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Abstract 

Functional magnetic resonance imaging (fMRI) is widely viewed as the gold standard for studying brain function due to 

its high spatial resolution and non-invasive nature. However, it is well established that changes in breathing patterns and 

heart rate strongly influence the blood oxygen-level dependent (BOLD) fMRI signal and this, in turn, can have 

considerable effects on fMRI studies, particularly resting-state studies. The dynamic effects of physiological processes 

are often quantified by using convolution models along with simultaneously recorded physiological data. In this context, 

physiological response function (𝑃𝑅𝐹) curves (cardiac and respiratory response functions), which are convolved with 

the corresponding physiological fluctuations, are commonly employed.  Initially, these 𝑃𝑅𝐹 curves were assumed to be 

identical across subjects, but more recently, the use of subject-specific 𝑃𝑅𝐹 curves has been suggested (derived by e.g. 

using the global fMRI signal). In the present study, we propose a novel framework for the robust estimation of 𝑃𝑅𝐹 

curves and use this framework to rigorously examine the implications of using population-, subject-, session- and scan-

specific 𝑃𝑅𝐹 curves. The proposed framework was tested on resting-state fMRI and physiological data from the Human 

Connectome Project. Our results suggest that 𝑃𝑅𝐹 curves vary significantly across subjects and, to a lesser extent, across 

sessions from the same subject. These differences can be partly attributed to physiological variables such as the mean 

and variance of the heart rate during the scan. The proposed methodological framework can be used to obtain robust 

scan-specific 𝑃𝑅𝐹 curves from data records with duration longer than 5 minutes, exhibiting significantly improved 

performance compared to previously defined canonical cardiac and respiration response functions. Besides removing 

physiological confounds from the BOLD signal, accurate modeling of subject- (or session-/scan-) specific 𝑃𝑅𝐹 curves 

is of importance in studies that involve populations with altered vascular responses, such as aging subjects. 
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1. Introduction 

Over the last few decades, advances in neuroimaging methods have significantly facilitated the study of brain function. 

One of the most popular methods for measuring brain activity is functional magnetic resonance imaging (fMRI), due to 

its high spatial resolution and non-invasive nature. fMRI, in principle, allows the mapping of brain function by measuring 

the hemodynamic response that accompanies neuronal activity in the brain. The onset of neuronal activity leads to 5 

physiological changes in the cerebrovascular system, including changes in cerebral blood flow (CBF), cerebral blood 

volume (CBV) per unit of brain tissue, as well as oxyhemoglobin and deoxyhemoglobin concentrations. The majority of 

fMRI studies is based on the blood oxygen-level dependent (BOLD) contrast mechanism, which primarily corresponds 

to the concentration of deoxyhemoglobin, and, thus, reflects a complex interplay of the aforementioned physiological 

processes (Ogawa and Lee, 1990). 10 

Intriguingly, low-frequency (< 0.15 Hz) fluctuations of the BOLD fMRI signal in the resting brain have consistently 

revealed significant correlations between distinct brain regions giving rise to a number of functional networks, termed 

resting-state networks (RSNs) (Biswal et al., 1995; Smith et al., 2009). Furthermore, several studies have reported 

alterations of RSNs in a range of cerebrovascular and mental disorders, demonstrating their potential use as biomarkers 

(Demirtaş et al., 2016; Leonardi et al., 2013; Sheline et al., 2010; Woodward and Cascio, 2015). Therefore, while fMRI 15 

studies were initially focused on studying the function of individual brain regions in response to specific tasks, during 

the last two decades or so there has been a shift towards understanding the correlation between distinct brain regions 

during rest, referred to as resting-state functional connectivity (rs-FC; van den Heuvel and Hulshoff Pol, 2010). 

However, the interpretation of rs-FC studies is often questioned, partly because of the challenge of disentangling the 

neuronal component of the BOLD signal, which is typically of interest, from measurement and physiological confounds 20 

(Bright and Murphy, 2015; Murphy et al., 2009). These confounds may be related to scanner hardware drifts and 

instabilities, head motion as well as spontaneous physiological fluctuations, including respiration, cardiac activity and 

arterial CO2 (Caballero-Gaudes and Reynolds, 2017; Liang et al., 2015; Murphy et al., 2013; Wise et al., 2004). For 

instance, fluctuations in the BOLD signal arise from cardiac pulsation, which pushes the brainstem into the surrounding 

brain tissue, causing deformation and cerebrospinal fluid movement (Dagli et al., 1999) while respiration-induced 25 

fluctuations result partly from respiration-related bulk movement of the head (Hu et al., 1995). Also, variations in the 

rate or depth of respiration have an impact on the arterial tension of CO2, which is a potent vasodilator and can therefore 

induce changes in CBF (Birn et al., 2006; Wise et al., 2004). In turn, global CBF changes cause low-frequency (~0.1 Hz) 

fluctuations in the BOLD signal, which may be misinterpreted as neuronal activity (Birn et al., 2006, 2008). In addition, 

it has been shown that fluctuations in the BOLD signal are caused by spontaneous fluctuations in heart rate (Napadow 30 

et al., 2008; Shmueli et al., 2007). These physiological-related fluctuations can have considerable impact on the resulting 

rs-FC patterns, including dynamic rs-FC patterns, as they tend to inflate the correlation between areas affected by 

physiological noise (Birn et al., 2008; Nikolaou et al., 2016). Therefore, several physiological noise correction techniques 

have been developed to remove the effects of physiological factors from fMRI data. 

One of the most widely used methods for fMRI physiological noise correction is RETROICOR, proposed by Glover et 35 

al. (2000). According to this method, the pulsatility of blood flow and respiration-related motion are considered to distort 

the BOLD signal inducing an artifact that is time-locked to the cardiac and respiratory phases. Therefore, the associated 

physiological regressors are estimated as a linear combination of sinusoidal signals coinciding with the cardiac and 

respiratory cycles using concurrent cardiac and respiratory measurements and subsequently regressed out. RETROICOR 

can effectively remove the high-frequency cardiac (~1 Hz) and respiratory (~0.3 Hz) artifacts, despite the aliasing that 40 

takes place in a typical fMRI acquisition with a relatively low sampling rate (e.g. TR=3 s; Jones et al., 2008). 

Cardiac and respiratory recordings can be also used for reducing low-frequency BOLD fluctuations associated with 

changes in heart rate and breathing patterns using physiological response function (𝑃𝑅𝐹) models, such as the ones 

proposed by Chang et al. (2009) and Birn et al. (2006, 2008). In the first model, heart rate (HR) values, extracted from 

cardiac measurements, are convolved with the so-called cardiac response function (𝐶𝑅𝐹). According to the second 45 

model, respiration volume per time (RVT), which is a measure proportional to the breathing rate (BR) and depth at each 
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time point, is initially estimated based on measurements from a pneumatic belt. Subsequently, RVT is convolved with 

the respiration response function (𝑅𝑅𝐹) to estimate BOLD fluctuations due to changes in the breathing pattern. Both 

models are implemented in major fMRI preprocessing toolboxes such as the physiological noise modelling (PNM) 

toolbox of FSL (Jenkinson et al., 2012) and the PhysIO SPM toolbox (Kasper et al., 2017). Nevertheless, their use has 50 

been somewhat limited, partly due to that they do not account for between-subject 𝑃𝑅𝐹 variability. In this context, 

Falahpour et al. (2013) proposed an alternate approach for constructing subject-specific 𝑃𝑅𝐹 curves based on the global 

signal (GS), which is defined as the mean BOLD signal across all voxels in the brain, from each scan. Physiological 

regressors constructed in this way can account for a considerably larger fraction of variance in fMRI timeseries compared 

to the standard 𝑃𝑅𝐹 curves. However, when individual 𝑃𝑅𝐹 curves were used in a cross-validation analysis, the results 55 

suggested that the improvement in the explained variance may be due to overfitting (Falahpour et al., 2013). 

Several data-driven approaches have been also proposed for preprocessing BOLD fMRI data. For example, in global 

signal regression (GSR), the GS is subtracted from the data through linear regression, implicitly assuming that processes 

that globally affect the fMRI BOLD signal are mostly uncorrelated to neural activity (Fox et al., 2005; Greicius et al., 

2003; Qing et al., 2015). However, the validity of GSR is still under debate, as there is some evidence that the GS has a 60 

neuronal component as well (Liu et al., 2017; Murphy and Fox, 2017). Furthermore, the use of independent component 

analysis (ICA) or principal component analysis (PCA) to identify physiological or “noisy” components (based on their 

temporal, spatial and spectral features) and subsequently remove them before reconstructing the “noise-free” fMRI data, 

has been proposed (Churchill and Strother, 2013; Kay et al., 2013; Pruim et al., 2015; Salimi-Khorshidi et al., 2014). For 

example, FIX (“FMRIB’s ICA-based X-noisefier”) implements a semi-automatic procedure for denoising fMRI via 65 

classification of ICA components. Due to its performance with respect to automatic and manual classification of “noisy” 

components, FIX has been used in the default resting-state fMRI preprocessing pipeline for generating HCP connectomes 

(Salimi-Khorshidi et al., 2014). However, recent studies have demonstrated that global fluctuations captured in the GS 

are still prominent after FIX-denoising (Burgess et al., 2016; Power et al., 2017). Additional studies have established a 

strong association of the GS with slow-frequency fluctuations of respiration and heart rate (Chang and Glover, 2009a; 70 

Falahpour et al., 2013). Overall, these studies suggest that FIX, and in general PCA/ICA-based noise correction 

techniques, may not sufficiently correct for these noise sources. 

In the present paper, we propose a novel methodological framework for extracting subject- and scan-specific 𝑃𝑅𝐹 curves 

using the GS. We propose a double gamma structure for the 𝑃𝑅𝐹 curves and a combination of optimization techniques 

(genetic algorithms and interior-point optimization) for parameter estimation. In contrast to previous approaches (Birn 75 

et al., 2008; Chang et al., 2009; Falahpour et al., 2013), the convolution of physiological variables (HR, breathing pattern) 

with the 𝑃𝑅𝐹 curves is done in a pseudo-continuous time-domain at a 10 Hz sampling frequency to avoid smoothing out 

the effect of high-frequency physiological fluctuations of HR. In addition to between-subject variability, we rigorously 

investigate the between-session variability of the 𝑃𝑅𝐹 curves, as well as their variability across voxels in the brain. To 

this end, as well as to evaluate the performance of the proposed methodology, we use resting-state fMRI data from the 80 

Human Connectome Project (HCP; Van Essen et al., 2013) collected during 4 different scanning sessions on 2 different 

days. The noise correction techniques discussed here are also of importance for task-based studies, such as those 

involving motor and pain protocols, as fluctuations in cardiac activity and breathing patterns may be time-locked to the 

task, and, hence, bias the results (Glasser et al., 2018).  
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2. Methodology 85 

 

2.1 Human Connectome Project (HCP) Dataset 

We used resting-state scans from the HCP S1200 release (Glasser et al., 2016; Van Essen et al., 2013). The HCP dataset 

includes, among others, resting-state (eyes-open and fixation on a cross-hair) data from healthy young (age range: 22-35 

years) individuals acquired on two different days. On each day, two 15-minute scans were collected. We refer to the two 90 

scans collected on days 1 and 2 as R1a/R1b and R2a/R2b respectively. fMRI acquisition was performed with a multiband 

factor of 8, spatial resolution of 2 mm isotropic voxels, and a TR of 0.72 s (Glasser et al., 2013). 

The minimal preprocessing pipeline for the resting-state HCP dataset is described in (Glasser et al., 2013). In brief, the 

pipeline includes gradient-nonlinearity-induced distortion correction, motion correction, EPI image distortion correction, 

non-linear registration to MNI space and mild high-pass (2000 s) temporal filtering. The motion parameters are included 95 

in the database for further correction of motion artifacts. The HCP has adopted FIX for removing structured temporal 

noise related to motion, non-neuronal physiology, scanner artefacts and other nuisance sources (Salimi-Khorshidi et al., 

2014). FIX-denoised data are available in the HCP database as well. 

