 

grew from a surface pattern of parallel lines (green) coated with a nucleation-promoting-factor 

of actin polymerization.  The filaments are oriented along axis X, thus perpendicular to the 

nucleation lines (axis Y), with their barbed ends located away from the lines.  An antiparallel 

network of overlapping actin filaments was established between neighboring nucleation lines.  

The line at the right end of the pattern has no neighbor on its right-hand side and thus provides 

a parallel network of filaments.   B:  Actin density profile for the parallel network.  This semilog 

plot shows that the profile is well described by an exponential function (red line).  The inverse 

absolute slope of the curve corresponds to the mean length, here λ = 7 µm, of the actin filaments 

in the network.   C:  Actin density profile for the antiparallel network.  The profile is well 

described (red line) by the sum of two mirror-symmetric exponential with the same 

characteristic length as that obtained in B.  In B and C, the nucleation lines are marked by the 

green shaded areas. Inset: The net polarity 𝜙𝜙(𝑋𝑋) = tanh(𝑋𝑋 𝜆𝜆⁄ ) of the antiparallel network is 

plotted as a function of position X, where λ represents the mean-actin length measured in A; 

the net polarity is null at the center of the network, where 𝑋𝑋 = 0.  Nucleation lines are spaced 

by 40 µm and have a width of 3 µm.  The actin density profiles were measured after 30 min of 

polymerization.    
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Figure 2:  Bead transport and steady-state distribution in antiparallel actin networks.  

Beads were coated with molecular motors (myosin Va in A-D; myosin II HMM in E-H) or 

passivated with BSA (I-L).   A, E and I:  Bead trajectories within the plane of the actin network.  

Red (blue): trajectories with a net positive (negative) movement along axis X.  Motor coated 

beads (A and E) displayed a directed movement towards the midline of the pattern (X=0), where 

they accumulated.  Instead, passive beads (I) showed a diffusive exploration between the two 

nucleation lines.   B, F and J:  Bead position along the axis (X) of the actin filaments as a 

function of time.  Most beads take less than 200 s to reach the center of the network.   C, G and 

K:  Bead positions in the network 30 min after actin polymerization was initiated.  Because 

they are too small (200-nm diameter) to be clearly visualized, the beads are here represented by 

1.2-µm disks, corresponding to a fivefold increase from their actual size.   D, H and L:  

Distribution of bead positions along axis X at steady state (solid line) and when the beads where 

first detected (dashed line).  The nucleation lines are marked by the green shaded areas.  The 
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surface fraction of the network occupied by the beads was maximal at the center but remained 

smaller than 5·10-4, corresponding at most to one bead every 60 µm2.  Because of data folding 

(see Methods) and bead-size magnification, the surface fraction occupied by the beads in panels 

C, G and K is 1,512-fold that measured in reality. 
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Figure 3:  Global analysis of bead transport.  The mean squared displacement (MSD) along 

the X-axis (i.e. parallel to the actin filaments; solid black lines) and along the Y-axis (i.e. 

perpendicular to the actin filaments; dotted black lines) is plotted as a function of the lag time 

(𝜏𝜏) for myosin-V-coated beads (A), for myosin-II-coated beads (B), and for BSA-coated beads 

(C).  In all cases but for myosin-V coated beads, the relation is well described by MSD(𝜏𝜏) =

2𝐷𝐷𝜏𝜏 for 𝜏𝜏 < 100 s, corresponding to a diffusive one-dimensional transport with a diffusion 

coefficient 𝐷𝐷.  Fits to the data (cyan) yield: 𝐷𝐷𝑋𝑋 = 0.062±0.004 µm2/s (𝜏𝜏 < 10 s) and 

𝐷𝐷𝑌𝑌 = 0.036±0.002 µm2/s (n = 205) for myosin-V coated beads, 𝐷𝐷𝑋𝑋 = 0.119±0.001 µm2/s and 

𝐷𝐷𝑌𝑌 = 0.054±0.001 µm2/s (n= 973) for myosin-II coated beads, and 𝐷𝐷𝑋𝑋 = 0.129±0.002 µm2/s 

and 𝐷𝐷𝑌𝑌 = 0.052±0.001 µm2/s (n = 538) for BSA-coated beads.  At long times (𝜏𝜏 > 100 s), the 

mean squared displacement of myosin-II coated beads along the X-axis saturates (dashed line), 

revealing confinement, but not along the Y-axis.  Along the X-axis, the relation MSD(𝜏𝜏) for 

myosin-V coated beads is superlinear for 𝜏𝜏 ≤ 50 s, corresponding to persistent diffusion with 

MSD(𝜏𝜏) ∝ 𝜏𝜏1.23 (power-law fit for 𝜏𝜏 ≤ 50 s with R2 = 0.9998; [1.21, 1.25], 95% confidence 

bounds; red solid line), and shows signs of saturation at larger lag times.  This behavior is 

associated with sub-diffusion along the Y-axis according to MSD(𝜏𝜏) ∝ 𝜏𝜏0.81 (power-law fit for 

