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1 Abstract

Missense variants are present amongst the healthy population, but some of them are causative of human

diseases. Therefore, a classification of variants associated with “healthy” or “diseased” states is not always

straightforward. A deeper understanding of the nature of missense variants in health and disease, the cellular

processes they may affect, and the general molecular principles which underlie these differences, is essential to

better distinguish pathogenic from population variants. Here we quantify variant enrichment across full-length

proteins, their domains and 3D-structure defined regions. We integrate this with available transcriptomic and

proteomic (protein half-life, thermal stability, abundance) data. Using this approach we have mined a rich

set of molecular features which enable us to understand the differences underlying pathogenic and population

variants: pathogenic variants mainly affect proteins involved in cell proliferation and nucleotide processing,

localise to protein cores and interaction interfaces, and are enriched in more abundant proteins. In terms of

their molecular properties, we find that common population variants and pathogenic variants show the greatest

contrast. Additionally, in contrary to other studies, we find that rare population variants display features closer

to common than pathogenic variants. This study provides molecular details into how different proteins exhibit

resilience and/or sensitivity towards missense variants. Such details could be harnessed to predict variant

deleteriousness, and prioritise variant-enriched proteins and protein domains for therapeutic targeting and

development. The ZoomVar database, which we created for this study, is available at http://fraternalilab.

kcl.ac.uk/ZoomVar. It allows users to programmatically annotate a large number of missense variants with

protein structural information, and to calculate variant enrichment in different protein structural regions.

Significance Statement

One of the greatest challenges in understanding the genetic basis of diseases is to discriminate between likely

harmless and potentially disease-causing sequence variants. To better evaluate the pathogenic potential of

missense variants, we developed a strategy to quantitatively measure the enrichment of both disease and

non disease-related variants within a protein based on its structural and domain organisation. By inte-

grating available transcriptomics and proteomics data, our approach distinguishes pathogenic from popula-

tion variants far more clearly than previously possible, and reveals hitherto unknown details of how differ-

ent proteins exhibit resilience and/or sensitivity towards genetic variants. Our results will help to priori-

tise variant-enriched proteins for therapeutic targeting; we have created the ZoomVar database, accessible at

http://fraternalilab.kcl.ac.uk/ZoomVar, for programmatic mapping of user-defined variants to protein

structural and domain information.
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2 Introduction

The genomic revolution has brought about large advances in the identification of disease-associated variants.

However, despite the recent explosion of genetic data, the problem of “missing heritability” still persists [1],

where the genetic component of a phenotype remains poorly identified. It is often the case that for some

variants, a causal link to the disease in question is difficult to establish. Prime examples include variants

with low penetrance, and/or those with higher penetrance which are unique to single/few individuals, such

as de novo variants implicated in developmental disorders [2]. Compensated pathogenic mutations represent

another such case, where mutations are present as the wild-type in other species, but their pathogenic effects are

negated by another variant [3]. Difficult cases also arise in the analysis of somatic cancer variants, where driver

mutations can be challenging to segregate from passenger mutations; moreover this classification may vary from

case to case [4]. These variants pose challenges to the detection of disease association using existing statistical

methods. In head-to-head comparison against large-scale saturation mutagenesis screens, where mutational

impact could be measured in vitro, current predictive methods were shown to be limited in accuracy [5, 6].

Moreover, variant impact prediction has focused primarily on detecting differences between disease-associated

and common variants, neglecting the distinction between disease-associated and rare variants; thus it has been

suggested that these do not perform so well when distinguishing rare neutral variants from those which are

pathogenic [7]. The boundary separating disease-causing from neutral variants can be fluid: for example, a

number of missense variants thought to lead to severe Mendelian childhood disease were identified in nominally

healthy individuals in the ExAC database [8]. Moreover, whether common population variants have more

functional impact than rare variants is hotly debated [9, 10]. A better understanding of the molecular principles

which underlie differences between disease-associated and population variants is necessary to improve variant

classification, and define more clearly the boundaries which distinguish variants in health and disease.

Here we present a detailed analysis of different classes of missense variants, including germline disease

variants, somatic cancer variants (both “driver” and “passenger” variants with varying effects on tumour pro-

gression), as well as population variants of different frequencies, in the quest to extract the governing principles

of variant pathogenicity. We rely on the synergy between utilising two types of data: first, we place empha-

sis on mapping the localisation of variants on protein structures, taking into account their positions in the

protein fold, as well as their proximity to functional sites (e.g. post-translational modifications, or PTMs)

[11, 12, 13, 14, 15, 16]. Such protein structural information has been shown to be effective in uncovering the

impact of variants at the molecular level [17]. In the field of cancer research, protein structure-based methods

have been used to successfully predict cancer driver genes [18, 19], as validated by a recent large-scale study by

Bailey and colleagues [20]. Despite such success, 3D structure-based evaluation does not appear to have been

applied systematically to other classes of variants (i.e. population and Mendelian disease-associated variants).

Second, we also make use of recently available large-scale proteomic measurements, including protein half-life

[21], abundance [22], thermal stability [23] and transcriptomics data [24], to uncover biophysical and biochemical

principles governing the impact of variants. Our analyses highlight a striking difference in the enrichment of

pathogenic and population variants, which depends upon their localisation to protein domain and structural

features. Using these features, we demonstrate that rare population variants display characteristics which are

more similar to common population variants than to disease-associated variants, reinforcing the boundary be-

tween variants in health and disease. This integrative analysis provides molecular details into how resiliance

and sensitivity to missense variants are manifested in different proteins and functional pathways. We have

created the ZoomVar database (http://fraternalilab.kcl.ac.uk/ZoomVar), which holds the data generated

in this analysis. ZoomVar is designed for large-scale programmatic structural annotation of missense variants,

and calculation of the enrichment of missense variants in different protein structural regions. Comprehensive

mapping of structural localisation of variants could inform the development of therapeutic interventions, e.g.

structure-based drug design and/or drug repurposing [25]. More generally, the wealth of features that separates

missense variants in health and disease could contribute to building and training next-generation predictors,

which hold the promise of improving the accuracy of variant impact prediction.
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3 Materials and Methods

See Supplementary Methods in SI Appendix for a more detailed account.