In the present work, we examined minimally-preprocessed and FIX-denoised data from 41 subjects (Supplementary 

Table 1), which included good quality physiological signals (cardiac and respiratory waveforms) in all four scans, as 100 

assessed by visual inspection. The cardiac and respiratory signals were collected with a photoplethysmograph and 

respiratory belt respectively. 

 

2.2 Preprocessing 

Unless stated otherwise, the preprocessing and analysis described below were performed in Matlab (R2017b; Mathworks, 105 

Natick MA). 

2.2.1 Preprocessing of physiological recordings 

The cardiac signal (i.e. photoplethysmogram) was initially band-pass filtered with a 2nd order Butterworth filter between 

0.3 and 10 Hz. The minimum peak distance specified for peak detection varied between 0.5 and 0.9 seconds depending 

on the subject’s average HR. The HR signal was computed in beats-per-minute (bpm) by multiplying the inverse of the 110 

time differences between pairs of adjacent peaks with 60, and evenly resampled at 10 Hz. 

In the case of scans with abrupt changes in HR, if these changes were found by visual inspection to be due to noisy 

cardiac signal measurements, the HR signal was corrected for outliers using Matlab. Specifically, outliers in the HR 

signal were defined as the time points that deviated more than (approximately) 7 median absolute deviations (MAD) 

from the moving median value within a time window of 30 seconds. The MAD threshold varied across scans and was 115 

chosen empirically based on the extent of noise in the cardiac signal of each scan and the extracted HR signal. Outliers 

were replaced using linear interpolation (for examples of HR signals with abrupt changes and how they were treated, 

please see Supplementary Figs. 1 and 2). 

The respiratory signal was detrended linearly and corrected for outliers using the moving median method described 

earlier. The duration of the moving time window and the MAD threshold were chosen separately for each scan based on 120 

visual inspection. Subsequently, the respiratory signal was low-pass filtered at 5 Hz with a 2nd order Butterworth filter 

and z-scored. The peak detection, used later for the extraction of RVT, was done with a minimum peak distance of 2 s 

and minimum peak height of 0.2. 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 20, 2019. ; https://doi.org/10.1101/512855doi: bioRxiv preprint 

https://doi.org/10.1101/512855
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 

 

2.2.2 Preprocessing of fMRI data 125 

The effect of HR and respiratory variations on the fMRI BOLD signal is considered to last about half a minute (Chang 

et al., 2009). Therefore, the first 40 image volumes were disregarded, while the corresponding physiological data were 

retained. The fMRI timeseries were first spatially smoothed with a Gaussian filter of 3 mm full width at half maximum 

(FWHM) and then linearly detrended. Subsequently, the following nuisance variables were regressed out through linear 

regression: the demeaned and linearly detrended motion parameters and their derivatives, and 3rd order RETROICOR 130 

regressors for the cardiac and respiratory artifacts (Glover et al., 2000) using the physiological recordings at the original 

sampling rate of 400 Hz. 

 

2.3 Physiological response functions 

We employed linear dynamic models for extracting physiological regressors that were subsequently included in the 135 

general linear model as regressors to model the effect of the corresponding physiological variable on the BOLD signal. 

The physiological regressors were obtained as the convolution between the physiological variables and the corresponding 

𝑃𝑅𝐹.  

2.3.1 Standard cardiac response function (𝐶𝑅𝐹𝑠𝑡𝑎𝑛𝑑; Chang et al., 2009) 

In the present study, the model proposed in Chang et al. (2009) was considered as the standard method for removing the 140 

effect of HR fluctuations. According to this method, the HR signal is smoothed with a 6 𝑠 moving average filter before 

being convolved with the standard 𝐶𝑅𝐹 (𝐶𝑅𝐹𝑠𝑡𝑎𝑛𝑑) defined as: 

 
𝐶𝑅𝐹𝑠𝑡𝑎𝑛𝑑(𝑡) = 0.6𝑡2.6𝑒−𝑡/1.6 − 16

1

√2𝜋(9)
𝑒−

1

2

(𝑡−12)2

9  , [1.] 

to construct the physiological regressor 𝛸𝐻𝑅 related to HR fluctuations. Finally, 𝑋𝐻𝑅 was downsampled to the fMRI 

sampling rate. 

2.3.2 Standard respiration response function (𝑅𝑅𝐹𝑠𝑡𝑎𝑛𝑑; Birn et al., 2008, 2006) 145 

We used the method described in (Birn et al., 2008) as the standard method for removing the effect of changes in the 

breathing pattern. Briefly, the maximum and minimum peaks of each breath were initially identified on the respiratory 

signal and linearly interpolated at 10 Hz. Subsequently, the breathing depth was defined as the difference between the 

interpolated time-series of maximum and minimum peaks. The BR was calculated as the time difference between 

successive maximum peaks, expressed in breaths per minute (bpm; note the acronym bpm is used for both HR and BR 150 

and the distinction between them is based on the context of the sentence), and interpolated at 10 Hz. Subsequently, the 

respiration volume per time (RVT) was calculated as the product between breathing depth and rate. Finally, the RVT 

time-series were convolved with the standard 𝑅𝑅𝐹 (𝑅𝑅𝐹𝑠𝑡𝑎𝑛𝑑) defined as: 

 𝑅𝑅𝐹𝑠𝑡𝑎𝑛𝑑(𝑡) = 0.6𝑡2.1𝑒−𝑡/1.6 − 0.0023𝑡3.54𝑒−𝑡/4.25 [2.] 

which yielded the physiological regressor 𝑋𝑅𝑉𝑇 related to changes in the breathing pattern. Finally, 𝑋𝑅𝑉𝑇 was 

downsampled to the fMRI sampling rate.  155 

2.3.3 Proposed physiological response functions (𝑃𝑅𝐹)  

Here, we used the instantaneous HR without any smoothing, whereas the respiratory signal was first filtered with a 

moving average window of 1.5 s and the square of its derivative was subsequently calculated. The respiratory signal was 

smoothed before calculating the derivative to avoid large, physiologically implausible spikes in the extracted regressor. 

The signal extracted after this process, termed respiratory flow (RF), reflects the absolute flow of the inhalation and 160 

exhalation of the subject at each time point. While RF carries similar information with RVT, it is expected to be more 
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robust as it does not depend on accurate peak detection. To reduce the time of subsequent analysis, RF was downsampled 

from 400 Hz to 10 Hz. Therefore, the corresponding physiological regressors were defined as follows: 

 𝑋𝐻𝑅(𝑡) = 𝐻𝑅 ∗ 𝐶𝑅𝐹, and [3.] 

 𝑋𝑅𝐹(𝑡) = 𝑅𝐹 ∗ 𝑅𝑅𝐹 [4.] 

where 𝐶𝑅𝐹 and 𝑅𝑅𝐹 are the proposed cardiac and respiration response functions, respectively. The basic structure of the 

two proposed 𝑃𝑅𝐹 curves was selected as the double gamma function that is also used for 𝑅𝑅𝐹𝑠𝑡𝑎𝑛𝑑 and the canonical 165 

hemodynamic response function (HRF) in the SPM software package (http://www.fil.ion.ucl.ac.uk/spm/). The gamma 

function is defined as: 

 
𝛤(𝜏, 𝛿, 𝑡) = 𝑎(𝜏, 𝛿) ∙  𝑡

√𝜏

𝛿  ∙  𝑒
−

𝑡

𝛿√𝜏, [5.] 

The parameters 𝜏 and 𝛿 indicate the (approximate) time of peak and dispersion of the function, and the parameter 𝛼 is a 

scaling factor which normalizes the peak value of the gamma function to 1. The 𝑃𝑅𝐹 curves are defined as follows: 

 𝐶𝑅𝐹(𝑡) = 𝛽1,𝑐 ∙ 𝛤(𝜏1,𝑐 , 𝛿1,𝑐 , 𝑡) + 𝛽2,𝑐 ∙ 𝛤(𝜏2,𝑐, 𝛿2,𝑐 , 𝑡) , 

𝑅𝑅𝐹(𝑡) = 𝛽1,𝑟 ∙ 𝛤(𝜏1,𝑟 , 𝛿1,𝑟, 𝑡) + 𝛽2,𝑟 ∙ 𝛤(𝜏2,𝑟, 𝛿2,𝑟, 𝑡) . 
[6.] 

Below, we collectively refer to the eight parameters of the gamma functions (𝜏1,𝑐 , 𝛿1,𝑐 , 𝜏2,𝑐 , 𝛿2,𝑐 , 𝜏1,𝑟, 𝛿1,𝑟, 𝜏2,𝑟, 𝛿2,𝑟) and 170 

the four scaling parameters (𝛽1,𝑐 , 𝛽2,𝑐 , 𝛽1,𝑟, 𝛽2,𝑟) as 𝑮 and 𝑩 respectively. Note that, since the 𝑃𝑅𝐹 curves have arbitrary 

units, they can be expressed as follows: 

 𝐶𝑅𝐹(𝑡) = 𝛽𝑐[𝛤(𝜏1,𝑐 , 𝛿1,𝑐 , 𝑡) + 𝑅𝑐 ∙ 𝛤(𝜏2,𝑐, 𝛿2,𝑐 , 𝑡)] , 

𝑅𝑅𝐹(𝑡) = 𝛽𝑟[𝛤(𝜏1,𝑟, 𝛿1,𝑟, 𝑡) + 𝑅𝑟 ∙ 𝛤(𝜏2,𝑟, 𝛿2,𝑟, 𝑡)] . 
[7.] 

where the parameters 𝑅𝑐 and  𝑅𝑟 correspond to the ratios 𝛽2,𝑐/𝛽1,𝑐 and 𝛽2,𝑟/𝛽1,𝑟, respectively, and the two scaling 

parameters 𝛽𝑐 and 𝛽𝑟 reflect the amount of variance explained by the corresponding physiological variables on the BOLD 

signal. Finally, the extracted physiological regressors were downsampled to the fMRI acquisition rate.  175 

 

2.4 Comparison of different physiological models 

Previous studies have suggested that subject-specific 𝑃𝑅𝐹 curves may be more appropriate for constructing physiological 

regressors (Birn et al., 2008; Chang et al., 2009; Falahpour et al., 2013). Here, we rigorously examined this hypothesis 

by considering several different cases for estimating the 𝑃𝑅𝐹 curve parameters and assessing the resulting performance. 180 

For each subject, we used four different 15-minute resting-state scans collected on two different sessions (days): R1a/R1b 

(day one) and R2a/R2b (day two). This allowed us to examine the variability of the 𝑃𝑅𝐹 curves between subjects, as 

well as between scans and sessions of the same subject. Initially (Section 2.4.1), we considered three main models (two 

variants of population-specific models and a scan-specific model) to examine the variability in the shape of the 𝑃𝑅𝐹 

curves across scans for models with different degree of flexibility. Subsequently (Section 2.4.2), we assessed the 185 

performance of several variants of 𝑃𝑅𝐹 models with respect to the explained variance to examine whether the use of 

subject-, session- or scan- specific 𝑃𝑅𝐹 is justifiable. In both cases, the GS from each scan was used to define the 𝑃𝑅𝐹 

curves and assess model performance. To extend these results (Section 2.4.3), we compared the performance of a subset 

of the models considered in 2.4.2 as well as the performance of a voxel-specific model in individual voxels.  