𝜏𝜏 ≤ 80 s with R2 = 0.9991; [0.79, 0.82], 95% confidence bounds; red dotted line).  For each 

value 𝜏𝜏 of the lag time, the MSD was first time-averaged along each bead trajectory of longer 

duration than 𝜏𝜏 and then ensemble-averaged over all the trajectories that were detected.  
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Figure 4:  Local analysis of active bead transport: velocity and diffusion-coefficient 

profiles.   For myosin-V-coated beads (A-C) and myosin-II-coated beads (D-F), we plot the 

velocity (A and D) and diffusion coefficient (B and E) as a function of position X along the axis 

of the actin filaments (black lines: along X axis; red lines: along Y axis), as well as the steady-

state distributions of bead positions (C and F) that were measured directly (dashed lines; same 

data as Fig. 2D and H) and predicted by a diffusion-drift process (solid lines; see Methods).  In 

G-I, we show box plots of velocity gradient at the center (G), of the diffusion coefficient at the 

center (H) and of the standard deviation of bead position (I) for the two types of motor-coated-

beads.  The data shown in G-I results from N = 7 experiments in which myosin-V-coated beads 

and myosin-II-coated beads moved in the same antiparallel actin network, allowing for a direct 

comparison of their transport properties; statistical significance (stars) was assayed by paired-

sample t-tests with p-values indicated on the figure. 
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Figure 5:  Active positioning in a 3-state model of bead transport.   A:  Model myosin-

coated beads can be attached to actin filaments and moving towards their barbed ends at velocity 

+𝑣𝑣 (red; state 1) or –𝑣𝑣 (blue; state 2) or detached and freely diffusing with a diffusion 

coefficient 𝐷𝐷∅ (green; state 3).  Attached beads detach at a rate 𝑘𝑘OFF that does not depend on 

position in the network nor on filament polarity.  Detached beads at position 𝑋𝑋 can attach to 

filaments of a given polarity (+ or −) at rates 𝑘𝑘ON𝜌𝜌±(𝑋𝑋) proportional to the local density 

𝜌𝜌±(𝑋𝑋) = 𝜌𝜌±(0) exp(∓𝑋𝑋 𝜆𝜆⁄ ) of the filaments, where 𝜆𝜆 corresponds to the mean filament 

length.   B-D:  Model-bead trajectories at low (𝑣𝑣 = 0.5 µm/s and ℓ𝐵𝐵 ℓ𝐷𝐷⁄ = 0.25; B), 

intermediate (𝑣𝑣 = 2 µm/s and ℓ𝐵𝐵 ℓ𝐷𝐷⁄ = 1; C) and high (𝑣𝑣 = 8 µm/s and ℓ𝐵𝐵 ℓ𝐷𝐷⁄ = 4; D) 

velocity, which corresponds to increasing values of the ratio ℓ𝐵𝐵 ℓ𝐷𝐷⁄ .  Other parameter values in 

SI Appendix, Table S2 (Case 1).   E-G:  Model-bead distribution at the start of the simulation 

(dotted line) and at steady state (solid line) corresponding to the simulated trajectories shown 

in B-D, respectively.   H:  Standard deviation 𝜎𝜎 of bead position at steady state as a function of 

the ballistic length ℓB = 𝑣𝑣 𝑘𝑘OFF⁄  for four different values (0.3, 0.6, 1.1, and 2.2 µm, from light 

to dark blue) of the diffusion length ℓ𝐷𝐷 = �𝐷𝐷∅ �𝑘𝑘ON �𝜌𝜌+(0) + 𝜌𝜌−(0)��⁄  at the center (𝑋𝑋 = 0) 

of the filament network.  The ballistic length was varied by changing the value of 𝑣𝑣; the 
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diffusion length was varied by changing the value of 𝐷𝐷∅; other parameters in SI Appendix, 

Table S2 (Case 1).   I:  Same data as in H, but using normalized coordinates.  In H-I, the dashed 

line corresponds to the relation 𝜎𝜎 = �𝜆𝜆ℓ𝐵𝐵.; in H, the horizontal grey solid line corresponds to 

the value 𝜎𝜎 = 𝐿𝐿2 12⁄  expected for free one-dimensional diffusion in a box of size 𝐿𝐿 = 40 µm. 
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Table 1: parameter values.   

Parameter Definition 

Value for 
myosin V 

(mean±SEM; 
n = 11) 

Value for 
myosin II 

(mean±SEM; 
n = 16) 

Relation to other 
parameters 

𝜕𝜕𝑋𝑋𝑉𝑉EFF(0) 
(s-1) 

Measured velocity 
gradient at 𝑋𝑋 =  0 

(8.4 ± 2.5)·10-3 (12 ± 2)·10-3  

𝐷𝐷EFF(0) 
(µm2/s) 

Measured diffusion 
coefficient at 𝑋𝑋 =  0 

0.06 ± 0.02 0.13 ± 0.04  

𝛼𝛼 = 𝜏𝜏𝑂𝑂𝑂𝑂 𝜏𝜏𝑂𝑂𝑂𝑂𝑂𝑂⁄  
Ratio of mean durations 
in bound and unbound 

states 
0.17 ± 0.02 0.05 ± 0.04 𝛼𝛼 =

1
v

λ ∂xVEFF(0) − 1
 

𝑘𝑘OFF 
(s-1) 