3.1 Data sources

In this study, we have used variant data from ClinVar (dbSNP BUILD ID 149) [26] (for germline disease variants),

COSMIC coding mutations (v80) [27] (for somatic cancer variants) and gnomAD exome data [28] (for population

variants). These were mapped against protein sequence data from UniProt [29] and Ensembl [30], protein

structural data from the Protein Data Bank (biounit database, downloaded 28/04/2017), and protein interaction

data from a large non-redundant protein-protein interaction network (UniPPIN) [31], which incorporates various

interaction databases [32, 33, 34, 35, 36] and recent large-scale experimental studies [37, 38, 39]. Protein thermal

stability and half-life data were obtained from separate large-scale studies [21, 23]. Transcriptomic data were

taken from GTEx [24], while protein abundance data (protein per million [ppm]) for each tissue/sample type

were obtained from PaxDb [22].

3.2 ZoomVar Database

ZoomVar was constructed by mapping human protein sequences to resolved structures/homologues from the

PDB using BLAST [40]. Protein domains were defined by scanning UniProt sequences against the PFAM seed

library [41] using HMMER [42]. Per-residue mappings were performed by the alignment softwares T-COFFEE

[43] or Stretcher [44] (which was used to map UniProt and Ensembl sequences which were not of the same length,

and were too long to align using T-COFFEE). These generated correspondences between PDB structures and

those proteins/domains with structural coverage. Interaction complexes were inferred from homologues (defined

using BLAST). As an example, if protein A and B are annotated as interacting in UniPPIN, and their structure

homologues A′ and B′ are located in a resolved structural complex (and at least one residue from each protein

is involved in a shared interface), residues from A and B are mapped onto A′ and B′ to infer their interaction

interface. The partner-specific regression formula from HomPPI [45] was used to assign a score and zone to

each interaction interface inferred in this way.

3.3 Definition of regions

Structural regions. We partitioned protein/domain into surface, core and interface regions. Interface regions

were considered to be composed of residues which bind to at least one protein interaction partner. The interfaces

were assigned using POPSCOMP [46]. Residues with a change in solvent accessible surface area [SASA] > 15

Å2 were annotated as interface residues [47]. For surface and core regions, these were classified by considering

the quotient SASA [Q(SASA)] per residue, which was computed using POPS [48]. Core residues were defined

as those with a Q(SASA) < 0.15 [47]. Surface residues were defined as those with a Q(SASA) ≥ 0.15 which do

not take part in protein-protein interaction interfaces.

Order and disorder. Disordered protein regions were predicted using DISOPRED3 [49]. We overlaid these

definitions of ordered and disordered regions with Pfam domain boundaries, and partitioned protein sequences

into intra-domain ordered, intra-domain disordered and inter-domain disordered regions.

Functional sites. Post-translational modification (PTM) sites, specifically ubiquitination and phosphoryla-

tion sites, were obtained from PhosphoSitePlus [50]. Regions close to phosphorylation and ubiquitination sites

were defined as those within 8Å in Euclidean distance.
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3.3.1 Mapping of variant data

Variants in each dataset were annotated according to protein region localisation using the ZoomVar database.

Table 1 listed the total number of missense variants in each dataset which have been mapped to each region

considered in this study.

Common Rare COSMIC ClinVar

full-length protein 54,571 3,806,698 1,731,030 21,272
full-length domain 23,634 1,772,768 852,597 15,831

surf 12,151 966,409 491,179 8,558
interact 403 38,108 22,205 768
core 2,789 296,291 152,356 5,194

intra-ord 20,650 1,575,286 755,683 14,620
intra-dis 2,984 197,482 96,914 1,211
inter-dis 17,352 1,045,997 439,437 1,128

phos 1,661 158,192 82,364 2,362
ubiq 440 52,250 25,778 607

Table 1: Numbers of missense variants which localise to different levels and regions of protein anatomy. Data
are listed for each of gnomAD, COSMIC and ClinVar datasets. Here “common” and “rare” variants are subset
of gnomAD defined using the Minor Allele Frequency (MAF) cut-off of 0.01, below which variants are classified
as “rare”. This definition is used throughout this work except for the analysis on varying the “rarity” of variants
(see Figure 8). Note that the full length domain-type statistics are omitted here, as by definition they will be
identical to the “full-length domain” row. Figure 2B illustrates the definition of regions listed here in the first
column.

In the exploration of variant enrichment in different structural regions, the COSMIC data was divided into

“driver” and “non-driver” subsets, taking drivers as variants which map to all proteins from both tier 1 and

tier 2 of the Cancer Gene Census (CGC) (COSMIC v84). The non-driver subset contains all other variants.

3.4 Missense variant enrichment across levels of protein anatomy

3.4.1 The protein anatomy

In this study missense variant enrichment was quantified across the “protein anatomy”, in which we partition

the human proteome in different ways (see Figure 2A-B). We first define a list of levels of the anatomy, namely:

(i) individual proteins; (ii) specific domains of proteins, and; (iii) instances of a domain-type across the human

proteome. See Results for detailed examples. Here, missense variant enrichment quantification was considered

in both of the following scenarios: (i) for a given full-length instance of a level, relative to all other instances at

the given level (e.g. for epidermal growth factor receptor [EGFR] relative to all other proteins in the human

proteome), or (ii) for a given region, relative to all regions defined under a given criteria at a relevant level (e.g.

for the protein core relative to all protein structural regions). For the sake of clarity, in this Methods section

the instance of interest is hereafter referred to as the entity of interest; its use is clarified in the next paragraph,

and illustrated in Figure 1.

3.4.2 Calculation of missense variant enrichment

The binomial cumulative distributive function (Equation 1, also illustrated in Figure 1A) was used to assess the

missense variant enrichment of a given entity, and the two-tailed binomial test was used to assess the significance

of enrichment/depletion. Briefly, the number of missense variants in the given entity is modelled by a Binomial

variable X, parameterised by: (i) k, the number of observed missense variants which localise to the given entity,

(ii) n, the total number of missense variants which localise to all relevant entities, and (iii) p, the ratio of the

size of the entity of interest (in terms of number of residues) to the total size of all relevant entities:

P (Xentity ≤ k) =
k∑

i=0

(
n

i

)
pi(1 − p)n−i (1)
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Here, P (Xentity) ≤ k) is the cumulative probability of observing k missense variants in the chosen entity.

Figure 1B illustrates the definition of parameters in Equation 1, in the calculation of missense variant enrichment.