2.4.1 Variability in the shape of the 𝑃𝑅𝐹 curves across scans 190 

Here, we aimed to examine the variability in the shape of 𝑃𝑅𝐹 curves across scans for models based on different degree 

of flexibility. In addition, we aimed to understand the relation of the variability in shape to physiological variables such 

as the mean HR. To this end, we examined three variants of the proposed 𝑃𝑅𝐹 curves, termed 𝑃𝑅𝐹𝑝𝑝𝑙, 𝑃𝑅𝐹𝑝𝑝𝑙
𝑠𝑐  and 𝑃𝑅𝐹𝑠𝑐  
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that were used to explain fluctuations on the GS of each scan. The 𝑃𝑅𝐹𝑝𝑝𝑙 population-specific model is based on Eq. 7 

and is the least flexible model, as it assumes that 𝑮 (i.e., 𝜏1,𝑐 , 𝛿1,𝑐 , 𝜏2,𝑐 , 𝛿2,𝑐 , 𝜏1,𝑟, 𝛿1,𝑟, 𝜏2,𝑟, 𝛿2,𝑟) and 𝑹 (i.e., 𝑅𝑐 , 𝑅𝑟) are the 195 

same for all subjects. In this model, only 𝑩 (i.e., 𝛽𝑐, 𝛽𝑟), which determines the amount of variance explained by HR and 

breathing pattern on the GS for each scan, was allowed to vary across scans. The 𝑃𝑅𝐹𝑝𝑝𝑙
𝑠𝑐  model is also a population-

specific model that allows variability in the shape of the 𝑃𝑅𝐹 curves between scans. Specifically, it is based on Eq. 6 

and it assumes that 𝑮 (𝜏1,𝑐 , 𝛿1,𝑐 , 𝜏2,𝑐 , 𝛿2,𝑐 , 𝜏1,𝑟, 𝛿1,𝑟, 𝜏2,𝑟, 𝛿2,𝑟) is the same for all subjects while 𝑩 (i.e., 𝛽1,𝑐, 𝛽2,𝑐 , 𝛽1,𝑟, 𝛽2,𝑟) 

was allowed to vary across scans. However, in this case, 𝑩 determines both the amount of variance explained by the 200 

physiological variables on the GS as well as the shape of the 𝑃𝑅𝐹 curves. Finally, 𝑃𝑅𝐹𝑠𝑐 is a scan-specific model also 

based on Eq. 6, in which all the parameters were allowed to vary across scans. The 𝑃𝑅𝐹 parameters were estimated with 

the non-linear optimization techniques described in Section 2.4.1.1.  

In the case of the scan-specific model 𝑃𝑅𝐹𝑠𝑐, apart from comparing the curves with their standard counterparts and 

population-specific curves 𝑃𝑅𝐹𝑝𝑝𝑙, we also examined whether the physiological variables for each scan can explain the 205 

between-scan variability in the shape of the curves as well as the performance with respect to the explained variance on 

the GS. Specifically, we examined whether the mean and variance of HR and BR/RF were correlated with the time of 

positive and negative peaks for 𝐶𝑅𝐹𝑠𝑐 and 𝑅𝑅𝐹𝑠𝑐, respectively. In addition, we examined whether the mean and variance 

of HR and BR/RF were correlated to the correlation coefficient values between the corresponding physiological 

regressors (Eqs. 3-4) and the GS. Overall, we examined the relationship of 18 pairs of variables consisting of 6 210 

explanatory variables, the mean and variance of HR, BR and RF, and 6 dependent variables, the time of positive and 

negative peak of the 𝐶𝑅𝐹𝑠𝑐/𝑅𝑅𝐹𝑠𝑐 curves as well as the correlation coefficient between the corresponding physiological 

regressors and the GS. Pairs of variables related to both HR and breathing pattern (e.g. mean of HR and time of positive 

peak for 𝑅𝑅𝐹𝑠𝑐) were not considered. Regarding statistical testing, we used an alpha level of .05 adjusted for multiple 

comparisons (N=18) with Bonferroni correction. 215 

2.4.1.1  𝑃𝑅𝐹 parameter estimation  

The parameters of the population-specific model 𝑃𝑅𝐹𝑝𝑝𝑙 were estimated as follows (for a pseudocode of the algorithm, 

please see Supplementary Table 2): 1. for a set of given parameters, the two 𝑃𝑅𝐹𝑝𝑝𝑙 curves were constructed. 

Subsequently, for each scan, 2. the HR and RF signals (sampled at 10 Hz) were convolved with 𝐶𝑅𝐹𝑝𝑝𝑙 and 𝑅𝑅𝐹𝑝𝑝𝑙 

respectively to extract the corresponding physiological regressors and then downsampled to match the fMRI acquisition 220 

rate. 3. Estimation of general linear model (GLM) was performed, whereby the GS was the dependent variable and the 

two physiological regressors were the two explanatory variables. 4. the Pearson correlation coefficient between the GS 

and the model prediction was calculated. 5. after performing steps 1-4 for all scans, the correlation value was averaged 

across all scans and returned by the algorithm and 6. the parameter values that maximized this correlation value were 

estimated using numerical optimization techniques as described later. 225 

In the case of 𝑃𝑅𝐹𝑝𝑝𝑙
𝑠𝑐 , steps 2 and 3 were implemented as follows: In step 2, the two gamma functions for each 𝑃𝑅𝐹𝑝𝑝𝑙

𝑠𝑐  

curve were convolved separately with HR and RF. As a result, in step 3, two physiological regressors related to HR and 

two regressors related to RF were included in the GLM as explanatory variables (for a pseudocode of the algorithms for 

the 𝑃𝑅𝐹𝑝𝑝𝑙 and 𝑃𝑅𝐹𝑝𝑝𝑙
𝑠𝑐  models, please see Supplementary Table 2). Finally, the procedure described above was followed 

for the estimation of the parameters in the scan-specific model 𝑃𝑅𝐹𝑠𝑐, with the only difference being that step 5 was 230 

omitted, as the 𝑃𝑅𝐹𝑠𝑐 parameters were estimated separately for each scan. 

To obtain the optimal parameter values for the 𝑃𝑅𝐹𝑝𝑝𝑙 model, a genetic algorithm (GA) implemented in Matlab R2017b’s 

Global Optimization Toolbox was initially applied. GAs are a family of popular heuristic optimization techniques that 

search the parameter space for the optimal solution of a problem in a manner inspired by Darwin’s principle of natural 

selection (Holland, 1975). GAs have generally higher demands in CPU time compared to gradient-based algorithms, but 235 

they are capable of providing potentially global optimal solutions for complex functions (Patel and Padhiyar, 2015). The 

parameters 𝝉 (𝜏1,𝑐 , 𝜏2,𝑐  𝜏1,𝑟, 𝜏2,𝑟) and 𝜹 (𝛿1,𝑐 , 𝛿2,𝑐 , 𝛿1,𝑟 , 𝛿2,𝑟) were bounded between 0-20 seconds and 0-3 seconds, 
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respectively. A stopping criterion of 100 generations was set, as it was found to be adequate for convergence. The solution 

of the GA was subsequently used as the initial point for the interior-point gradient-based algorithm, also implemented in 

Matlab R2017b (Optimization Toolbox), with a stopping criterion of 100 maximum iterations, to refine the solution. 240 

To accelerate the estimation procedure for the remaining models, the obtained 𝑃𝑅𝐹𝑝𝑝𝑙 parameter values (or curves) were 

used as the initial point for all models and the interior-point algorithm was employed with a stopping criterion of 100 

maximum iterations to refine the solution. Moreover, since the parameter estimation for the scan-specific models was 

performed using a smaller amount of data, making these models more prone to overfitting, the upper and lower 

boundaries for 𝝉 and 𝜹 were restricted to non-negative numbers (3 sec compared to the population-specific 𝑃𝑅𝐹𝑝𝑝𝑙 245 

model parameter values). 

 

2.4.2 Comparison of population-, subject-, session- and scan-specific 𝑃𝑅𝐹 curves 

This section aimed to assess the performance of 13 different models (Table 1) with respect to the explained variance 

using two-level cross-validation (CV) to examine whether 𝑃𝑅𝐹 curves significantly vary between subjects as well as 250 

between sessions or scans within-subject. For each model, the 𝑃𝑅𝐹 parameters were estimated from one segment of data 

(training set at the first-level of CV; 3rd column of Table 1) and model performance was assessed in a separate segment 

of data (validation set at the first-level of CV; 4th column of Table 1) as described in sections 2.4.2.1 and 2.4.2.2, 

respectively. 

2.4.2.1 PRF parameter estimation at the first-level of cross-validation 255 

The 𝑃𝑅𝐹 models listed in Table 1 are, to some extent, sorted by the least to the most flexible model. The first six models 

(𝑃𝑅𝐹𝑝𝑝𝑙 to 𝑃𝑅𝐹𝑠𝑏𝑗,𝑠𝑑𝑑) are based on Eq. 7. In this case, 𝑹 (𝑅𝑐 , 𝑅𝑟), along with 𝑮 (𝜏1,𝑐 , 𝛿1,𝑐 , 𝜏2,𝑐, 𝛿2,𝑐 , 𝜏1,𝑟, 𝛿1,𝑟 , 𝜏2,𝑟, 𝛿2,𝑟), 

define the shape of the 𝑃𝑅𝐹 curves; they were assumed to be population-specific for 𝑃𝑅𝐹𝑝𝑝𝑙 and subject-specific for 

models 𝑃𝑅𝐹𝑠𝑏𝑗,𝑑 to 𝑃𝑅𝐹𝑠𝑏𝑗,𝑠𝑑𝑑. In these models, 𝑩 (𝛽𝑐 , 𝛽𝑟) reflects the amount of explained variance of each 

physiological variable on the GS. The last 7 models (𝑃𝑅𝐹𝑝𝑝𝑙
𝑠𝑐  to 𝑃𝑅𝐹𝑠𝑐) are based on Eq. 6. The 𝑃𝑅𝐹𝑝𝑝𝑙

𝑠𝑐  model assumes 260 

that 𝑮 is population-specific, the models 𝑃𝑅𝐹𝑠𝑏𝑗,𝑑
𝑠𝑐  to 𝑃𝑅𝐹𝑠𝑏𝑗,𝑠𝑑𝑑

𝑠𝑐  assume that 𝑮 is subject-specific, while the 𝑃𝑅𝐹𝑠𝑐 model 

assumes that it is scan-specific. In the last seven models 𝑩 (𝛽1,𝑐 , 𝛽2,𝑐 , 𝛽1,𝑟, 𝛽2,𝑟) defines the amount of explained variance 

of the physiological variables on the GS as well as the shape of the 𝑃𝑅𝐹 curves. As described in Section 2.4.1, in all 13 

models, the interior-point gradient-based algorithm was applied after being initialized with the parameter values obtained 

from the population-specific model 𝑃𝑅𝐹𝑝𝑝𝑙 (for a pseudocode of the algorithm used to estimate the 𝑃𝑅𝐹 parameters in 265 

all 13 models, please see Supplementary Table 2). 

The following notation was adopted: the subscript in the six models 𝑃𝑅𝐹𝑝𝑝𝑙 to 𝑃𝑅𝐹𝑠𝑏𝑗,𝑠𝑑𝑑 (Table 1) indicates whether 

𝑮 and 𝑹 were estimated from the entire population (‘ppl’) or a different scan of the same subject (‘sbj’). The letters ‘d’ 

and ‘s’ in the subscript indicate whether parameter estimation and model performance assessment were implemented 

using data from one or more scans collected during a different or the same scanning session. For example, 𝑃𝑅𝐹𝑠𝑏𝑗,𝑑𝑑 270 

denotes that 𝑮  and 𝑹  were estimated using data from two scans collected during one session (e.g. R1a/R1b) and model 

performance was assessed using data from a scan collected during a different session (e.g. R2a) from the same subject. 

Similarly, the subscript in the seven models 𝑃𝑅𝐹𝑝𝑝𝑙
𝑠𝑐  to 𝑃𝑅𝐹𝑠𝑏𝑗,𝑠𝑑𝑑

𝑠𝑐  indicates whether 𝑮 was estimated from the entire 

population (‘ppl’), a different scan of the same subject (‘sbj’) or the same scan (‘sc’) with respect to the scan that the 

model performance was assessed on. In addition, the superscript ‘sc’ in the six models 𝑃𝑅𝐹𝑝𝑝𝑙
𝑠𝑐  to 𝑃𝑅𝐹𝑠𝑏𝑗,𝑠𝑑𝑑

𝑠𝑐  (Table 1) 275 

indicates that, even though 𝑮 may be population- or subject-specific, the ultimate 𝑃𝑅𝐹 shape is different for each scan. 