Detachment rate from 
actin filaments 

0.6 ± 0.3 1.6 ± 0.6 kOFF =
v2

DEFF(0)
α

α + 1
 

𝑘𝑘𝑂𝑂𝑂𝑂  𝜌𝜌(0) 
(s-1) 

Attachment rate to actin 
filaments 

0.1 ± 0.07 0.08 ± 0.04 
kONρ(0)

=
v2

DEFF(0)
α2

α + 1
 

ℓ𝐵𝐵 
(µm) 

Ballistic length 0.77 ± 0.39 1.25 ± 0.47 
ℓ𝐵𝐵 = 𝑣𝑣 kOFF⁄

=
DEFF(0)

λ ∂xVEFF(0)                 

 

The first two rows show measured values of the velocity gradient and of the diffusion 

coefficient of myosin-coated beads at the center (𝑋𝑋 = 0) of antiparallel actin networks of the 

network (same data as in Fig. 4G-H).  The last four rows show parameter values inferred from 

our theoretical description of bead transport using the relations shown on the last column with 

the intrinsic motor velocity 𝑣𝑣 = 0.46 µm/s and 2 µm/s for myosin V and myosin II, 

respectively.  We assumed here a vanishing diffusion length (ℓ𝐷𝐷 ≪ ℓ𝐵𝐵 or 𝐷𝐷∅ = 0). 
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Section 1: Supplementary data (Figs. S1 and S2)

FIG. S1: Bead transport in parallel actin networks. A: Trajectories of myosin-V-coated beads within the

plane of the actin network. Directed movements oriented perpendicular to the nucleation line (green) and

going away from the pattern are observed for distances X ≤ 40 µm (blue-shaded area) from the nucleation

line; at larger distances, the beads show diffusive movements. Red (blue): trajectories with a net positive

(negative) movement along axis X. Diffusion coefficient (B), and velocity (C) of the beads as a function of

bead position along axis X (black) and axis Y (red) for the data shown in A. D-F: Same as in A-C but

for myosin-II-coated beads.
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FIG. S2: Effect of the actin-network size and of the actin concentration on bead positioning. The standard

deviation σ at steady state is plotted as a function of the spacing L between nucleation lines of the actin

micropattern for myosin-II-coated beads (A) and as a function of monomeric-actin concentration in the

polymerization mix (B). The different symbols mark three different experiments in A and myosin-II-coated

beads (white disks) or myosin-V-coated beads (black disks) in B.
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Section 2: Bead dynamics in antiparallel actin networks:

We present here the physical model used to interpret the behavior of beads coated with either

heavymero myosin-II or myosin-V motors moving on heterogeneous one-dimensional actin networks.

Our description extends a theory developed originally to capture endosomal transport during the

asymmetric division of sensory organ precursors in Drosophila [1]; we here consider slowly varying

density profiles of antiparallel filament networks instead of overlapping homogeneous networks

of opposite polarities. Single beads can be in one of the following three states: bound to actin

filaments whose barbed end points rightwards (+) or bound to actin filaments whose barbed end

points leftwards (−) or unbound (see main text, Fig. 5A). In the two bound states, beads move

towards the barbed end of the filaments at constant speed v in the direction set by the polarity

of the actin filament. In the unbound state, beads diffuse passively with a diffusion coefficient

D∅. Transitions between states are characterised by three independent rate constants. A bead can

switch from a bound state to the unbound state with a detachment rate constant kOFF that does

not depend on position or filament polarity. Alternatively, a bead can switch from the unbound

state to a bound state with an attachment rate constant kONρ
+ or kONρ

− that depends both

on position and on the polarity of the filaments to which the bead binds. We define the local

density ρ+ of filaments of polarity + (rightwards) and ρ− of filaments of polarity − (leftwards). To

account for experimental observations (see main text, Fig. 1), we assume that the density profiles

take the form ρ+ = (ρ0/2)e−X/λ and ρ− = (ρ0/2)eX/λ, where λ stands for the mean actin length

and ρ0 = ρ+(X = 0) + ρ−(X = 0) is the total density of actin filaments at the center of the

network (i.e. X = 0, where ρ+ = ρ−). Finally, the local probability distribution of beads bound

on actin filaments oriented rightwards (leftwards) is denoted by P+ (P−) and the local probability

distribution of unbound beads is denoted by P d. The corresponding master equations that govern

the stochastic dynamics of our beads read

∂tP
+ = −v∂XP+ + kONρ

+P d − kOFFP
+, (S1a)

∂tP
− = v∂XP

− + kONρ
−P d − kOFFP

−, (S1b)

∂tP
d = D∅∂

2
XP

d − kON(ρ+ + ρ−)P d + kOFF(P+ + P−). (S1c)

We performed simulations using a numerical scheme based on Gillespie’s First Reaction algorithm,

[2]. To this end, we transform the spatial coordinate X into a discrete variable by introducing a

step size ∆X. In the bound state, beads advance a unit step ∆X towards the barbed end of the

actin filament at a rate constant v/∆X. As a result of velocity fluctuations in the bound states,
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discretization introduces an effective diffusion coefficient that scales as ∼ v∆X. The value of ∆X

used in the simulations (0.05 µm) ensured that this contribution to the diffusive motion of the

beads produced a small deviation (< 10%) to the actual bead diffusion coefficient. The diffusive

motion of the beads in the unbound state is described as a simple random walk with a hoping rate

constant D∅/∆X
2. Similarly, kOFF and kONρ

± control the transitions between the three states

of a bead, as explained above. We choose reflective boundary conditions, enforcing that the total

number of particles remains constant over time.