Under this scheme, for example if the missense variant enrichment of a particular protein W in dataset D is to

be calculated, we took

the total number of missense variants in dataset D as n,

the number of missense variants which localise to W as k, and

the ratio between the size of protein W to the sum of sizes of all proteins in the proteome as p.

Figure 1: Illustration of missense variant enrichment calculation. (A) The number of missense variants is
modelled as a binomial variable. The cumulative distributive function of this binomial variable is taken as a
Variant Enrichment Score (VES) for the level examined. (B) Illustration of the choice of parameter in defining
the binomial variable used in calculating the VES.

Hereafter, we refer to the binomial cumulative distributive function as the Variant Enrichment Score (VES).

For each analysis at the protein or domain level, the background proteome is defined as all UniProt pro-

teins/domains containing missense variants in any of the datasets analysed. Proteins belonging to immunoglob-

ulin and T cell receptor gene family products were filtered from all analyses (HGNC definition [51]), to avoid

the inclusion of variants which could have arisen from the process of affinity maturation. For all calculations of

enrichment and simulations involving protein or domain regions (e.g. core, surface and interface), cases where

the region is of size 0, or where the protein/domain contains no missense variants, were omitted in this analysis.

Note that this framework of variant enrichment quantification, in contrary to others [52, 53, 54], is not designed

to detect mutational “hotspots” clustered in sequence or structure space. Instead, it quantifies the extent to

which missense variants are found in the entity concerned, evaluating whether the number of such variants are

more or less than expected.

The overall missense variant enrichment for each dataset was also calculated using a density-based metric ω

(see Equation 2).

ω(Xentity) =
Xentity/Sentity

Xall entities/Sall entities
(2)

where S refers to the size in terms of the number of amino acids.

Here 95 % confidence intervals were estimated via bootstrapping (10,000 iterations). The 2-tailed significance

of enrichment/depletion was estimated by simulation of the null background. 10,000 simulations were carried

out for each dataset, in which the number of variants which localise to a given entity was kept constant, but

their location within the entity randomised. The density of variants was calculated for each simulation and

compared to the actual value in order to derive a p-value. Simulations were performed in this way, keeping the

observed number of missense variants fixed, in order to overcome bias which stems from the assumption that

variants are uniformly distributed throughout the proteome.
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3.5 Enrichment analysis of gene sets

3.5.1 Gene set enrichment

Gene enrichment analyses were performed using Gene Set Enrichment Analysis (GSEA), using the implemen-

tation provided by the R fgsea package [55]. Given an enrichment statistic for each query gene, the GSEA

algorithm outputs a score per gene set, which quantifies the enrichment of query genes in the sets examined.

This is then normalised by the size of the gene set, to give a normalised enrichment score (NES) [56]. We utilise

the centred VES enrichment statistic, i.e. substrating 0.5 from the VES, as input into the GSEA algorithm.

Thus, proteins with the number of missense variants observed fewer than expected would have a negative score.

3.5.2 Definition of pathway clusters

The pathway normalised enrichment scores (NESs), calculated at the whole protein level for each dataset, were

used to perform K-means clustering of KEGG pathways [57]. The R package NbClust [58] was used to determine

the optimum number of clusters.

3.6 Analysis of expression, abundance, and stability data

Spearman correlations of protein-wise and region missense variant enrichments with expression levels (RPKM),

abundance (ppm), half-life (hours), thermal stability (Tm, in oC), and density (mean contacts of core Cαs) were

calculated. Additionally, gene set enrichment analysis was performed as detailed above, except that the mean

value for each quantity of interest was subtracted to obtain values centred around 0, allowing both pathway

enrichment and depletion to be assessed (see SI Appendix).

3.7 Statistics and data visualisation

The majority of data analyses were performed in the R statistical programming environment. All corrections for

multiple testing have been done using the Benjamini-Hochberg method in R (p.adjust function). Bootstrapping

was performed using the boot package [59]. Spearman correlations were performed using the SpearmanRho

function of the DescTools package [60]. Heatmaps were produced with either the heatmap.2 function in the

gplots package [61] or the ComplexHeatmap package [62], in which clustering, wherever shown, was performed

with hierarchical clustering (hclust function) using default parameters unless otherwise stated. Circos plots

were generated with the Circos package [63]. Additionally, binomial cumulative distributive functions were

calculated and two-tailed binomial tests performed using the NumPy package in Python [64].

4 Results

4.1 A detailed protein-centric anatomy of variant enrichment across scales

We present a multifactorial analysis of missense variants observed in the general population (gnomAD database)

[28], in comparison to somatic cancer-associated missense variants from the COSMIC database [27] and disease-

associated missense variants from the ClinVar database [26]. Throughout this analysis we further divide the

gnomAD data by their minor allele frequencies (MAF) into common and rare variants, to investigate whether

there are differences between these two subsets. A summary of the numbers of missense variants investigated

in each dataset is given in Table 1, and a more detailed breakdown is given in the SI Appendix S4.1.

We compare pathogenic and population variants in terms of their associations with specific features across

the molecular scale, in a framework we call “protein anatomy”, in which we partition the human proteome in

different ways. This includes the consideration of individual proteins (for example, investigating the enrichment

of missense variants in the epidermal growth factor receptor [EGFR] protein), specific constituent domains

of proteins (e.g. the EGFR tyrosine kinase domain), or generally for all instances of a domain-type (e.g. all

tyrosine kinase domains) found in the human proteome. These are referred to as the levels of protein anatomy
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(Figure 2A). For each level, we analyse variant enrichment in full-length entities (i.e. protein/domain/domain-

type, dependent on the level of interest), and also various constituent regions defined using different criteria

(Figure 2B-C). These include protein structural information (partitioning into surface, core and interacting

interfaces), protein disorder predictions (segregating into ordered and disordered regions, within or outside of

Pfam domains) and vicinity to functional sites such as phosphorylation and ubiquitination sites. To quantify

missense variant enrichment, we employ a similar approach to that used in the prediction of cancer driver genes

[65]: variant enrichment has been modelled using a binomial distribution (Methods Equation 1), which allowed

for quantification of a Variant Enrichment Score (VES), ranging from 0 to 1, and normalised by the size of the

region/protein/domain in question (Figure 2D, also see Methods). We also quantified the robustness of such

quantification of variant enrichment: the significance of the enrichment/depletion of missense variants, in terms

of their density, is assessed by comparison to simulated null distributions, in which the number of missense

variants is kept identical to that observed in the data, but their positions within the protein are randomised.