This is due to that 𝑩, which was estimated for each scan separately, in the six models 𝑃𝑅𝐹𝑝𝑝𝑙
𝑠𝑐  to 𝑃𝑅𝐹𝑠𝑏𝑗,𝑠𝑑𝑑

𝑠𝑐 , consists of 

four parameters (i.e., 𝛽1,𝑐, 𝛽2,𝑐 , 𝛽1,𝑟, 𝛽2,𝑟), in contrast to the first 6 models for which 𝑩 consists of two parameters (i.e., 

𝛽𝑐 , 𝛽𝑟), allowing some flexibility in the shape of the 𝑃𝑅𝐹. Finally, the subscript ‘sc’ for the last model (𝑃𝑅𝐹𝑠𝑐)
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Table 1. Assessment of the performance of population-, subject-, session- and scan- specific 𝑷𝑹𝑭 models using two-level cross-validation (CV; 𝒔𝒕𝒂𝒏𝒅: standard, 𝒑𝒑𝒍: population, 𝒔𝒃𝒋: 
subject, 𝒔𝒄: scan, 𝒅: different, 𝒔: same) 

Model: 

Estimated 𝑷𝑹𝑭 

parameters (non-linear 

optimization): 

Obtained from (training set at the first-level of CV): 
Model performance assessed on 

(validation set at the first-level of CV): 

Estimated linear 

regression 

parameters (𝑩): 

𝑃𝑅𝐹𝑠𝑡𝑎𝑛𝑑 --- Eqs. 1 and 2 any scan 𝛽𝑐 , 𝛽𝑟 

𝑃𝑅𝐹𝑝𝑝𝑙 
𝜏1,𝑐 , 𝛿1,𝑐 , 𝜏2,𝑐 , 𝛿2,𝑐 , 𝑅𝑐 , 

𝜏1,𝑟 , 𝛿1,𝑟 , 𝜏2,𝑟 , 𝛿2,𝑟 , 𝑅𝑟 

entire population - leave one out cross-validation (LOOCV; e.g. estimate parameters 

from set of subjects 𝑺|𝒊 = {𝑆1, 𝑆2, . . , 𝑆𝑖−1, 𝑆𝑖+1, 𝑆𝑖+2, . . , 𝑆41} when the model 

performance is assessed for subject 𝑆𝑖) 

any scan of subject 𝑆𝑖 same as 𝑃𝑅𝐹𝑠𝑡𝑎𝑛𝑑 

𝑃𝑅𝐹𝑠𝑏𝑗,𝑑 same as 𝑃𝑅𝐹𝑝𝑝𝑙 
one scan; 

scan 𝑅𝑖,{𝑎,𝑏} of subject 𝑆𝑥 

scan 𝑅𝑗,{𝑎,𝑏} from different session (day) 

of subject 𝑆𝑥 where 𝑖 ≠ 𝑗 
same as 𝑃𝑅𝐹𝑠𝑡𝑎𝑛𝑑 

𝑃𝑅𝐹𝑠𝑏𝑗,𝑑𝑑 same as 𝑃𝑅𝐹𝑝𝑝𝑙 
two scans of a session; 

scans 𝑅𝑖,𝑎 & 𝑅𝑖,𝑏 of subject 𝑆𝑥 where 𝑖 = {1,2} 

scan 𝑅𝑗,{𝑎,𝑏} from different session of 

subject 𝑆𝑥 where 𝑗 = {1,2} and 𝑖 ≠ 𝑗 
same as 𝑃𝑅𝐹𝑠𝑡𝑎𝑛𝑑 

𝑃𝑅𝐹𝑠𝑏𝑗,𝑠 same as 𝑃𝑅𝐹𝑝𝑝𝑙 
one scan; 

scan 𝑅𝑖,𝑗  of subject 𝑆𝑥 where 𝑖 = {1,2} and 𝑗 = {𝑎, 𝑏} 
scan 𝑅𝑖,𝑘 from same session of subject 𝑆𝑥 

where 𝑘 = {𝑎, 𝑏} and 𝑗 ≠ 𝑘 
same as 𝑃𝑅𝐹𝑠𝑡𝑎𝑛𝑑 

𝑃𝑅𝐹𝑠𝑏𝑗,𝑠𝑑 same as 𝑃𝑅𝐹𝑝𝑝𝑙 
one scan of each session; 

scans 𝑅𝑖,𝑗 & 𝑅𝑘,{𝑎,𝑏} of subject 𝑆𝑥 where 𝑖 = {1,2}, 𝑗 = {𝑎, 𝑏}, 𝑘 = {1,2} and 𝑖 ≠ 𝑘 

a different scan 𝑅𝑖,𝑙  of subject 𝑆𝑥 

where 𝑙 = {𝑎, 𝑏} and 𝑗 ≠ 𝑙 
same as 𝑃𝑅𝐹𝑠𝑡𝑎𝑛𝑑 

𝑃𝑅𝐹𝑠𝑏𝑗,𝑠𝑑𝑑 same as 𝑃𝑅𝐹𝑝𝑝𝑙 
three scans; 

scans 𝑅𝑖,𝑗, 𝑅𝑘,𝑎 and 𝑅𝑘,𝑏 of subject 𝑆𝑥 where 𝑖 = {1,2}, 𝑗 = {𝑎, 𝑏}, 𝑘 = {1,2} and 𝑖 ≠ 𝑘 
a different scan 𝑅𝑖,𝑙  of subject 𝑆𝑥 

where 𝑙 = {𝑎, 𝑏} and 𝑗 ≠ 𝑙 
same as 𝑃𝑅𝐹𝑠𝑡𝑎𝑛𝑑 

𝑃𝑅𝐹𝑝𝑝𝑙
𝑠𝑐  

𝜏1,𝑐 , 𝛿1,𝑐 , 𝜏2,𝑐 , 𝛿2,𝑐 , 

𝜏1,𝑟 , 𝛿1,𝑟 , 𝜏2,𝑟 , 𝛿2,𝑟 

entire population - leave one out cross-validation (LOOCV; e.g. estimate parameters 

from set of subjects 𝑺|𝒊 = {𝑆1, 𝑆2, . . , 𝑆𝑖−1, 𝑆𝑖+1, 𝑆𝑖+2, . . , 𝑆41} when the model 

performance is assessed for subject 𝑆𝑖) 

any scan of subject 𝑆𝑖 
𝛽1,𝑐 , 𝛽2,𝑐 , 

𝛽1,𝑟 , 𝛽2,𝑟 

𝑃𝑅𝐹𝑠𝑏𝑗,𝑑
𝑠𝑐  same as 𝑃𝑅𝐹𝑝𝑝𝑙

𝑠𝑐  
one scan; 

scan 𝑅𝑖,{𝑎,𝑏} of subject 𝑆𝑥 where 𝑖 = {1,2} 

scan 𝑅𝑗,{𝑎,𝑏} from different session of 

subject 𝑆𝑥 where 𝑖 ≠ 𝑗 
same as 𝑃𝑅𝐹𝑝𝑜𝑝

𝑠𝑐  

𝑃𝑅𝐹𝑠𝑏𝑗,𝑑𝑑
𝑠𝑐  same as 𝑃𝑅𝐹𝑝𝑝𝑙

𝑠𝑐  
two scans of a session; 

scans 𝑅𝑖,𝑎 & 𝑅𝑖,𝑏 of subject 𝑆𝑥 where 𝑖 = {1,2} 

scan 𝑅𝑗,{𝑎,𝑏} from different session of 

subject 𝑆𝑥 

where 𝑖 ≠ 𝑗 

same as 𝑃𝑅𝐹𝑝𝑜𝑝
𝑠𝑐  

𝑃𝑅𝐹𝑠𝑏𝑗,𝑠
𝑠𝑐  same as 𝑃𝑅𝐹𝑝𝑝𝑙

𝑠𝑐  
one scan; 

scan 𝑅𝑖,𝑗  of subject 𝑆𝑥 where 𝑖 = {1,2} and 𝑗 = {𝑎, 𝑏} 

scan 𝑅𝑖,𝑘 from same session of subject 𝑆𝑥 

where 𝑘 = {𝑎, 𝑏} and 𝑗 ≠ 𝑘 
same as 𝑃𝑅𝐹𝑝𝑝𝑙

𝑠𝑐  

𝑃𝑅𝐹𝑠𝑏𝑗,𝑠𝑑
𝑠𝑐  same as 𝑃𝑅𝐹𝑝𝑝𝑙

𝑠𝑐  
one scan of each session; 

scans 𝑅𝑖,𝑗 & 𝑅𝑘,{𝑎,𝑏} of subject 𝑆𝑥 where 𝑖 = {1,2}, 𝑗 = {𝑎, 𝑏}  𝑘 = {1,2} and 𝑖 ≠ 𝑘 
a different scan 𝑅𝑖,𝑙  of subject 𝑆𝑥 

where 𝑙 = {𝑎, 𝑏} and 𝑗 ≠ 𝑙 
same as 𝑃𝑅𝐹𝑝𝑝𝑙

𝑠𝑐  

𝑃𝑅𝐹𝑠𝑏𝑗,𝑠𝑑𝑑
𝑠𝑐  same as 𝑃𝑅𝐹𝑝𝑝𝑙

𝑠𝑐  
three scans; 

scans 𝑅𝑖,𝑗, 𝑅𝑘,𝑎 and 𝑅𝑘,𝑏 of subject 𝑆𝑥 where 𝑖 = {1,2}, 𝑗 = {𝑎, 𝑏}, 𝑘 = {1,2} and 𝑖 ≠ 𝑘 

a different scan 𝑅𝑖,𝑙  of subject 𝑆𝑥 

where 𝑙 = {𝑎, 𝑏} and 𝑗 ≠ 𝑙 
same as 𝑃𝑅𝐹𝑝𝑝𝑙

𝑠𝑐  

𝑃𝑅𝐹𝑠𝑐  same as 𝑃𝑅𝐹𝑝𝑝𝑙
𝑠𝑐  

one scan; 

scan 𝑅𝑖,𝑗  of subject 𝑆𝑥 where 𝑖 = {1,2} and 𝑗 = {𝑎, 𝑏} 
the same scan 𝑅𝑖,𝑗 of subject 𝑆𝑥 same as 𝑃𝑅𝐹𝑝𝑝𝑙

𝑠𝑐  
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indicates that both 𝑮 and 𝑩 were estimated and validated from data collected during the same scan; therefore, this was 280 

the most flexible model (for schematic examples of training and validation sets for each model, please see Supplementary 

Fig. 3). 

To assess the performance of the population-specific models 𝑃𝑅𝐹𝑝𝑝𝑙 and 𝑃𝑅𝐹𝑝𝑝𝑙
𝑠𝑐 , a leave-one-out cross-validation 

(LOOCV) approach was implemented at the first-level, whereby the 𝑃𝑅𝐹 curves were obtained using training data from 

40 subjects and validated with data from the remaining subject. In the case of subject-specific models of the form 285 

𝑃𝑅𝐹𝑠𝑏𝑗,𝑥
𝑥 , we considered all possible scan combinations (instead of using only one of the scans as the validation data set) 

to examine the effect of session on the variability of 𝑃𝑅𝐹 curves (e.g. 𝑃𝑅𝐹𝑠𝑏𝑗,𝑑 vs 𝑃𝑅𝐹𝑠𝑏𝑗,𝑠) as well as the dependence 

of the model performance on the amount of training data (e.g. 𝑃𝑅𝐹𝑠𝑏𝑗,𝑑 vs 𝑃𝑅𝐹𝑠𝑏𝑗,𝑑𝑑) in more detail. 

2.4.2.2 Assessment of model performance  

For a given scan and model, the 𝑃𝑅𝐹 parameters (𝑮 and 𝑹) were extracted at the first-level as described earlier (Section 290 

2.4.2.1). Subsequently, at the second-level, a 3-fold cross validation approach was implemented using the validation set 

of the first-level to prevent overfitting. Each scan in the validation set of the first-level CV was partitioned into three 

segments of about 5 minutes each. One segment was used as the validation set at the second-level for assessing the 

performance of the model and the remaining two segments were used as the training dataset (at the second-level). This 

step was repeated three times with each of the three segments used exactly once as the validation data. In each fold, linear 295 

regression analysis was performed on the training set to estimate 𝑩 (5th column of Table 1). Subsequently, the estimated 

𝑩 was used on the validation set (second-level), and the correlation of the model prediction with the GS was calculated. 