In this model, we can define two intrinsic length scales: the ballistic length lB = v/kOFF and

the diffusive length lD =
√
D∅/kONρ0, which control the mean distance traveled during runs

in a bound state and the mean-squared displacement of diffusive motion in the unbound state,

respectively. Additionally, we can define two time scales: the attachment time τON = 1/kOFF

and the detachment time τOFF = 1/(kONρ0), which control the mean time spend by the bead in

the bound and in the unbound states, respectively. Consequently, model-bead behaviors can be

classified in four asymptotic regimes, depending on the dominant characteristic time and length

scale in the system.
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FIG. S3: Short-time dynamics in the four limiting regimes of bead transport. In (A and B) lB � lD, whereas

in (C and D) lB � lD. In (A and C) τON � τOFF, whereas in (B and D) τON � τOFF. The magenta

(green) segments of the trajectories mark when the bead is bound (unbound). The list of parameters is

given in Table S1.
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In Figure S3, we show simulations of the short-time dynamics of model beads initially located

at a 20-µm distance (X = 20 µm) from the geometrical center (X = 0) for all four asymptotic

regimes. When lB � lD, bead transport is dominated by the ballistic motion in the bound states.

Qualitatively, the trajectories are composed of an alternation of pauses in the unbound state and

runs in the bound states (Fig. S3A-B). When lB � lD, the passive diffusive motion in the unbound

state instead dominates the motion of the beads. Qualitatively, in this case the trajectories are

composed of an alternation of diffusive motion in the unbound state and pauses in the bound states

(Fig. S3C-D). When τON � τOFF, the beads are mostly bound (Fig. S3A,C) and when τON � τOFF,

the beads are mostly unbound (Fig. S3B,D).

A CB D

Diffusion coefficient :

FIG. S4: Long-time bead dynamics. The diffusion coefficient D∅ is: (A) 7 ∗ 10−3, (B) 7 ∗ 10−2, (C) 7 ∗ 10−1

and (D) 7, in unit of µm2/s. The diffusive length lD is: (A) 0.2, (B) 0.7, (C) 2 and (D) 7, in unit of µm,

whereas the ballistic length lB = 0.7 µm is fixed. Other parameters are listed in Table S2 (Case 1).

In Figure S4, we show the long-time dynamics of the beads as a function of the diffusion

coefficient D∅; the beads are initially in a random state and distributed randomly in the network

X ∈ (+20,−20) µm. We find that the beads move, on average, towards the center of the network,

where the densities of both types of actin filaments are equal and the net polarity of the network thus

vanishes. As one would expect, increasing the diffusion coefficientD∅ results in larger fluctuations in

the unbound state and a broadening of the range of positions explored by the beads at steady state.

Remarkably, the amplitude of these fluctuations does not vanish when the diffusion coefficient goes

to zero. As will be clarified below, these fluctuations are the consequence of the active stochastic

dynamics of the beads when they are bound to the filaments, which generates noise.
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Section 3: Effective velocity and diffusion coefficient

In this section, we discuss simulations of the long-time behavior of the mean and the mean-

squared displacement of bead assemblies. We show that a local velocity and diffusion coefficient,

characteristic of bead trajectories in heterogeneous networks, can be defined unequivocally when

the scale of the heterogeneities in the actin network is large λ � lB, lD. Based on the profiles of

bead velocity and diffusion coefficient profiles that were measured in antiparallel actin networks, we

conclude that myosin-coated bead transport is constrained to the regime where the beads detach

often τON � τOFF and travel comparable distances in the attached and detached states lD ∼ lB.

When λ� lB, lD, we can assume local uniformity of the actin network, measuring that the actin

density profiles ρ+ and ρ− are uniform or space-independent: the beads experience a ”uniform”

actin density during the relaxation of their internal degrees of freedom, which occurs over a time

scale set by τON and τOFF.

Let’s start with all beads initially in the unbound state (P (t = 0) = P d(t = 0) = δ(X −X0)),

where X0 is the initial location and P = P++P−+P d is the total probability distribution of beads

(see Eq. S1). Without loss of generality, we take X0 = 0 since the actin network is uniform. The

mean displacement and the mean squared displacement are defined as 〈XP 〉 =
∫ +∞
−∞ XPdX and

〈X2P 〉 =
∫ +∞
−∞ X2PdX, where the brackets refer to the integration over the whole spatial domain.