This goes beyond similar studies (e.g. [14, 15, 16]) and addresses biases which could result from the selective

focus in molecular studies of disease-related proteins. We use this method to quantify and compare pathogenic

and population variants in terms of “microscopic”, atomistic protein structural features, and examined the

association between these enrichment statistics and large-scale, “macroscopic” features like functional pathways,

as well as the various proteomics features collated (see Methods and below).

4.2 Disease-associated and population variants affect different functional path-

ways

We first investigated whether variants from each dataset localise to proteins which are involved in distinct

functional pathways. Gene Set Enrichment Analysis (GSEA) was performed on a pre-ranked list of proteins

using their whole-protein VESs computed for each dataset. The pathway enrichment scores were then subjected

to clustering and Principal Component Analysis (PCA) (see Materials and Methods). As shown in Figure 3A,

variant enrichment segregates pathways into three clusters. Strikingly, each pathway cluster appears to have

distinct characteristics (see Figure 3B-D for the pathway terms belonging to each cluster). The cluster visualised

in orange is primarily composed of terms associated with cancer, growth and proliferation, whereas that coloured

in pink contains pathways associated with splicing, transcription, translation and metabolic terms. Pathways

associated with sensory perception and the immune response are found in the “green” cluster. A handful of

metabolic pathways also localise to this cluster, however, these appear to be more associated with environmental

response and adaptation than those pathways found in the “pink” cluster; for example, pathways associated

with the metabolism of drugs and xenobiotics are found here. For brevity, the “orange”, “pink” and “green”

clusters will be termed the “proliferation”, “nucleotide processing” and “response” clusters respectively, for the

remainder of this text. A list of pathways assigned to each cluster is given in the SI Appendix Section S4.2.

Strikingly, this visualisation reveals that population variant datasets (gnomAD rare and common) are clearly

separated from the disease-associated variant datasets by the first principal component (PC1), whereas COSMIC

variants are separated from ClinVar variants along the third principal component (PC3) (Figure 3A). Closer

inspection of the pathway enrichment data for the top (most unique) pathways in each cluster reveals a dis-

tinction in terms of the functions that different variant datasets implicate (Figure 3B-D). “Response” pathways

appear to be enriched in variants in all four datasets, while “proliferation” pathways are consistently enriched

in COSMIC variants alongside enrichment in ClinVar variants in a subset of these pathways. Enrichment in

ClinVar variants is visible for specific “nucleotide processing” functions, e.g. ribosomes. Across all pathways,

the trends of functional distinction can be further visualised in the Circos [63] plot (Figure 4A), whereby the

extent of shared enrichment of pathways is visualised by arcs across the different coloured segments. Identical

to Figure 3D, pathways in the “response” cluster are enriched in missense variants across all four datasets;

enrichment in the “proliferation” cluster is shown only in the disease-associated variants and the “nucleotide

processing” cluster is unique to ClinVar variants. This analysis clearly distinguishes missense variants in health

from those which are found in diseased individuals; moreover their different tendencies to perturb specific
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Figure 2: Variant enrichment crossing scales of protein anatomy. (A) Levels of the protein anatomy. At the
protein/domain level the number of missense variants in a protein or domain is compared to the number of
missense variants in the whole dataset which localise to defined proteins/domains. At the domain-type level
the number of missense variants in a particular Pfam defined domain-type, are compared to the total number
of missense variants which localise to any Pfam domain-type. These calculations are referred to as the “full-
length” protein/domain/domain-type variant enrichment in this manuscript, in contrast with the calculations
at regions of protein anatomy defined next. (B) Regions of the protein anatomy. We considered different levels
of definition of protein regions, including i) regions close to functional (phosphorylation/ubiquitination) sites;
ii) structural regions (core, surface [surf] and interface [interact]) of a protein, and; iii) regions predicted
to be ordered or disordered which lie either within or outside of Pfam-defined domains. (C) Lists of regions
considered at each level of the protein anatomy in this study. (D) The calculation of enrichment at the different
levels is statistically assessed using the binomial distribution. The binomial cumulative distributive function
constitutes a Variant Enrichment Score (VES) with value range 0 to 1, which quantifies enrichment.

functional pathways are also highlighted.

We went on to extend this analysis to across protein structural regions (Figures 4 and SI Appendix Figure

S4). Here we find that proteins enriched in gnomAD variants at the surface (Figure 4B) are significantly enriched

in pathways belonging to the “proliferation” cluster. Moreover, this enrichment is shared between common and

rare variants (albeit not significant for common variants in individual pathways after false discovery rate [FDR]

correction). Proteins with surfaces enriched in disease-associated variants (from COSMIC and ClinVar) are,

contrastingly, not enriched in “proliferation” cluster pathways. Pathways in the “proliferation” cluster show

either depletion (for rare variants) or no patterns at all (for common variants) for population variants, when

the protein core (Figure 4C) and interface (SI Appendix Figure S4B) are concerned. This could indicate that

population variants avoid the core of proliferation-related proteins. Interestingly, the “nucleotide processing”

cluster does not show such a marked enrichment of variants which localise to the surface in the gnomAD
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(Heatmaps in panels B,C,D)

Figure 3: Pathway clusters defined according to protein-wise variant enrichment. (A) At the whole protein
level, KEGG pathways form 3 clusters (k-means), here visualised as projected onto the first three principal
components of the Principal Component Analysis. Pathway enrichment patterns are clearly distinct between
COSMIC, ClinVar and gnomAD (rare/common) data, as evidenced by the visualisation of factor loadings (red
arrows). (B-D) Pathway terms visualised for the “proliferation” (B), “nucleotide processing” (C) and “response”
(D) clusters, and sized by their cluster uniqueness score. The latter is defined as the average of the Euclidian
distances to the two other cluster centres. For the top 5 unique pathway terms for each cluster, their pathway
enrichment scores calculated with the four variant sets are also visualised in a heatmap.
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Figure 4: Functional differences of proteins enriched in pathogenic and population missense variants. (A)
Enrichment at the whole-protein level for each dataset visualised on a Circos plot (see legend). Pathogenic
variants (here referring to ClinVar and COSMIC variants) are depicted on the left, and population variants
(gnomAD rare and common) on the right, as indicated on the Circos plot. From the outer to inner layer
of the plots, the following are depicted: (i) in the outermost layer of the plot, significant enrichment (dark
grey) or depletion (light grey) of a pathway (q-value < 0.05) is depicted; (ii) in the middle layer of the plot,
the normalised pathway enrichment score for each pathway is plotted as a bar graph (the further from the
centre, the more positive; see ‘+’ and ‘-’ symbols on the plot); (iii) ; (iii) in the centre of the plot, links indicate
enrichment (p-value < 0.05) shared between datasets. (B-C) Functional analysis of proteins according to variant
enrichment at the protein surface and core, visualised on a Circos plot. Data are visualised in the same format
as in panel (A).

dataset, a possible indication that proteins in these pathways are more robust to disruption of their structural

fold, compared to those in the “proliferation” cluster. These data show that there is clearly an interplay between

variant localisation at macroscopic (functional pathways) and microscopic (structural regions) protein features.