Finally, the mean correlation across the three folds was calculated. For the 𝑃𝑅𝐹𝑠𝑐 model, one-level cross-validation was 

used. Specifically, the estimation of both 𝑮 and 𝑩 was performed on the training set of each fold (i.e., two segments of 

5 minutes) and subsequently used on the validation dataset (i.e., the remaining segment of that scan). 300 

For each model, the 𝑃𝑅𝐹 parameters and performance assessment can be obtained from different scan combinations. For 

instance, in the case of 𝑃𝑅𝐹𝑠𝑏𝑗,𝑑 for a given subject, the 𝑃𝑅𝐹 parameters can be estimated from scans R1a (or R1b) and 

the performance can be assessed on scans R2a (or R2b), yielding 8 total combinations. Therefore, for a given subject, 

the final performance of a model was assessed for all possible combinations and the average of the obtained values was 

used at the group level to compare the performance between all examined models (Table 1).  305 

2.4.2.3 Effect of sample size and duration of scan on 𝑃𝑅𝐹 parameter estimation 

To investigate the effect of the number of subjects on parameter estimation in population-specific models (𝑃𝑅𝐹𝑝𝑝𝑙 and 

𝑃𝑅𝐹𝑝𝑝𝑙
𝑠𝑐 ), we repeated the assessment of model performance for the models 𝑃𝑅𝐹𝑝𝑝𝑙 and 𝑃𝑅𝐹𝑝𝑝𝑙

𝑠𝑐   for the following subject 

numbers: 1-10, 15, 20, 25, 35 and 40. The subjects were randomly chosen and this part of the analysis was repeated ten 

times to eliminate biases from “representative” or “non-representative” subjects chosen in a particular iteration. 310 

Similarly, to examine the effect of scan duration on the estimation of 𝑃𝑅𝐹 parameters and investigate the minimum 

required duration in scan-specific models, we evaluated the performance of the models 𝑃𝑅𝐹𝑝𝑝𝑙 and 𝑃𝑅𝐹𝑠𝑐 for scan 

durations between 1 to 15 minutes in steps of one minute. 

 

2.4.3  Comparison of population-, scan- and voxel-specific 𝑃𝑅𝐹 curves in individual voxels 315 

Here, we aimed to examine the variability of the 𝑃𝑅𝐹 curves across voxels. To this end, we compared the performance 

of a subset of models considered in 2.4.2, particularly the standard models 𝑃𝑅𝐹𝑠𝑡𝑎𝑛𝑑, the 𝑃𝑅𝐹𝑝𝑝𝑙, 𝑃𝑅𝐹𝑝𝑝𝑙
𝑠𝑐  and 𝑃𝑅𝐹𝑠𝑐 

models, in individual voxels. In addition, we examined the performance of a voxel-specific 𝑃𝑅𝐹 model, termed 𝑃𝑅𝐹𝑠𝑐
𝑣𝑥𝑙.  

𝑃𝑅𝐹𝑠𝑐
𝑣𝑥𝑙 was simply an extension of 𝑃𝑅𝐹𝑠𝑐 that allowed variability in the shape of the 𝑃𝑅𝐹 curve across voxels. The 𝑃𝑅𝐹 

curves for the first four models (standard models 𝑃𝑅𝐹𝑠𝑡𝑎𝑛𝑑, 𝑃𝑅𝐹𝑝𝑝𝑙, 𝑃𝑅𝐹𝑝𝑝𝑙
𝑠𝑐  and 𝑃𝑅𝐹𝑠𝑐) were estimated based on the 320 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 20, 2019. ; https://doi.org/10.1101/512855doi: bioRxiv preprint 

https://doi.org/10.1101/512855
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

 

GS of one or more scans as described earlier in Section 2.4.2. These curves were subsequently used to extract two 

physiological regressors that were included in the GLM for a voxel-wise analysis. On the other hand, for the 𝑃𝑅𝐹𝑠𝑐
𝑣𝑥𝑙 

model, the four gamma functions corresponding to parameters 𝑮 and 𝑩 of 𝑃𝑅𝐹𝑠𝑐 were used to extract four physiological 

regressors for the GLM. Due to that 𝑃𝑅𝐹𝑠𝑐
𝑣𝑥𝑙 had more physiological regressors in the GLM than the other models 

examined in this section (4 vs 2), a 3-fold cross validation approach was implemented to assess model performance as 325 

described in Section 2.4.2.1. 

The comparison of the models was restricted to regions of interest (ROIs) where the models explained significant 

variance. Specifically, these ROIs were defined for each model separately and included the 5% of voxels in the brain 

with the highest correlation between the voxel timeseries and the prediction of the corresponding model. The 

aforementioned five 𝑃𝑅𝐹 models were examined for 𝐶𝑅𝐹 and 𝑅𝑅𝐹 separately as well as both 𝐶𝑅𝐹 and 𝑅𝑅𝐹, yielding 330 

15 models in total. The comparison between the 15 models was repeated on FIX-denoised data using ROIs for each 

model the ones derived from the original data. Finally, to examine the effect of spatial smoothing on the performance of 

𝑃𝑅𝐹 models, the comparison between the 15 models on the raw data was performed with a FWHM value of 0 mm and 

6 mm in addition to the value of 3 mm used for the main analysis. 

For visualization purposes, the statistical maps shown here were overlaid on structural images after being transformed to 335 

structural space with FSL’s FLIRT registration tool (Jenkinson and Smith, 2001) as incorporated in the MANGO 

software (Lancaster, Martinez; www.ric.uthscsa.edu/mango). 
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3. Results 

3.1 Variability in physiological measurements 340 

The mean HR and BR values during resting conditions exhibited considerable variability across the 164 scans, with the 

mean HR and BR ranging between 46-106 bpm and 13-23 bpm, respectively. To examine the variability across subjects 

and sessions, all scans were grouped in pairs a) from different subjects (𝑁 = 13120; for a pair of scans the first scan was 

picked from all 164 scans and the second scan from the 160 scans of the remaining 40 subjects. Thus, the number of 

unique pairs was 164 x 160 divided by two as the order does not matter), b) from different sessions of the same subject 345 

(𝑁 = 41 ∙ 2 ∙ 2 = 164), and c) from scans of the same session (𝑁 = 41 ∙ 2 = 82). The mean HR differences obtained 

from the scan pairs in groups a, b and c yielded standard deviation values of 16, 8 and 2 bpm respectively, and the 

corresponding variance values were found to be significantly different (F-test; p-value: <10−49). Similarly, the 

differences in BR obtained from the scan pairs in groups a, b and c yielded standard deviation values of 3.1, 1.7 and 1.0 

bpm, and the corresponding variance values were found again to be significantly different (F-test; p-value: <10−15). In 350 

other words, the between subject variability in mean HR and BR was significantly larger compared to the within-subject 

variability and, in turn, the between session within-subject variability was larger than the within session variability. In 

Fig. 1, we show the variability of mean HR and BR across subjects, sessions and scans for 10 representative subjects, 

which illustrates the aforementioned statistical differences. For instance, significant differences were found between 

scans of different subjects such as in the case of subjects S406432 (light blue color) and S555348 (brown color), whereby 355 

all four scans of the former subject are characterized by lower mean HR and BR compared to the four scans of the latter 

one. Also, significant variability is found between sessions within-subject such as in the case of subject S203923 (cyan 

color) whereby both mean HR and BR increase from the first to the second session. 

3.2 Variability in the shape of 𝑷𝑹𝑭 curves across scans 

This section examines the variability in the shape of the 𝑃𝑅𝐹𝑝𝑝𝑙, 𝑃𝑅𝐹𝑝𝑝𝑙
𝑠𝑐  and 𝑃𝑅𝐹𝑠𝑐 curves. For all 164 scans examined 360 

in this study, it was found that the GS was strongly correlated to cardiac and respiratory activity. The first column of Fig. 

2 shows the optimal 𝐶𝑅𝐹𝑝𝑝𝑙 and 𝑅𝑅𝐹𝑝𝑝𝑙 curves estimated for the 41 subjects using the 𝑃𝑅𝐹𝑝𝑝𝑙 model that assumes the 

same 𝐶𝑅𝐹 and 𝑅𝑅𝐹 for the entire population. Both the 𝑃𝑅𝐹𝑠𝑡𝑎𝑛𝑑 and 𝑃𝑅𝐹𝑝𝑝𝑙 curves have a bimodal shape with a positive 

peak followed by a negative one. However, the amplitude and time of the peaks differ between the curves. The peaks in 

the 𝐶𝑅𝐹𝑝𝑝𝑙 appear at much earlier time lags compared to 𝐶𝑅𝐹𝑠𝑡𝑎𝑛𝑑 (Chang et al., 2009; 1.2 and 7.0 s for 𝐶𝑅𝐹𝑝𝑝𝑙, vs. 4.1 365 

and 12.4 s for 𝐶𝑅𝐹𝑠𝑡𝑎𝑛𝑑). Faster dynamics were also observed in the estimated 𝑅𝑅𝐹𝑝𝑝𝑙 compared to 𝑅𝑅𝐹𝑠𝑡𝑎𝑛𝑑 (Birn et 

al., 2008). Specifically, the positive and negative peaks of the 𝑅𝑅𝐹𝑝𝑝𝑙 were found to be located at 2.0 and 12.8 s, 

Fig. 1. Scatterplot of mean heart rate (HR) and breathing rate (BR) from scans of 10 representative subjects. Squares and crosses correspond 

to scans from sessions (days) 1 and 2, respectively, whereas each color indicates a different subject. Both mean HR and BR vary less across scans 

of the same session than scans across different sessions within-subject. In turn, mean HR and BR across the four scans of each subject exhibited 

lower variability compared to scans from different subjects. 
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respectively, whereas the corresponding peaks in the 𝑅𝑅𝐹𝑠𝑡𝑎𝑛𝑑 are at 3.1 and 15.5 s. Moreover, the estimated 𝑃𝑅𝐹𝑝𝑝𝑙 

curves return to baseline faster than the corresponding 𝑃𝑅𝐹𝑠𝑡𝑎𝑛𝑑 curves. Finally, 𝐶𝑅𝐹𝑝𝑝𝑙 and 𝑅𝑅𝐹𝑝𝑝𝑙 exhibited a stronger 

positive and negative peak respectively compared to the standard curves (factor of ~2). 370 

The second column of Fig. 2 shows the gamma functions that were used to construct the 𝑃𝑅𝐹𝑝𝑝𝑙 and 𝑃𝑅𝐹𝑝𝑝𝑙
𝑠𝑐  curves 

while the third column presents scatterplots of 𝑩 (𝛽𝑐1
, 𝛽𝑐2

, 𝛽𝑟1
, 𝛽𝑟2

), which defined the shape of the 𝐶𝑅𝐹𝑝𝑝𝑙
𝑠𝑐  and 𝑅𝑅𝐹𝑝𝑝𝑙

𝑠𝑐  

curves, for all scans. Specifically, 𝛽𝑐1
 (𝛽𝑟1

) and 𝛽𝑐2
 (𝛽𝑟2

) correspond to the sign and magnitude of the first and second 

peak of the 𝐶𝑅𝐹𝑝𝑝𝑙
𝑠𝑐  (𝑅𝑅𝐹𝑝𝑝𝑙

𝑠𝑐 ) curve, respectively. The parameters of the four gamma functions are listed in Table 2. All 

parameters in 𝑩 for 𝐶𝑅𝐹𝑝𝑝𝑙
𝑠𝑐  are located on the 4th quadrant (Fig. 2c) and can be approximated well with a straight line 375 

that crosses the origin of the plane with a slope R of -1.1. However, the small deviation of each circle from the straight 

line suggests that the 𝐶𝑅𝐹𝑝𝑝𝑙
𝑠𝑐  curves had small differences compared to the 𝐶𝑅𝐹𝑝𝑝𝑙 curve shown in Fig. 2b. Furthermore, 

Table 2. Parameters for the 𝑷𝑹𝑭𝒑𝒑𝒍
(𝒔𝒄)

 model. The parameters 𝝉 and 𝜹 used in Eq. 5 are an approximate 

measure for the time of peak and dispersion of the gamma function. The full width at half maximum 

(FWHM) was calculated numerically. 