We perform the Laplace transformation in time on Equations S1 with P̃ =
∫∞
0 e−stPdt, δ̃P =∫∞

0 e−stδPdt and P̃ d =
∫∞
0 e−stP ddt, leading to

sP̃ − P d(t = 0) = D∅∂
2
X P̃

d − v∂X δ̃P , (S2a)

sδ̃P = −v∂X P̃ + v∂X P̃
d + kONδρP̃

d − kOFFδ̃P , (S2b)

sP̃ d − P d(t = 0) = D∅∂
2
X P̃

d − (kONρ+ kOFF)P̃ d + kOFFP̃ , (S2c)

where ρ = ρ+ + ρ− is the total density of actin filaments, δρ = ρ+− ρ− and δP = P+−P−. From

Equations S2, we deduce that the distribution of beads, the mean displacement and the mean

squared displacement in Laplace space obey

s〈P̃ 〉 = 1, (S3a)

s〈XP̃ 〉 = v〈δ̃P 〉, (S3b)

s〈X2P̃ 〉 = 2D∅〈P̃ d〉+ 2v〈Xδ̃P 〉, (S3c)

from which we obtain analytically their time evolution. The boundary terms of the form∼ XnP |±∞

have been set to zero regardless of the probability distribution.
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After integrating Equations S2 over space, we obtain the following equations

〈δ̃P 〉 =
kONδρ

s(s+ kOFF + kONρ)
, (S4a)

〈P̃ d〉 =
s+ kOFF

s(s+ kOFF + kONρ)
. (S4b)

Similarly, multiplying first by X and then integrating Equations S2 over space, the following

equations are obtained

〈Xδ̃P 〉 =
v

s+ kOFF

(
kONρ

s(s+ kONρ+ kOFF)
+

k2ONδρ
2kOFF

s2(s+ kONρ+ kOFF)2

)
, (S5a)

〈XP̃ d〉 =
vkONδρkOFF

s2(s+ kOFF + kONρ)2
. (S5b)

Inserting them back into Equations S3b-S3c, one deduces an explicit form of the mean displacement

and mean square displacement that read

〈XP̃ 〉 =
vkONδρ

s2(s+ kONρ+ kOFF)
, (S6a)

〈X2P̃ 〉 =
2D∅(s+ kOFF)

s2(s+ kONρ+ kOFF)

+
2v2

s+ kOFF

(
kONρ

s2(s+ kONρ+ kOFF)
+

k2ONδρ
2kOFF

s3(s+ kONρ+ kOFF)2

)
. (S6b)

By applying the inverse Laplace transformation to Equations S6, we derive the time evolution of

these observables. Here, we focus on the long-time behavior of the mean displacement (S6a) and of

the mean squared displacement (S6b), which is achieved through the limit t→∞. In the long-time

limit, we define an effective local velocity and diffusion coefficient as the coefficient proportional to

time of the mean displacement and variance, respectively. From Equations S6, we obtain

VEFF = lim
t→∞

〈XP 〉
t

=
vkONδρ

kONρ+ kOFF
, (S7)

DEFF = lim
t→∞

〈X2P 〉 − 〈XP 〉2

2t
=

D∅kOFF

kONρ+ kOFF

+
v2

kOFF

(
kONρ

kONρ+ kOFF
−
k2ONδρ

2(kONρ+ 2kOFF)

(kONρ+ kOFF)3

)
, (S8)

which are valid at any location in the actin network (i.e. for any functional form of ρ+(X) and

ρ−(X)) and at time scales longer than the relaxation time scale of the internal degrees of freedom

of the beads (i.e. t � τON and t � τOFF). The validity of the previous equations requires

local uniformity of the actin network, meaning that λ � VEFF/kOFF and λ2 � DEFF/kOFF or

equivalently λ� lB, lD. These Equations S7-S8 have also been derived from the relaxation of the

hydrodynamical modes in Ref. [1].
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Note that Equations S7-S8 are in general controlled by both the physical properties of molecular

motors and by the architecture of the underlying actin network. Interestingly, the effective velocity

(S7) is proportional to the difference in the densities of filaments of opposite polarities δρ = ρ+−ρ−,

meaning that beads are directed towards regions where δρ = 0 or equivalently where there is

no net polarity. With respect to the diffusion coefficient, Equation S8 reflects the presence of

two fundamentally different mechanisms of diffusive-like motion. The first term of Equation S8,

proportional to D∅, arises from the passive diffusion of beads in the unbound state. Instead, the

second term of Equation S8, proportional to v2/kOFF, arises from the persistent random walk

dynamics performed by beads in the bound states. Specifically, near the center, where δρ = 0, the

step size of this random walk is the run length lB = v/kOFF and the switching rate constant is

kOFF, so that the effective diffusion of our random walkers would be ∝ l2BkOFF times the steady

state probability of beads in the bound state (kONρ/(kONρ+kOFF)). The beads thus undergo both

passive and active diffusion.