4.3 Population and disease-associated variants localise to different protein regions

We then zoomed in to view trends in the enrichment of variants in different regions of the protein anatomy,

defined using structural information, order and disorder, and the vicinity (distance ≤ 8 Å) of the variant

positions to post-translational modifications (see above). The following findings are highlighted:

Different structural localisation of pathogenic vs population missense variants. In agreement with

previous research [13, 14, 15, 16], we find ClinVar variants to be enriched in both protein cores and interfaces, but
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depleted on protein surfaces (Figure 5A-C and SI Appendix Figure S4). This reflects the potential disruption,

caused by such mutations, of structurally and functionally important sites. The enrichment of ClinVar variants

in structurally important sites is further demonstrated by their tendency to affect residues which are highly

connected when considering network representations of protein structures (SI Appendix Section S2.1). GnomAD

variants (both common and rare) and somatic non-driver variants display the opposite trend, as variants tend

to localise preferentially to protein surfaces, and are therefore less likely to impact on protein structure and

function than either core or interface mutations. Somatic driver variants follow trends closer to ClinVar variants,

with slight, but significant, depletion on the surface, but enrichment in the core. Protein interfaces are enriched

in disease-associated variants but depleted of gnomAD rare variants. GnomAD common variants appear neither

significantly enriched nor depleted, however this may result from the relative sparsity and high dispersion of

the data (fewer variants are shared between many individuals; see Table 1). Interestingly, COSMIC non-driver

variants appear depleted in interacting interfaces. However, it becomes clear that they are actually significantly

enriched when compared to simulated null distributions (see SI Appendix Figure S5), and that this enrichment

is due to a small subset of proteins which harbour a large number of variants at interface regions. Genes in

which these variants reside may be putative driver genes (see SI Appendix Section S4.3), as a number of known

driver genes are enriched in variants in protein interface regions [14, 20, 65], and this phenomenon has been

exploited by by Porta-Pardo and colleagues [65] to identify cancer driver genes.

Protein structural information distinguishes oncogenes and TSGs. We analysed, in greater granular-

ity, missense variant enrichment in the COSMIC dataset. By examining a curated list of oncogenes and tumour

suppressor genes (TSGs) [66], we found, in agreement with others [13, 14, 67], that these proteins could be

classified into two groups by considering their patterns of variant distribution, one comprising proteins enriched

in mutations mainly at interaction interfaces and surfaces, and another group in the core (Figure 5D). Some

proteins in the latter group also show enrichment in interacting interfaces, but a clear depletion of mutations at

the surface is evident. The segregation of these two groups in terms of cancer driver status has strong statistical

support (Fisher-exact test p-value = 0.0042): the first group of proteins is mainly (17 out of 24) composed of

oncogenes, and the other mainly of TSGs (17 out of 25). These results are consistent with the hypotheses that

activating mutations in oncogenes are likely to affect particular functions by perturbing specific interactions,

whilst inactivating mutations in TSGs abrogate protein function [14, 67]. Taking mutations in oncogenes and

TSGs as two separate groups, the GSEA results confirm a similar trend of structural localisation (SI Appendix

Figure S6); moreover, it can also be seen that the disease-associated datasets (ClinVar and COSMIC) show op-

posite patterns of enrichment in comparison to the gnomAD data (SI Appendix Figure S6) [13, 14, 67]. These

results go beyond similar studies, and show that by analysing the structural localisation of variants, cancer

driver genes can be separated into the distinct groups of oncogenes and TSGs.

Pathogenic variants tend to localise to ordered regions within domains. For variant enrichment in

ordered and disordered regions, we again observe clear segregation between disease and population variants

(Figure 5E-G). ClinVar and COSMIC variants are depleted in inter-domain disordered regions and enriched in

intra-domain ordered regions. In contrast, gnomAD variants (both rare and common) appear enriched in inter-

domain disordered regions and depleted in intra-domain ordered regions. These results suggest, as one would

intuitively expect, that variants are more likely to be pathogenic if they fall within ordered domain regions.

Pathogenic variants are close to phosphorylation sites. When proximity to PTMs is considered (SI

Appendix Figure S5), ClinVar variants appear enriched in terms of the density of missense variants close to

phosphorylation sites, but not significantly so in comparison to the simulated null background; this may be

again due to data sparsity, as suggested by large bootstrapped confidence intervals (SI Appendix Figure S5).

COSMIC driver variants are also close to phosphorylation sites; however, COSMIC non-driver variants, which

appear depleted in terms of variant density, are also significantly enriched close to phosphorylation sites in

comparison to simulated null distributions (SI Appendix Figure S5). This indicates that, in agreement with a
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number of other studies [68, 69], the disruption of phosphorylation sites may play a particularly important role

in cancer. In contrast to phosphorylation sites, all datasets appear depleted of variants close to ubiquitination

sites (SI Appendix Figure S5).