 𝐶𝑅𝐹𝑝𝑝𝑙
(𝑠𝑐)

  𝑅𝑅𝐹𝑝𝑝𝑙
(𝑠𝑐)

 

  𝜞𝒄𝟏
(𝒕) 𝜞𝒄𝟐

(𝒕)  𝜞𝒓𝟏
(𝒕)   𝜞𝒓𝟐

(𝒕) 

Time to peak τ (s) 3.1 5.6  1.9 12.5 

Dispersion δ (s) 2.5 0.9  2.9  0.5 

FWHM (s) 9.2 8.3  7.0 11.1 

Ratio 𝑅 (𝛽2 𝛽1⁄ ) (only for 𝑃𝑅𝐹𝑝𝑝𝑙) Ν/Α -1.1  Ν/Α -2.6 

  

Fig. 2. Estimated gamma functions for the 𝑪𝑹𝑭𝒑𝒑𝒍
(𝒔𝒄)

 and 𝑹𝑹𝑭𝒑𝒑𝒍
(𝒔𝒄)

 curves. (a) Standard 𝐶𝑅𝐹𝑠𝑡𝑎𝑛𝑑  and estimated 𝐶𝑅𝐹𝑝𝑝𝑙 curves. (b) The two 

gamma functions used to construct the population-specific 𝐶𝑅𝐹𝑝𝑝𝑙 and 𝐶𝑅𝐹𝑝𝑝𝑙
𝑠𝑐  curves. (c) Scatterplot of parameters in 𝑩 for the 𝐶𝑅𝐹𝑝𝑝𝑙

𝑠𝑐  model. 

The circles correspond to the 164 scans and the values of  𝛽1,𝑐 and 𝛽2,𝑐 reflect the amplitude of the gamma functions 𝛤1,𝑐 and 𝛤2,𝑐 shown in (b). In 

a similar manner, (d), (e) and (f) illustrate the results for the models related to 𝑅𝑅𝐹. 
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Fig. 3. Demonstration of the 𝑷𝑹𝑭𝒔𝒄 model performance for two subjects. The HR (1st row of each subject’s panel) and RF (5th row) time series 

were derived from the recorded physiological signals (photoplethysmograph and respiratory belt, respectively). Subsequently, the scan-specific 

curves 𝐶𝑅𝐹𝑠𝑐 and 𝑅𝑅𝐹𝑠𝑐  were obtained after estimating the corresponding 𝑃𝑅𝐹 parameters (right column). The physiological regressors 𝑋𝐻𝑅 and 

𝑋𝑅𝐹  shown in the 2nd and 4th row respectively were obtained as the convolution between HR/RF with 𝐶𝑅𝐹𝑠𝑐/𝑅𝑅𝐹𝑠𝑐. The parameters 𝛽𝐻𝑅 and 𝛽𝑅𝐹  

were estimated by maximizing the variance of the GS explained by the model (3rd row). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 20, 2019. ; https://doi.org/10.1101/512855doi: bioRxiv preprint 

https://doi.org/10.1101/512855
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

 

the parameters in 𝑩 for the 𝑅𝑅𝐹𝑝𝑝𝑙
𝑠𝑐  curves (Fig. 2f) indicate an even larger variability of the curves across scans compared 

to the 𝑅𝑅𝐹𝑝𝑝𝑙 shown in Fig. 2e. 380 

Fig. 3 illustrates the estimated 𝑃𝑅𝐹𝑠𝑐 curves for two subjects that demonstrated strong association between the GS with 

both HR and breathing patterns. It also shows the physiological variables HR and RF, as well as the estimated regressors 

that maximized the correlation with the GS. For the majority of the examined subjects, including the two subjects whose 

results are shown in Fig. 3, it was observed that HR explains faster fluctuations of the GS compared to RF. Additionally, 

we observe that even though the two subjects had almost the same mean HR, the corresponding dynamic patterns were 385 

very different. Specifically, the HR of subject 210415 was relatively stable with sporadic abrupt increases whereas the 

HR of subject 30717 exhibited faster fluctuations. With respect to the estimated 𝐶𝑅𝐹𝑠𝑐 curves, subject 210415 was 

characterized by a more abrupt increase and faster return to baseline. The RF time-series of these two subjects also 

exhibited different profiles, while their 𝑅𝑅𝐹𝑠𝑐 curves differed significantly from the canonical 𝑅𝑅𝐹𝑠𝑡𝑎𝑛𝑑 and the 

population-specific 𝑅𝑅𝐹𝑝𝑝𝑙 curve. The rest of the three scans of subject 210415 exhibited 𝑅𝑅𝐹𝑠𝑐 curves similar to the 390 

𝑅𝑅𝐹𝑝𝑝𝑙 (Fig. 2d) while the curves found for the rest of the three scans of subject 307127 were similar to the curve derived 

from the R2a scan shown in Fig. 3 (supplementary Figs. 4-7). 

To better understand the properties of the scan-specific 𝑃𝑅𝐹𝑠𝑐 curves, we investigated whether the times of positive and 

negative peak depend on physiological variables (e.g. mean and variance of HR). Among the different combinations that 

we tested, significant correlations were found only between the shape of the 𝐶𝑅𝐹𝑠𝑐  curves and the subjects’ HR. 395 

Specifically, shorter times for the negative 𝐶𝑅𝐹𝑠𝑐  peak correlated with higher mean HR values (Fig. 4a). Furthermore, 

we examined whether HR and RF fluctuations had a stronger effect on the GS under specific physiological states. Fig. 

4b shows that HR values were significantly anticorrelated with the fraction of the GS explained by the cardiac regressor 

(as quantified by the correlation coefficient between model prediction and GS), whereas RF variance values were found 

to be significantly correlated to the fraction of the GS explained by the respiratory regressor (Fig. 4c).  400 

Fig. 4. Scatterplots of physiological variables and features from the 𝑷𝑹𝑭𝒔𝒄 models. (a) The time-to-peak values for the negative 𝐶𝑅𝐹𝑠𝑐  peak 

were negatively correlated with mean HR. (b) The mean HR was negatively correlated with the correlation coefficient between the cardiac regressor 

𝑋𝐻𝑅 and GS. (c) The variance of RF was strongly correlated with the correlation coefficient between the respiratory regressor 𝑋𝑅𝐹  and GS. 
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3.3 Comparison of population-, subject-, session- and scan-specific 𝑷𝑹𝑭 curves 

The population-specific curves 𝑃𝑅𝐹𝑝𝑝𝑙  yielded a significant increase in the mean correlation between the corresponding 

physiological regressors and the GS compared to the standard curves 𝑃𝑅𝐹𝑠𝑡𝑎𝑛𝑑 (from 29.6% to 51.3%; Fig. 5, p<0.0001 

uncorrected). Gradually making the PRF curves more scan-specific yielded additional improvements in the model 

performance. Specifically, 𝑃𝑅𝐹𝑝𝑝𝑙
𝑠𝑐  (whereby 𝑩 (i.e., 𝛽1,𝑐 , 𝛽2,𝑐 , 𝛽1,𝑟, 𝛽2,𝑟) that determines the shape of the 𝑃𝑅𝐹 curves 405 

was allowed to vary across scans) yielded a significant increase in the mean correlation compared to 𝑃𝑅𝐹𝑝𝑝𝑙  (53.2 %; 

p<0.01 – Fig. 5), while optimizing all the parameters for each scan separately (𝑃𝑅𝐹𝑠𝑐) further increased the mean 

correlation to 56.1% (p<0.0001 compared to 𝑃𝑅𝐹𝑝𝑝𝑙
𝑠𝑐  – Fig. 5). These increases were not due to overfitting the data, as 

we assessed model performance using different training and testing datasets. 

As illustrated in Fig. 5, subject-specific models trained and assessed using different sessions (𝑃𝑅𝐹𝑠𝑏𝑗,𝑑) yielded slightly 410 

higher mean correlation values compared to the population-specific model 𝑃𝑅𝐹𝑝𝑝𝑙, which were however not statistically 

significant. Increasing the amount of data used for training (two scans of 15-minute duration from one session; 𝑃𝑅𝐹𝑠𝑏𝑗,𝑑𝑑) 

further improved performance, but this improvement was again non-significant compared to 𝑃𝑅𝐹𝑝𝑝𝑙. On the other hand, 

a significantly improved fit was achieved when the models were estimated and validated from different scans collected 

during the same session (𝑃𝑅𝐹𝑠𝑏𝑗,𝑠). Importantly, the 𝑃𝑅𝐹𝑠𝑐 model, whereby parameter estimation and assessment of 415 

performance was done by splitting the same scan performed equally well with 𝑃𝑅𝐹𝑠𝑏𝑗,𝑠 but also with 𝑃𝑅𝐹𝑠𝑏𝑗,𝑠𝑑𝑑  and 

𝑃𝑅𝐹𝑠𝑏𝑗,𝑠𝑑𝑑
𝑠𝑐 , which used the maximum number (3) of within-subject scans for training. This finding suggests that 

estimating subject-specific 𝑃𝑅𝐹 curves from data collected on different sessions or scans, regardless of how much is the 

amount of data, it does not offer any benefit compared to scan-specific 𝑃𝑅𝐹𝑠𝑐 curves derived from the same data. 

  420 

Fig. 5. Mean correlation (%) between the prediction of each model with the GS. The squares and error bars indicate the mean and standard 

error of the means across all subjects. The population-specific model 𝑃𝑅𝐹𝑝𝑝𝑙 yielded a significant mean correlation increase compared to the 

standard curves (𝑃𝑅𝐹𝑠𝑡𝑎𝑛𝑑). However, models with more flexibility yielded further improvements in performance, suggesting that 𝑃𝑅𝐹 curves 

vary both from subject to subject as well as between scans within a subject. *𝑝 < 0.01; **𝑝 < 0.0001.  
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3.3.1 Effect of sample size and duration of scan on 𝑃𝑅𝐹 parameter estimation 

To assess the effect of the number of subjects on the reliability of the obtained population-specific models, we repeated 

estimation of the model parameters using 10 different randomized subject cohorts of different sizes (see Methods). In 

Fig. 6a, it can be seen that the performance of the population-specific models increased monotonically between 1 and 10 

subjects and reached a plateau at a mean correlation of around 51% and 53 % for the 𝑃𝑅𝐹𝑝𝑝𝑙 and 𝑃𝑅𝐹𝑝𝑝𝑙
𝑠𝑐  models, 425 

respectively. We also examined the effect of the scan duration, which may considerably affect model reliability, 

particularly in the case of 𝑃𝑅𝐹𝑠𝑐. Fig. 6b shows a comparison of the performance achieved for the least (𝑃𝑅𝐹𝑝𝑝𝑙) and 

most (𝑃𝑅𝐹𝑠𝑐) flexible models as a function of scan duration. The 𝑃𝑅𝐹𝑝𝑝𝑙 model yielded higher correlation values for 

short scan durations (44% for a one-minute duration), while these values stabilized around 51% for scan durations above 

5 minutes. The 𝑃𝑅𝐹𝑠𝑐 model yielded poorer performance for scan durations shorter than 5 minutes, and its performance 430 

improved for longer scan durations, eventually reaching a mean correlation of 56% (15-minute scan duration). 

Interestingly, these two models yielded very similar performance for a 5-minute scan duration, which is the minimum 

scan duration typically used in rs-fMRI studies.  