In Figure S5, we show the profiles of the effective velocity VEFF(X) and effective diffusion coeffi-

cient DEFF(X) (S7-S8), assuming that ρ+ = (ρ0/2)e−X/λ and ρ− = (ρ0/2)eX/λ, as in experiments

(see Fig. 1 of the main text). The competition between the two time scales strongly affects bead

motion (Fig. S3) and their effects are reflected in VEFF(X) and DEFF(X) as well (Fig. S5). In the

limit of low attachment rates (τON � τOFF), the effective velocity and effective diffusion coefficient

(S7-S8) can be approximated by

VEFF ∼= −vα sinh(X/λ), (S9)

DEFF
∼= D∅ +

l2B
τON

α cosh(X/λ), (S10)

where α = τON/τOFF. In the opposite limit, high attachment rates (τON � τOFF), the same

effective velocity and effective diffusion coefficient can be approximated by

VEFF ∼= −v tanh(X/λ), (S11)

DEFF
∼=

D∅
α cosh(X/λ)

+
l2B

τON cosh(X/λ)2
. (S12)

In the limit τON � τOFF, the effective velocity near the center is well approximated by a

linear function of X with a slope equal to v/λ (Fig. S5A), whereas in the limit τON � τOFF,

the slope drops to vτON/(τOFFλ) < v/λ (Fig. S5B). Experimentally, we observed that myosin-II-

coated and myosin-V-coated beads exhibit mean velocities that are on average smaller than the

corresponding speed v of molecular motors in motility assays [3]. By fitting this expression to the

actual slope of the velocity profiles (see Fig. 4 of the main text), we find that for myosin-V-coated
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FIG. S5: Effective velocity and effective diffusion coefficient profiles (S7-S8) in the two limiting regimes set

by the competition between the time scales τON and τOFF. (A and B) represent the normalized velocity

and diffusion profiles, respectively, for a value of τON/τOFF = 10. (C and D) represent the same profiles

but for a value of τON/τOFF = 0.1. The velocity (blue) has been normalized by v and each contribution to

the diffusion coefficient has been normalized by their value at the center. The passive (active) contribution

of the diffusion coefficient is shown in red (purple). The gray shaded area represents the region in between

two nucleation lines L = 40 µm.

beads τON/τOFF = 0.05 with v = 2 µm/s, and for myosin-II-coated beads τON/τOFF = 0.17 with

v = 0.46 µm/s. Thus, suggesting that near the center, beads operate in the regime τON � τOFF,

or equivalently beads detach often.

The effective diffusion coefficient (S8) originates from two independent mechanisms: passive and

active diffusion. The passive mechanism (red curves) produces an effective diffusion constant with

a peak at the center, regardless of the dominant time scale (Figure S5C-D). Instead, the active

diffusion (purple curves) yields a profile of the diffusion coefficient with a shape that depends

on the dominant time scale: when τON � τOFF, there is a maximum at the center (Fig. S5C),

whereas when τON � τOFF, there is a minimum at the center, akin to passive diffusion (Fig. S5D).

Experimentally, the measured diffusion coefficient profiles of myosin -II and -V beads display

a marked minimum near the center (see Fig. 4 of the main text), suggesting that diffusion is
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dominated by the contribution resulting from active bead transport. Specifically, the curvature of

the effective diffusion coefficient profile (S8) is positive when lD <
√

(1− α(3 + 2α))/((1 + α)α) lB

in which α = τON/τOFF. For myosin-V-coated beads, with α = 0.05, this condition reads lD < 4lB

and for myosin-II-coated beads, with α = 0.17, lD < 1.5lB. Because the ratio of passive and active

contributions to the effective diffusion coefficient (Eq. S8) is given by (lD/lB)2, these constraints

enforce that at the center of anti-parallel networks, the passive contribution is at most 16 (2) times

larger than the active contribution for myosin-V-coated (myosin-II-coated) beads (Eq. S8). To

determine the diffusion coefficient D∅, and by extension the time scales τON and τOFF, we need to

introduce an additional constraint. By assuming that D∅ = 0 and using the values of Fig. 4H in

the main text to determine the effective diffusion coefficient (S8) at the center, we obtain the set of

parameters listed in Table 1 of the main text. Of note, the absolute values of the time scales τON

and τOFF are model dependent. If we instead assume that the two length scales are equal lB = lD

(i.e. D∅ = v2α/kOFF), a condition that leads to nearly optimal centering (see Fig. 5 of the main

text), then the value of the time scales are halved with respect to the parameters in Table 1 (Table

S2). In either case, we can conclude that myosin-coated bead transport operates in a regime where

the beads detach often (τON � τOFF).

At this point, we wondered whether the steady-state statistics of beads in anti-parallel networks

can be described by an advection-diffusion process, as in experiments (see Fig. 4C,F in the main

text). To address this question, we computed the steady-state bead distribution by solving numeri-

cally the stochastic dynamics of ∼ 100, 000 beads in antiparallel networks for each condition (black

curve in Fig. S6) and compared this distribution to that resulting from a diffusion-drift process

PDD ∝ exp(
∫
X VEFF(y)/DEFF(y)dy) (green curve in Fig. S6) with the velocity and diffusion coeffi-

cients (S7,S8). Fig. S6 shows an excellent agreement between both distributions for a broad range

of parameters extending both towards the large diffusion limit lD � lB and the low diffusion limit

lD � lB. In conclusion, at steady state, the model reproduces robustly the advection-diffusion

approximation of the statistics of motor-coated beads.