Figure 5: The localisation of variants to protein regions. (A-C) The density of mutations in different protein
regions, calculated using Equation 1. Density values (ω) were log-transformed such that negative values indicate
a depletion of missense variants, while positive values indicate enrichment. Error bars depict 95% confidence
intervals obtained from bootstrapping. Significance was calculated by comparison to simulated missense variant
distributions (significance level indicated by: * q-value < 0.05, ** q-value < 0.001, *** q-value < 0.0001). Note
here the COSMIC set is split into driver (i.e. mutations mapping to proteins found in the COSMIC Cancer
Gene Census [CGC]) and non-driver subsets. Data are shown for protein surface (surf, panel A), interacting
interface (interact, B) and core (C). (D) Enrichment of COSMIC missense variants in protein core, surface and
interface regions, across a list of annotated oncogene (orange annotations next to the dendrogram) and tumour
suppressor gene (TSG, blue) products. The genes were grouped into two clusters using hierarchical clustering
(see dendrogram by rows), with the pie charts enumerating the number of oncogenes and TSGs in each cluster.
(E-G) Density of mutations analogous to panels (A-C) but in regions defined by order and disorder. Data
are shown here for intra-domain ordered (intra-ord, panel E), intra-domain disordered (intra-dis, F) and
inter-domain disorered (inter-dis, G)

These analyses conclude that the enrichment of missense variants at various structural features consistently

segregate population variants from disease-associated ones. For the majority of structural regions defined here,

the greatest, most consistent distinction is always seen between common and ClinVar variants, provided that

the data are not too sparse.
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4.4 Towards a domain-centric landscape of variant enrichment

We now proceed from the protein level to examine variant enrichment across domain-types. Agglomerating

missense variants at the domain-type level has the advantage of enhancing the statistical power to detect variant

enrichment in terms of different protein structural features ([53] and references therein). Here, in contrast to

previous studies which focus on variants clustered in sequence or structure space [52, 53, 54], we present an

unbiased landscape of variant enrichment across domain-types, and compare the patterns of enrichment of

variants from the different health and disease datasets which we have examined above. We focus our discussion

on the most variant-enriched domain-types from each of the four variant sets. A comprehensive list comprising

the union of the top 20 enriched domain-types for each dataset can be found in SI Appendix Figure S7. Figure

6 shows some selected examples of this list; the missense variant enrichment at the full-length domain-type level

(Figure 6A) and in each structural regions (Figure 6B) are depicted. Here domain-types which are enriched

in variants only in the COSMIC and ClinVar datasets can be seen, including known drug targets such as

tyrosine kinase (Pkinase Tyr) and ion channel (Ion trans) domain-types. A handful of domain-types, which

are only enriched in COSMIC variants, include Cadherin tail and Laminin G 2 (Figure 6A), both of which

play an important role in cancer [70, 71]. Some domain-types (e.g. Serpin, UDPGT, Collagen and EGF CA)

contain variants from all four datasets. In such domains, it is likely that the precise structural localisation

of a variant determines whether it plays a pathogenic role. Intriguingly a few domain-types, such as NPIP

(Nuclear pore complex interacting protein) and NUT (Nuclear Testis protein) appear only enriched in common

variants (Figure 6A). This could suggest that these domains take part in functions for which it is desirable to

maintain diversity within a population; however, little is known about either domain-type [72, 73]. Thereby

this further highlights the bias in the number of studies targeting domains associated with disease, rather than

those enriched in population variants.

Figure 6: A domain-centric landscape of variant enrichment. Here selected domain-types discussed in the main
text are depicted. See SI Appendix Figure S7 for the data on a more comprehensive list of domain-types.
(A) VES at the full-length domain-type level. (B) VES calculated for each structural region (surface [surf],
interacting interface [interact] and core) for the selected domain-types. (C) The number of drugs known to
target proteins containing each domain-type is depicted as a bar graph. Note the cut numeric axis; the number
of drugs which target the only outlier, the 7tm 1 (GPCR) domain, is noted on the plot.

It also becomes apparent that the global trends in variant localisation to the core, surface and interface
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regions observed above are recapitulated here (Figure 6B) for those domain-types with structural coverage. The

majority of domains are enriched in gnomAD (rare and common) variants at the surface but ClinVar variants

at the core. For COSMIC the patterns of localisation are more mixed, but it is clear that in comparison to the

gnomAD sets, a larger proportion of domain-types are enriched in COSMIC variants at the core or interface.

These include domain-types with known cancer driver associations, such as the P53 and VHL domains [74].

Case studies on CATH architectures [75] and DNA-binding domains further highlight our observed patterns of

variant enrichment (see SI Appendix Sections S2.3 and S2.2).

We also explored how the targeting of domains by drugs and small molecules mapped to the observed

landscape of variant enrichment. Using DrugBank [76] data we observe that the targeting of domain-types by

existing drugs is highly biased towards a small number of domain-types (Figure 6C), such as GPCRs and tyrosine

kinase, as already extensively pointed out [77]. Indeed, we observe a large number of drugs targeting proteins

containing 7tm (GPCR) domains. These domains are enriched in variants from the gnomAD and COSMIC

database, but are devoid of disease-associated ClinVar variants (Figure 6A). By analysing drug availability

together with variant enrichment, this approach allows for more informed decisions in selecting new therapeutic

targets. For example, there are domain-types which could be targeted by few or no drugs, but are enriched in

COSMIC and/or ClinVar variants. This could offer a starting point to prioritise drug discovery efforts for these

domain-types. For domain-types already targetable by drugs, our analysis highlights domains to which multiple

disease-associated variants localise, which could give scope for drug repurposing or redesign (see Discussion).

4.5 Proteomics and transcriptomics features associate with variant localisation

Proteins, of course, do not function in isolation but in the crowded environment of the cell [78]. Therefore, the

properties of proteins in cells, including their quantities, turnover rates and thermal stability, can crucially affect

the fitness of a protein to perform its function. Here we ask if variant enrichments are associated with these

proteomics features. We have made use of large-scale proteomics data, including protein abundance data for

various organs from PaxDb [22], proteomics surveys of protein half-lives and thermal stability [23, 21], together

with transcriptomics data (GTEx database [24]), to explore relationships between these features and variant

localisation.

We first compared the thermal stability and abundance of proteins enriched in each class of variants. This

comparison demonstrates that for proteins affected by ClinVar variants, their wild-types tend to be more sta-

ble and abundant in comparison to those proteins enriched with gnomAD variants (SI Appendix Figure S8).