Fig. 6. Effect of sample size and scan duration on the performance of 𝑷𝑹𝑭 models. (a) The 𝑃𝑅𝐹 parameters in the population-specific models 

𝑃𝑅𝐹𝑝𝑝𝑙 and 𝑃𝑅𝐹𝑝𝑝𝑙
𝑠𝑐  were estimated using subsets of subjects and the performance of the models was assessed on the remaining subjects. Both 

models reached a plateau at a sample size of around 10 subjects (b) The performance of the least flexible model (i.e. 𝑃𝑅𝐹𝑝𝑝𝑙) and the most flexible 

model (i.e. 𝑃𝑅𝐹𝑠𝑐) was assessed on reduced scan durations. Our results suggest that for scan duration longer than 5 minutes the scan-specific 𝑃𝑅𝐹𝑠𝑐 

model explained more variance in GS than the 𝑃𝑅𝐹𝑝𝑝𝑙 model and a more profound difference was observed as the scan duration increased. 
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3.4 Model performance in individual voxels 

The comparison of the models was repeated on a voxel-wise basis in ROIs. The ROIs were defined for each model 435 

separately and included the 5% of voxels in the brain with the highest goodness of fit (see Methods). The analysis at the 

voxel-level yielded similar findings with the analysis based on the fit to the GS (Fig. 7). The full 𝑃𝑅𝐹𝑠𝑐 model (i.e. 𝐶𝑅𝐹𝑠𝑐 

and 𝑅𝑅𝐹𝑠𝑐) yielded the best performance among all models with a mean correlation around 24% (note the lower values 

compared to GS). Importantly, the 𝑃𝑅𝐹𝑠𝑐
𝑣𝑥𝑙 model demonstrated slightly lower mean correlation compared to the 𝑃𝑅𝐹𝑠𝑐 

model, even though it allows variability in the estimated curves across voxels. For all the examined models, the 440 

respiration-related component exhibited higher mean correlation compared to the cardiac-related component, although 

the difference was not statistically significant (𝑝 > 0.05). The analysis for assessing model performance at the voxel 

level was also performed on resting-state fMRI data that were corrected for physiological noise with FIX. The results 

were similar to the results derived from the raw data, although the overall mean correlation was decreased in the latter 

case. The 𝑃𝑅𝐹𝑠𝑐 model again illustrated the best performance with a mean correlation of around 17%. 445 

The brain areas affected by fluctuations in HR and breathing pattern were mainly areas in gray matter and close to blood 

vessels (Fig. 8). Unsurprisingly, the standard methods (𝑃𝑅𝐹𝑠𝑡𝑎𝑛𝑑) and the proposed methods yielded similar maps 

regarding the areas more affected by physiological noise. However, the explained variance obtained using the proposed 

𝑃𝑅𝐹 curves was significantly higher compared to the standard curves. 

The statistical maps shown in Fig. 8 demonstrate much finer detail compared to previous related studies (Birn et al., 450 

2008; Chang et al., 2009; Golestani et al., 2015) which is in part due to the higher spatial resolution (2 mm isotropic 

voxels) fMRI data acquired in the HCP. However, another factor that may have affected the resolution is the spatial 

smoothing performed during the preprocessing. To better understand its effect, we extracted these maps without spatial 

smoothing as well as with a spatial filter with a larger FWHM value (6 mm instead of 3 mm). As shown in Supplementary 

Figs. 8-9, larger FWHM values resulted in higher correlation values. Overall, our results suggest that a FWHM value of 455 

3 mm yields a good compromise between the resulting signal-to-noise (SNR) ratio and the spatial resolution of the 

regional maps related to physiological effects on fMRI time-series.  

Fig. 7. Correlation values between physiological model predictions and voxel-specific timeseries, averaged over all voxels within the ROI 

of each model. The squares and error bars indicate the mean and standard error of the means of all subjects. As in the case of GS-based analysis, 

the population-specific 𝑃𝑅𝐹𝑝𝑝𝑙 model yielded significantly increased performance compared to the standard methods (𝑃𝑅𝐹𝑠𝑡𝑎𝑛𝑑). Overall, the best 

performance was achieved with the scan-specific model 𝑃𝑅𝐹𝑠𝑐 . *𝑝 < 10−8; ** 𝑝 < 10−13. 
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Fig. 8. Correlation maps between the physiological model predictions and fMRI timeseries for two representative subjects. (1st column) 𝑇1- 

weighted images; (2nd & 3rd column) maps derived with the standard (𝑃𝑅𝐹𝑠𝑡𝑎𝑛𝑑) and scan-specific (𝑃𝑅𝐹𝑠𝑐) model, respectively; (4th column) maps 

derived with the scan-specific model when applied on data previously corrected with FIX. Overall, all models account for substantial variance in 

gray matter as well as near large vessels. 
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Finally, the contribution of different sources of physiological noise was examined. Specifically, the 6 parameters 

corresponding to the cardiac-related regressors in RETROICOR (3rd order), estimated during preprocessing, were used 460 

to construct the pulsatility-driven component of each voxel timeseries, which was subsequently correlated with each 

voxel timeseries to extract the correlation map related to pulsatility. The maps related to HR and RF were extracted 

separately by employing the scan-specific models (𝐶𝑅𝐹𝑠𝑐  and 𝑅𝑅𝐹𝑠𝑐 respectively). Fig. 9 shows the contribution of each 

physiological source for a representative subject on 𝑇2-weighted structural images, instead of the typical 𝑇1-weighted 

images, as 𝑇2-weighted images yield better contrast for visualizing vessels. We observe that not all areas with large 465 

vessels were equally affected by pulsatility or fluctuations in HR and the breathing pattern. Furthermore, changes in HR 

and the breathing pattern mostly affected areas in gray matter in the cerebrum, whereas pulsatility affected areas close to 

the brainstem. Fig. 10 illustrates the spatial patterns averaged across all subjects for the three aforementioned 

physiological noise sources. As in Fig. 9, HR and RF effects were found to be more pronounced in distinct areas as 

compared to cardiac pulsatility. We could not examine whether the changes in HR and breathing patterns were more 470 

pronounced in voxels located around draining veins and sinuses rather than arteries, as the HCP does not include images 

for differentiating veins from arteries. However, a visual comparison with voxel-wise probabilistic maps of veins and 

arteries developed in (Bernier et al., 2018) suggests that voxels nearby large draining vessels may be mostly affected by 

changes in HR and breathing patterns, whereas voxels close to arteries may be mostly affected by cardiac pulsatility. 

Fig. 9. Contribution of different physiological noise sources in fMRI for a representative subject. (1st column) 𝑇2-weighted images; (2nd 

column) correlation maps related to cardiac pulsatility as modelled with RETROICOR; (3rd column) correlation maps related to HR as modelled 

with the scan-specific model 𝐶𝑅𝐹𝑠𝑐; (4th column) correlation maps related to RF as modelled with the scan-specific model 𝑅𝑅𝐹𝑠𝑐. While the 

effect of all physiological sources appears mostly in areas close to vessels, cardiac pulsatility effects are more pronounced around the brainstem, 

whereas HR and RF effects are more prominent in the occipital and parietal lobes. 
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Fig. 10. Contribution of different  

physiological noise sources in fMRI 

averaged across all subjects.  (1st 

column) MNI152 standard-space 𝑇1-

weighted average structural template 

image (1 mm isometric voxel); (2nd 

column) correlation maps related to 

cardiac pulsatility as modelled with 

RETROICOR; (3rd column) correlation 

maps related to HR as modelled with the 

scan-specific model 𝐶𝑅𝐹𝑠𝑐; (4th column) 

correlation maps related to RF as 

modelled with the scan-specific model 

𝑅𝑅𝐹𝑠𝑐. BOLD fluctuations due to cardiac 

pulsatility were more pronounced close to 

the basilar and vertebral artery, in the 4th 

ventricle, in the superior sagittal sinus, in 

the lateral sulcus, in the occipital lobe and 

in the anterior cingulate cortex. On the 

other hand, BOLD fluctuations due to 

changes in HR and RF were widespread in 

gray matter and more pronounced in 

frontal and posterior brain regions, as well 

as in sinuses such as the superior sagittal 

sinus and the transverse sinuses. 
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4. Discussion 

We have rigorously examined the effect of the choice of physiological response functions on the investigation of 

physiological effects (HR and breathing pattern) on fMRI. To do so, we proposed a novel modeling framework to obtain 

accurate estimates of the 𝑃𝑅𝐹 curves. Linear convolution models, whereby physiological variables are convolved with 485 

suitable 𝑃𝑅𝐹 curves, were employed to model the associated physiological-driven BOLD fluctuations. The 𝑃𝑅𝐹 curves 

were estimated using numerical optimization techniques that present several advantages compared to previously used 

techniques (Birn et al., 2008; Chang et al., 2009; Falahpour et al., 2013; Golestani et al., 2015). The structure of the 

curves was defined as the double gamma function which is also the basis of the canonical HRF in SPM and 𝑅𝑅𝐹𝑠𝑡𝑎𝑛𝑑 

(Birn et al., 2008), and its parameters were restricted within physiologically plausible ranges. The population-specific 490 

models 𝑃𝑅𝐹𝑝𝑝𝑙 demonstrated significantly better fit on the GS as well as in individual voxel time-series compared to the 

standard models 𝑃𝑅𝐹𝑠𝑡𝑎𝑛𝑑 (Fig. 5, Fig. 7). The scan-specific models 𝑃𝑅𝐹𝑠𝑐 outperformed 𝑃𝑅𝐹𝑝𝑝𝑙  while no significant 

differences were found between the scan-specific models 𝑃𝑅𝐹𝑠𝑐 and voxel-specific models 𝑃𝑅𝐹𝑠𝑐
𝑣𝑥𝑙. The between-scan 

variability in the 𝑃𝑅𝐹 curves was partly attributed to physiological factors such as the subject’s mean HR during a scan. 

Overall, HR was found to explain higher frequency fluctuations on the GS than RF (Fig. 3). Consistent with previous 495 

findings, changes in HR and breathing pattern (breathing rate and depth) had a strong effect across widespread regions 

in the gray matter (Birn et al., 2008; Chang et al., 2009). 

4.1 Population specific vs standard 𝑷𝑹𝑭 curves 

Using the proposed framework, we derived population specific curves (𝐶𝑅𝐹𝑝𝑝𝑙 and 𝑅𝑅𝐹𝑝𝑝𝑙), which explained a 

substantially larger fraction of GS and individual voxel time-series variance compared to the standard models 𝑃𝑅𝐹𝑠𝑡𝑎𝑛𝑑 500 

(Fig. 5, Fig. 7). The population-specific HR model 𝐶𝑅𝐹𝑝𝑝𝑙 demonstrated considerably faster dynamics than 𝐶𝑅𝐹𝑠𝑡𝑎𝑛𝑑 

(Chang et al., (2009); Fig. 2a). Some of the main differences in the two studies that may explain the results are the 

following: a) in Chang et al., (2009) the resting-state scan was performed with eyes closed instead of eyes open as done 

in the HCP data used here, and b) 𝐶𝑅𝐹𝑠𝑡𝑎𝑛𝑑 was obtained by first estimating the 𝐶𝑅𝐹 with the method of maximum 

likelihood in individual voxels and then averaging across voxels and subjects, whereas, in the present study, similar to 505 

Falahpour et al. (2013), 𝐶𝑅𝐹 estimation was based on the GS of each scan, which is strongly driven by physiological 

noise, and, thus, yields higher SNR. In addition to these, one of the reasons for the faster dynamics observed in the CRF 

curves in the present study is the fact that in previous studies (Chang et al., 2009; Falahpour et al., 2013; Golestani et al., 

2015) HR was initially averaged within a time window of 4-6 s and subsequently downsampled to a low TR (e.g. 3 s) 

before further analysis, disregarding fast fluctuations in HR. Also, due to sinus arrhythmia effects commonly observed 510 

in young subjects, the smoothed HR may tend to become more similar to the respiratory cycle. As a result, 𝐶𝑅𝐹𝑠𝑡𝑎𝑛𝑑 

may capture some of the effects of respiration on the BOLD signal. 