The distribution of model beads peaked in the center (X = 0, where ρ+ = ρ−): the active

transport process brought the beads, on average, to the position where the net polarity of the

network vanishes. Near the center, Equations (S7,S8) admits a Taylor expansion

VEFF(X) = − vkONρ0
kONρ0 + kOFF

X

λ
+ O((X/λ)2), (S13a)

DEFF(X) =
D∅kOFF

kONρ0 + kOFF
+

v2

kOFF

kONρ0
kONρ0 + kOFF

+ O((X/λ)2), (S13b)

which is valid only if the mean length of actin filaments λ is much larger than X. Interestingly,
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FIG. S6: Validity of the approximation of model-bead statistics by a diffusion-drift process. The black curve

corresponds to the steady-state bead distribution P (X) resulting from solving Equations S1 in an antiparallel

network. The green curve is the probability distribution expected from a diffusion-drift process PDD ∝

exp(
∫
X
VEFF(y)/DEFF(y)dy) with the velocity and diffusion coefficient (S7,S8). The diffusion coefficient D∅

is: (A) 7 ∗ 10−3, (B) 7 ∗ 10−2, (C) 7 ∗ 10−1 and (D) 7, in unit of µm2/s. The diffusive length lD is: (A) 0.2,

(B) 0.7, (C) 2 and (D) 7, in unit of µm, whereas the ballistic length lB = 0.7 µm is fixed. Other parameters

are listed in Table S2 (Case 1).

these expressions lead to an approximate Gaussian distribution of model-bead position with a peak

located at the geometrical center X = 0 and a variance

σ2 = λlB

(
1 +

l2D
l2B

)
. (S14)

Thus, our model of active bead transport describes positioning at the center of the network with

a precision approximated by Equation S14 up to a numerical pre-factor. We note that the theory

predicts that the variance of the bead position at steady state does not depend on the size L of

the network, meaning that bead centering depends on the local architecture of the network in a

neighborhood centered where the net polarity vanishes. Rather, the precision of positioning is

set by the ballistic length lB, the diffusive length lD, and the length scale λ of heterogeneities

within the network. Remarkably, by systematically increasing lB in Equation S14, we find that the

variance (S14) of model-bead position at steady state first decreases but then reaches a minimum at

lD = lB, where the variance is 2λlB, corresponding to an optimum of centering precision (Fig. 5H-I

in the main text). When lB � lD, bead displacements are largely due to the diffusive motion in

the unbound state and the variance near the center scales as σ2 ∼ λl2D/lB. As expected increasing

the diffusive length lD leads to poor centering. When lB � lD, bead displacements are largely due

to the ballistic runs in the attached states and the variance near the center scales as σ2 ∼ λlB. In

this limit, centering is only controlled by two of the three characteristic lengths (λ, lB). Decreasing

the ballistic length lB leads to better centering, suggesting that in the absence of passive diffusion
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(D∅ = 0), perfect centering (i.e. σ = 0) is achieved only when the ballistic length lB = 0 or in other

words when motor speed vanishes v = 0. These results are in qualitative agreement with numerical

estimates (Fig. 5H-I in the main text). The numerical relation between the variance model-bead

position at steady state and the ballistic length lB shows a minimum; the minimum occurs here

at lD ≈ 1.65lB, where the variance is 2.07λlB. In conclusion, model beads are able to position

themselves where the net polarity of the network vanishes with a precision that exhibits an optimal

value when the two characteristic length scales of bead dynamics are comparable (lB ∼ lD).

Section 4: Effects of filament switching on bead dynamics

In the preceding sections, we assumed that a bead could be bound to one type of filament (+

or −) only. Attachment to filaments of opposite polarity can result in a tug-of-war. Because tug-

of-war is mechanically unstable [4], a bead engaged in this situation is expected to switch direction

by changing the filaments to which it is bound while remaining bound. We describe this process

by a direct stochastic transition of beads between the two bound states without passing through

an intermediate unbound state. We assume that beads switch between the bound states at a rate

constant kρ± that depends proportionally on the actin density of the filament type to which beads

bind. The corresponding master equations that govern the stochastic dynamics of our model beads

now read

∂tP
+ = −v∂XP+ + kONρ

+P d − kOFFP
+ + kρ+P− − kρ−P+, (S15a)

∂tP
− = v∂XP

− + kONρ
+P d − kOFFP

− − kρ+P− + kρ−P+, (S15b)

∂tP
d = D∅∂

2
XP

d − kON(ρ+ + ρ−)P d + kOFF(P+ + P−). (S15c)

Above, we have discussed a mechanism harbored in Equations S1 (i.e. Eq. S15 when k = 0)

by which beads reach the center (where ρ+ = ρ−) of anti-parallel networks. Beads are able to

sample asymmetries in actin densities by combining directed motion when bound plus detachment-

attachment cycles. We name this mechanism detachment-based centering. Equations S1, however,

omit the direct transitions between actin filaments of different type. Here, we explore how filament

switching affects the bead dynamics.

First, we wonder about the effects of filament switching for bead transport in anti-parallel

actin networks, when detachments are allowed kOFF 6= 0. In Figure S7, we show the influence of

switching for both the long-time behavior of bead trajectories and the steady-state distribution of

beads. We observe that increasing the switching rate constant, leads to enhanced funneling of the
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FIG. S7: Effects of switching on bead transport. (A-C) show the long time dynamics of beads, and (D-F)

show the total distribution of beads at steady state (solid black) and at the initial instant (dashed black).