Extending to the entire proteome, the protein-wise Variant Enrichment Scores of disease-associated variants

displays positive correlations with protein abundance, expression, half-life and thermal stability, whereas pop-

ulation variants exhibit the opposite trend (Figure 7 and SI Appendix Figures S10-S11). However, zooming

into the enrichment of variants in the core of protein structures, we found that in comparison to all regions of

proteins with resolved structure, proteins more enriched in ClinVar variants in the core tend to be less abundant

and less stable, whereas the contrary is true for rare population variants (Figure 7). Thus our results indicate

two competing trends for disease-associated variants: (i) disease-associated variants tend to localise to more

abundant and stable proteins, which may suggest that these proteins are more sensitive to perturbation by vari-

ants; (ii) disease-associated variants in protein cores tend to localise to less stable proteins, which is consistent

with the idea that such proteins might be more easily destabilised to a degree at which function is deleteriously

impacted (see Discussion). gnomAD common data also show negative correlations with protein stability, for

variants occurring at the core; this could potentially support the argument presented by Mahlich and colleagues

[9] that common variants could affect molecular function more than rare variants. However, we believe this is

more likely to be due to the fact that very few common variants localise to protein cores, as shown by Figure

5B, resulting in sparse statistics (i.e. the correlation is calculated over Variant Enrichment Scores which are

already very low). Analogous correlations for variant enrichments at protein surfaces display opposite trends

to those observed at the protein cores (see SI Appendix Figure S9). Due to the relative sparsity of variants

which map to protein interfaces, we believe it is difficult to draw robust conclusions from any trends observed
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Figure 7: The protein-wise enrichment of missense variants in comparison to protein abundance, expression and
stability. Spearman correlations for missense variant enrichment (quantified as VESs) at the full-length protein
and the core with (A) protein stability in terms of melting temperature (Tm, oC) and (B) protein abundance
(ppm) are depicted here. For (A), the Tm data was taken from [21], in which two measurements of Tm in the
absence of any drug treatment were available; both measurements are considered, and are denoted datasets “1”
and “2” in the plot. For (B), only data from selected tissue types are listed. See SI Appendix Figure S9 for
the complete list. (C) Functional enrichment of proteins in KEGG pathways according to Tm. The Normalised
Enrichment Score (NES) is shown on the vertical axis. KEGG Pathways are listed on the horizontal axis, and
grouped to the 3 clusters as defined in Figure 3. See SI Appendix Figure S13 for a complete list of pathways
depicted here.

for correlations of proteomics data with variant enrichment at protein-protein interaction sites.

One might expect that mutations would be less easily accommodated in cores of densely packed proteins, i.e.

those likely to have higher thermal stability. To assess this we calculate the mean number of Cα contacts within

8 Å of core residues, as a proxy for protein density. We observe weak but significant correlation between this

metric and protein thermal stability (Tm measurements from two replicates reported by Franken and colleagues

[21]: replicate 1 [ρ = 0.168, q = 1.464e-12] and replicate 2 [ρ = 0.185, q = 1.529e-13]). This metric of core density

(see SI Appendix Section S1.4 for details) is negatively correlated with the core Variant Enrichment Score for

the gnomAD common dataset. No other datasets show significant correlations with core density, however a clear

trend emerges in which correlations with the core density become progressively more positive in the order of
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gnomAD common, gnomAD rare, COSMIC driver, COSMIC non-driver and ClinVar (see SI Appendix Figure

S12). This suggests variants may be more disruptive if they localise to a densely packed protein core.

We highlight two more observations in terms of the interplay between proteomics features. First, the various

proteomics features examined here are inter-dependent. Protein abundance and thermal stability are signifi-

cantly correlated with one another (see SI Appendix Section S4.6), in agreement with the work of Leuenberger

and colleagues [79]. Moreover, core packing and thermal stability are correlated, albeit with a low correlation

coefficient. The correlation values displayed in Figure 7 are also typically of a weak effect. Therefore, the

interplay between variant enrichment and proteomics features appear multifaceted and complex. Secondly, in

the analysis of protein abundance, the trends observed with variant enrichment at both full-length proteins

and specifically the protein core, are less pronounced for cell line data and break down for extracellular fluids

(saliva and urine, Figure 7B). The correlation is most evident for tissues containing long-lived cell-types, such

as the brain, ovary and testis. Transcriptomics data (SI Appendix Figure S10) again reinforces this picture,

albeit with less contrast between datasets (particularly at the protein core). This brings finer granularity into

assessing the impact of variants in different organs and contexts.

We finally ask whether correlations with these proteomic and transcriptomic features could be associated

with the specific functional roles of the involved proteins. For the majority of proteomic and transcriptomic

features, no clear associations with the functional clusters identified in Figure 3 can be detected (see SI Appendix

Figures S11-S13). An exception to this is protein thermal stability: pathways which belong to the “proliferation”

cluster are clearly enriched in proteins of lower stability than the other two clusters (Figure 7C). This suggests

that proliferation-related proteins may be vulnerable to disruption by mutations which localise to their already

unstable cores. Moreover, this agrees with the idea proposed above (Figure 4), that “proliferation” cluster

proteins may be less robust to disruption. Taken together, these analyses provide fine molecular details into

defining both the resilience towards variants, and the sensitivity towards variants, for a given protein (see

Discussion). Moreover, the association of variant enrichment with features such as abundance and stability is

indicative of the condition (disease/health) associated with the variants.

4.6 Rare variants are similar to common variants

Throughout the majority of analyses, the greatest segregation of data can be seen between common and disease-

associated variants (Figures 3-5). Here we vary the criteria with which to define rarity of variants in the gnomAD

set, to examine whether extremely rare variants would show characteristics akin to disease-associated variants.

Figure 8 demonstrates that rare variants are more similar to common variants, both in terms of the functional

pathways they affect, and in terms of the protein regions they localise to (core, surface and interface, order

and disorder). If more stringent minor allele frequency (MAF) thresholds are used to define rare variants, their

properties move towards those of disease-associated variants, but still remain closest to those of common variants

(Figure 8 and SI Appendix Figure S14). A visible separation between common and rare variants, especially

in the pathway analysis, can only be seen if an extreme MAF cutoff (<0.00001) is used. This reinforces the

boundary between population and disease-associated variants, and supports the distinction in terms of molecular

characteristics associated with rare population variants and disease-associated variants.
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Figure 8: Rare variants are similar to common variants. (A-D) As for Figure 3A, but only the first 2 PCs are
depicted, and, in separated panels, increasingly stringent minor allele frequencies (MAFs) used to define rare
variants. MAF cutoffs of 0.01 (panel A, data identical to Figure 3A), 0.001 (B), 0.0001 (C) and 0.00001 (D) are
considered here. (E-G) The localisation of rare variants to protein surface (E), interface (F) and core (G). Rare
variants have been defined using different MAF cut-offs as shown on the x-axes. Here the density metrics (ω)
were log-transformed such that negative values indicate a depletion of missense variants, while positive values
indicate enrichment. Results for the observed variants (red bars), as well as the background levels based on
simulated null distributions (cyan bars) are shown.
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5 Discussion and conclusions