Differences, albeit to a smaller extent, were also found between the population-specific curve 𝑅𝑅𝐹𝑝𝑝𝑙 and the standard 

curve 𝑅𝑅𝐹𝑠𝑡𝑎𝑛𝑑 (Birn et al., 2008; Fig. 2d). However, in the proposed model, a different feature (RF) was used as an 

input and, thus, direct comparisons between 𝑅𝑅𝐹𝑝𝑝𝑙 and 𝑅𝑅𝐹𝑠𝑡𝑎𝑛𝑑 should be made with caution. The RF was introduced 515 

here as a physiological variable derived from the respiratory signal and was preferred to RVT (Birn et al., 2008) as it 

does not require peak detection, a task that is not always straightforward for respiratory signals as the breathing volume 

and rate during spontaneous breathing can vary over a wide range across time. A possible explanation for the increased 

performance of the proposed 𝑅𝑅𝐹𝑝𝑝𝑙 model compared to the standard method is that 𝑅𝑅𝐹𝑝𝑝𝑙 was estimated using resting-

state data with the RF and the GS as the input and output of the model, whereas in Birn et al. (2008), 𝑅𝑅𝐹𝑠𝑡𝑎𝑛𝑑 was 520 

derived from the BOLD response induced by a deep breath without incorporating the RVT in the estimation stage. Note 

that Birn et al. (2008) also reported a poor fit of their method in resting-state fMRI, which was improved only when 

allowing time-shifting separately for each voxel, an approach that was followed later by (Bianciardi et al., 2009; Chang 

and Glover, 2009b). However, time shifting has been shown to inflate the correlation statistics and, therefore, validation 

of the optimal temporal shift is needed in future studies (Bright et al., 2016). 525 
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The population specific curve 𝐶𝑅𝐹𝑝𝑝𝑙 (Fig. 2a) was characterized by a peak at 1.2 s and an undershoot at 7.0 s. A possible 

explanation about the first peak is that increases (decreases) in HR are briefly followed by an increase (decrease) in 

cardiac output and, in turn, in CBF and BOLD signal. On the other hand, the undershoot may indicate the presence of a 

negative feedback mechanism (e.g. decrease of stroke volume and, thus, cardiac output or decrease in relative distribution 

of cardiac output to the cerebral vasculature) which ensures that CBF is maintained at normal levels. A positive peak 530 

followed by a negative peak was observed for 𝑅𝑅𝐹𝑝𝑝𝑙 as well (Fig. 2d). A possible explanation for this behavior is the 

following: Increases in RF are followed by increases in the levels of O2 in cerebral blood which in turn lead to a decrease 

in levels of deoxygenated blood and an increase in the BOLD signal. However, increases in RF are also followed by 

decreases in levels of CO2 in the blood, which is a strong vasodilator. As a result, decreases in levels of CO2 are followed 

by a decrease in CBF and BOLD signal. This vasoconstriction, however, is likely a slower process, which can explain 535 

the decrease in BOLD signal with a minimum peak at about 13 seconds after the RF increase. In a similar manner, a 

decrease in RF would lead to an initial decline in BOLD signal followed by a slow overshoot. 

4.2 Variability in 𝑷𝑹𝑭 curves across subjects and scans 

Among the different physiological models examined in this study, the scan specific model 𝑃𝑅𝐹𝑠𝑐 yielded the best 

performance (Fig. 5, Fig. 7). This suggests that physiological response functions do not only vary across subjects but 540 

also across scans of the same subject. Importantly, our results suggest that scan-specific curves can be robustly derived 

from whole-brain resting-state fMRI data with durations longer than 5 minutes and high sampling rate (e.g. TR=0.72)  

(Fig. 6b). As the physiological origin of the 𝐶𝑅𝐹 and 𝑅𝑅𝐹 curves is different, their form is discussed separately.  

Visual inspection of the scan-specific curves 𝐶𝑅𝐹𝑠𝑐  revealed differences across subjects and across sessions within-

subjects. A more systematic comparison revealed that the time of the negative peak of the curve was strongly dependent 545 

on the mean HR of the subject, with shorter times linked to higher mean HR (Fig. 4a). As the mean HR was found to 

vary significantly between the two sessions within-subject (Fig. 1), this may explain the differences in 𝐶𝑅𝐹𝑠𝑐 curves 

across sessions. Differences in 𝐶𝑅𝐹𝑠𝑐 curves across sessions within-subject could be attributed also to differences in 

arterial blood pressure that may vary significantly between scans collected at different days. However, we could not 

examine this factor as blood pressure measurements were not collected at the day of each fMRI scan. The finding that 550 

the time of negative peak of the curve was associated with higher mean HR may suggest that when HR is higher, CBF 

is also higher and a fast negative feedback is more critical to prevent extreme values of CBF. 

 In our work, we assumed that the relationship between HR and the BOLD signal can be described with a linear time-

invariant system. However, it may be the case that a time-varying system, the parameters of which are expressed as a 

function of the time-varying mean (or instantaneous) HR and possibly blood pressure may explain the fluctuations in GS 555 

more accurately. Moreover, we observed that 𝐶𝑅𝐹𝑠𝑐 explained a larger fraction of GS variance for scans with a low mean 

HR. Subsequent analysis showed a strong positive correlation between the mean HR and fluctuations in HR (results not 

shown here), which could indicate that a time-varying 𝐶𝑅𝐹 is more appropriate for cases where HR is high and varies 

significantly. On the other hand, a possible explanation that scans with high mean HR yielded a weaker correlation 

between fluctuations in HR and GS is that in these scans the subjects were more stressed, which explains the high mean 560 

HR, and tended to move more distorting the fMRI data, including the GS, or that the subjects were in a state of higher 

arousal levels and, consequently a significant component of the GS fluctuations was neuronal-driven.  

The population specific curve 𝑅𝑅𝐹𝑝𝑝𝑙 demonstrated relatively mild differences compared to the 𝑅𝑅𝐹𝑠𝑡𝑎𝑛𝑑. On the other 

hand, the scan specific curves 𝑅𝑅𝐹𝑠𝑐 exhibited a larger degree of variability across subjects and scans compared to 𝐶𝑅𝐹𝑠𝑐,  

with curves for a large number of scans having only negative values, instead of the commonly observed positive peak 565 

followed by an undershoot (Birn et al., 2008; Chang et al., 2009; Power et al., 2017). These differences could not be 

attributed to the different individual patterns in BR or RF. Nonetheless, the proportion of GS variance explained with RF 

was found to be correlated with RF variance (Fig. 4c).  RF was defined as the squared derivative of the respiratory signal, 

which has a similar form with the framewise displacement measures proposed in the literature for head motion (Power 

et al., 2012; van Dijk et al., 2012). Head motion is a main source of noise in fMRI, as it can cause spin history related 570 
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motion artifacts in the BOLD signal with finite time memory (Friston et al., 1996). In this context, RF could be viewed 

as an index of relative head motion induced by respiration that is sampled at a higher sampling rate compared to the 

motion parameters estimated in fMRI preprocessing during volume realignment. As a result, apart from fluctuations due 

to changes in CO2 levels, RF, through convolution with the 𝑅𝑅𝐹𝑠𝑐, can potentially remove residuals of motion artifacts 

that cannot be removed completely with the motion parameters or RETROICOR regressors through linear regression. 575 

Moreover, the respiratory-related motion artifacts may be related to the body type and breathing behavior of each subject, 

as well as the position the subject inside the MRI tube, which could explain the variability of the 𝑅𝑅𝐹𝑠𝑐 curves across 

subjects and sessions within-subject and the improved performance of the scan-specific model compared to a the 

population-specific model 𝑅𝑅𝐹𝑝𝑝𝑙, particularly in scans with high RF variance. 

4.3 Physiological noise correction with FIX and GSR  580 

FIX is a widely-used tool for denoising fMRI data, as it removes fluctuations due to motion and cardiac pulsatility in an 

automated manner without the need for physiological recordings (Salimi-Khorshidi et al., 2014). HCP has been using it 

to provide FIX-denoised data and many researchers have been analyzing these data without any further preprocessing 

(Bijsterbosch et al., 2017; Vidaurre et al., 2017). However, Burgess et al. (2016) have recently demonstrated, using 

grayordinate plots, that while FIX-denoising substantially reduces spatially specific artifacts, it yields only a mild 585 

decrease in global fluctuations. 

Our study provides further evidence that FIX does not completely remove global artifacts, and particularly fluctuations 

due to changes in HR and breathing pattern. The effects of these fluctuations are typically widespread within the gray 

matter and mainly in frontal and posterior brain regions (Fig. 10). As a side note, our analysis showed that cardiac 

pulsatility that is often modelled with RETROICOR is efficiently removed with FIX (results not shown here). It is well 590 

established that spontaneous fluctuations in physiological processes lead to global fluctuations in the fMRI BOLD signal 

(Chang et al., 2009). Furthermore, these fluctuations may also have a significant effect in rs-FC analyses, including 

dynamic rs-connectivity (Birn, 2012; Murphy et al., 2013; Nikolaou et al., 2016) and, therefore, should be taken into 

consideration in the analysis. However, it has been suggested that spatial ICA, which is used in FIX as well as in other 

ICA-based denoising techniques such as ICA-AROMA (Pruim et al., 2015) is mathematically, by design, unable to 595 

separate global temporal artifacts from fMRI data (Glasser et al., 2018). 

The GS, which is simply the BOLD timeseries averaged across all voxels in the brain, is often regressed out from the 

fMRI data, in conjunction with other nuisance regressors (Aguirre et al., 1997; Fox et al., 2005) or FIX (Burgess et al., 

2016; Siegel et al., 2017), in order to correct for global artifacts. GSR has been shown to improve the correspondence of 

properties of fMRI rs-FC with observations from neuroanatomy (Fox et al., 2009) and to substantially reduce motion-600 

group differences (Burgess et al., 2016). However, there is no consensus yet in the field whether GSR should be 

performed (Liu et al., 2017; Murphy and Fox, 2017). Murphy et al. (2009) was the first study to mathematically 

demonstrate that GSR introduces spurious anticorrelations in rs-FC. Moreover, many recent studies have reported strong 

correlations between the fluctuations or amplitude of GS and neuronal-related measures such as electrophysiological 

activity from intracranial recordings (Scholvinck et al., 2010) and vigilance levels (Chang et al., 2016; Falahpour et al., 605 

2018; Wong et al., 2016, 2013). As a result, to facilitate interpretation, reviewers have been recommending the repetition 

of rs-FC studies with and without GSR to address whether the results can be attributed to GSR or not, while a recent 

study has developed a measure termed Impact of the Global Average on Functional Connectivity (IGAFC), which 

quantifies the extent of the impact of GSR on inferences based on seed-based statistical correlation maps (Carbonell et 

al., 2014). Furthermore, researchers have proposed alternatives to GSR. For example, Glasser et al. (2018) have recently 610 

proposed the use of temporal ICA after FIX denoising to preserve the neuronal-related component of the global signal, 

while removing global structured noise. However, this technique is only applicable to large datasets such as HCP. In 

addition, Carbonell et al. (2011) have proposed a method based on PCA for regressing out global artifacts and fluctuations 

that are uncorrelated to network-specific activity, even though it cannot ensure the preservation of global 

neurophysiological activity.  615 
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Our results suggest that a good alternative to GSR are the 𝑃𝑅𝐹 models proposed here. As the physiological regressors 

are extracted from concurrent physiological recordings, in contrast to GSR and other data-driven techniques, they can 

account for physiological-driven fluctuations without any possible loss of neuronal-related fluctuations. These models 

can be trained on a scan-by-scan basis based on the GS and physiological recordings of cardiac activity and respiration. 

Following the training, the physiological regressors are extracted and can be subsequently removed from the data through 620 

linear regression or added in the general linear model as regressors along with other regressors of interest. The codes for 

the 𝑃𝑅𝐹 models presented here as well as the group-level correlation maps related to cardiac pulsatility, HR and RF (Fig. 

10) are publicly available and can be found on https://github.com/mkassinopoulos/. 

 

5. Conclusion 625 

In this study, we have developed a novel method for removing the effect of fluctuations in HR and breathing patterns in 

BOLD fMRI data by combining optimization and basis expansion techniques for the robust estimation of subject and 

scan-specific 𝑃𝑅𝐹𝑠𝑐 curves. Our approach was validated on data from the Human Connectome Project (HCP) and 

achieved improved performance compared to current methods, including the standard 𝐶𝑅𝐹𝑠𝑡𝑎𝑛𝑑 and 𝑅𝑅𝐹𝑠𝑡𝑎𝑛𝑑, and FIX. 

The proposed framework is of great interest for researchers interested in studying rs-FC in groups where breathing, heart 630 

rhythms or cerebrovascular reactivity can differ. Ultimately, better understanding and quantifying physiological effects 

on fMRI studies can pave the way for understanding the normal and pathological brain as well as accelerate the discovery 

of connectivity-based biomarkers for diagnosing neurological disorders, as it will contribute towards disentangling the 

neural vs. physiological sources of rs-FC. 
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