The parameters are listed in Table S2 (Cases 1). The switching rate constant increases: kρ0 = 0 (A and

D), kρ0 = 6 (B and E) and kρ0 = 12 (C and F).

trajectories (Fig. S7A-C) and narrowing of the bead distribution (Fig. S7D-F). Thus, switching

favors centering of beads by sharpening detachment-based centering.

Generalizing the derivation shown in Section 3 to systems with switching results in bead dis-

tributions that peak at the center of the network with a variance σ2 = λl∗B that depend on the

renormalized ballistic length l∗B = v/(kOFF + kρ0). This result is in agreement with Figure S7, for

the increase of the switching rate constant leads to the sharpening of the bead distribution. Thus,

switching effectively decreases the ballistic length, which now can be interpreted as the mean dis-

tance that a bead moves in the same direction when attached to actin, resulting in finer sampling

of the net-polarity gradient and more precise positioning at the center.

Second, we wondered whether switching alone (i.e. in the absence of detachment events kOFF =

0) is sufficient to center beads in antiparallel actin networks, where the actin densities takes the

usual form ρ+ = (ρ0/2)e−X/λ and ρ− = (ρ0/2)eX/λ. In Figure S8, we present the statistical

properties of bead trajectories, when detachment is absent (Fig. S8A-C) or when switching is

absent (Fig. S8D-F). The latter corresponds to the situation studied above. Remarkably, we

find that similar (i.e. peaked) steady-state distribution of model beads can be achieved when

there is only switching (Fig. S8C,F), meaning that this mechanism is sufficient to induce bead

centering. The typical trajectories of switching-based transport are composed of an alternation of
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FIG. S8: Comparison between detachment-based and switching-based bead transport. (A and D) and (B

and E) show the short and long time dynamics of beads, respectively. (C and F) show the total distribution

of beads at steady state (solid black) and at the initial instant (dashed black). The parameters are listed

in Table S2 (Cases 1). In panels (A-C) the detachment rate constant kOFF = 0 and the switching rate

constant kρ0 = 0.5, and in panels (D-F) kOFF = 2.9 and kρ0 = 0.

runs between the two types of filaments (Fig. S8A,B). Note that the trajectories of detachment-

based transport are composed of a combination of pauses in the unbound state and runs in the

bound state (Fig. S8D,E).

Without going into details, similar calculations as those described in Section 2 lead to an effective

velocity and diffusion coefficient for the transport of beads, when detachment is absent kOFF = 0

V S
EFF = =

vδρ

ρ
, (S16)

DS
EFF =

v2ρ20
kρ3

. (S17)

Velocity and diffusion profiles given by Eqs. S16-S17 are shown in Fig. S9 for anti-parallel actin

networks with the center at X = 0. Note, that neither the slope of the velocity at the center

(∼ v/λ) nor the convex shape of the diffusion coefficient agrees with our experimental observations

on myosin-II and -V-coated beads, suggesting that switching is not the mechanism at work.
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FIG. S9: Representation of the effective velocity (A) and diffusion coefficient (B) given by Equations (S16-

S17) as a function of the normalized position with respect to the mean actin length λ. The velocity (blue)

has been normalized by v and the diffusion coefficient (pink) has been normalized by v2/kρ0. The gray

shaded area represents the space in between two nucleation lines L = 40 µm.

Section 5: Tables of parameters

TABLE S1: List of parameters used to produce the stochastic trajectories shown in Fig. S3.

kONρ0[1/s] kOFF[1/s] v[µm/s] D∅[µm2/s] L[µm] λ[µm]

Fig. (1,a) 0.8 0.4 0.4 0.1 40 8.7

Fig. (1,b) 0.08 1 2 0.01 40 8.7

Fig. (1,c) 0.8 0.4 0.1 10 40 8.7

Fig. (1,d) 0.08 1 0.1 1 40 8.7

TABLE S2: Parameters of simulations describing experimental bead trajectories

kONρ0[1/s] kOFF[1/s] v[µm/s] D∅[µm2/s] L[µm] λ[µm] lB [µm] lD[µm]

Case 1 0.15 2.9 2 0.07 40 8.2 0.7 0.7

Case 2 0.17 1.0 0.46 0.04 40 8.2 0.46 0.46

In Table S2, the speed v is set by the values obtained in motility assays [3]. The two length scales lB and

lD are assumed to be equal. The distance between parallel nucleation stripes is an external controllable

parameter with a typical value of 40 µm. Case 1 (2) corresponds to the set of parameter estimated from the

data in Fig. 4 in the main text for myosin-II-coated (myosin-V-coated) beads by using Equations (S7,S8).
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[1] Derivery E, Seum C, Daeden A, Loubéry S, Holtzer L, et al. (2015) Polarized endosome dynamics by

spindle asymmetry during asymmetric cell division. Nature 528: 280–285.

[2] Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. The journal of physical

chemistry 81: 2340–2361.

[3] Howard J, et al. (2001) Mechanics of motor proteins and the cytoskeleton .
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