Variants found in diseased and healthy populations are distributed across the proteome, each exerting a varying

impact on molecular function. A detailed analysis of the patterns of variant localisation could help in under-

standing the functional constraints that different parts of the genome experience, and improve the interpretation

of variant impact. Throughout this work, we show that missense variants in the general population, consid-

ered nominally healthy, show properties distinct from those in disease cohorts, from both macroscopic (“omics”

features and functional pathways) and microscopic (protein structural localisation) perspectives. Additionally,

we find that the properties of rare variants remain close to those of common variants. These findings contrast

with other observations [9], which suggest that common variants have more impact on molecular function than

rare variants. In this study, only for a few proteomics properties, such as the thermal stability and abundance

of the affected proteins, common variants appear closer in character to disease-associated variants than to rare

variants. However, for these few properties, the results might not be robust due to the sparsity of the data. Rare

genetic variations are abundant across individuals [80, 81], with some predicted to confer a regulatory impact

[82] or loss of function [83]. Alhuzimi and colleagues [10] suggest that the properties of genes enriched in rare

population variants are similar to those enriched in disease-associated variants, and are thus good candidates for

harbouring unknown disease associations. Instead, we show that proteins enriched in rare variants are, based on

the associated functional pathways, most similar to those enriched in common variants (Figure 8). Moreover,

our results show that population variants implicate functions mainly associated with environmental response

(Figure 3), in agreement with results from evolutionary studies reviewed in [84].

We have dissected the extent of variant enrichment in diverse datasets and across different protein regions

(Figure 2). Whereas protein structural information has been utilised to annotate genetic variants and prioritise

impactful variants for further investigations, many of the published methods focus on 3D-structural “hotspots”,

prioritising variants which cluster together in three-dimensional space (e.g. in [52, 53, 54]). Here we have

adopted an alternative approach, and quantified enrichment of missense variants without the pre-condition of

spatial clustering. This provides an unbiased resource to map missense variants to protein structural data.

The calculation of variant enrichment, as an additional layer of annotation, provides a unique link between

cataloguing sequence variants and understanding both their mechanistic and functional effects. This supplies

invaluable information to researchers studying specific proteins or domains, or focusing on proteins involved in

a particular function (e.g. DNA binding; SI Appendix Figure S3). By analysing the enrichment of variants

in protein regions (core, surface, interface, disorder and order, PTM vicinity), we recapitulate trends observed

by previous studies (e.g. in the comparison of oncogenes and TSGs; Figure 5D) [14, 16, 15, 13, 67], but also

shed light on the debate as to whether somatic cancer variants are enriched in interface regions, by simulating

null distributions of variants. These simulations show that it is essential to consider that variants from dif-

ferent datasets are not uniformly and randomly distributed throughout the proteome. Through density-based

metrics we find that somatic cancer variants appear at first sight not enriched in protein interfaces, however

by comparison to a simulated null background we do find an enrichment (SI Appendix Figure S5). A similar

simulation-based approach was taken by Gress and colleagues [13], but they found no significant enrichment for

COSMIC variants in interface regions. Whilst they analysed a filtered set of mutations likely to play a driver

role, we investigated all somatic variants and addressed separately mutations that localise to defined driver

and non-driver genes. Throughout this analysis, we have of course been limited by the number of proteins

with available structural data, despite enrichment with homologous structures. We are also still limited by the

structural coverage of protein interactions; although enough data exists to uncover broad trends, our analyses

of protein-protein interaction sites generally lacked statistical power. Moreover, it is likely that a more detailed

picture will emerge if different classes of protein interactions (e.g. transient vs permanent interactions) could

be probed systematically. We envisage that the recent advances in cryo-electron microscopy [85], and the inte-

gration of structural data derived by a variety of techniques [86], will further increase the structural coverage

of the protein-protein interaction network, enabling such finer-grained analyses in the future.

Our analysis of probing the associations between missense variant enrichment and proteomic features, is,
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Figure 9: Summary of analyses. Here we have explored patterns of structural localisation, abundance and stabil-
ity for proteins enriched in disease-associated and population variants respectively. These molecular attributes
determine the resilience and sensitivity of the proteins towards missense variants (see Discussion).

to the best of our knowledge, unprecedented, and has only been made possible due to the recent release of

large-scale proteomics data [21, 22, 23, 79]. We observe correlations which suggest an interplay between variant

enrichment, protein abundance and thermal stability (Figure 8). These associations are indicative of the relative

resilience (tolerance) and sensitivity of proteins towards missense variants. Our results thus illustrate a set of

features, based on which different parts of the proteome could be assessed for their tendency to be enriched

in disease-associated or population variants (Figure 9). Population variants tend to be enriched on protein

surfaces but depleted in core and interacting sites, and tend to be found in less abundant, less stable proteins.

These features could potentially contribute to limit the functional impact of missense variants found in the

general population. On the other hand, disease-associated variants localise preferentially to proteins which are

highly expressed and abundant (Figure 9). However, when selectively looking at variants mapping to protein

cores, which presumably could bring about the most dramatic impact on fitness, disease-associated variants are

actually associated with cores of less stable, less abundant proteins (Figure 7). Such proteins are conceivably

easier to inflict damage at the core (although it is also possible that some of these proteins are not globular,

but are instead more extended in conformation, see below). The combination of these molecular features could

also suggest the likely selection pressure a protein could experience under different contexts. For example,

certain proteins, possibly further to the left of the spectrum presented in Figure 9, could show a more extreme

combination of molecular features compared to those proteins discussed here to be enriched in disease-associated

variants. These proteins are likely to be highly sensitive towards variants, such that any of such variants would

be lethal (Figure 9) and be eliminated via selection; these lethal variants suffer from under-sampling in the data

analysed here. On the other hand, variants, if localised to sensitive proteins, may bring benefits to cell viability;

these variants could ascertain a role in driving cancers (Figure 5).

Our work highlights a set of rules in predicting the impact of variants. For instance, one could be fairly

confident that a variant can be disruptive if it localises to the core of an abundant, stable protein. This type

of variant annotation could be valuable to clinicians in interpreting variants observable in any given patient.

The detailed set of features we provide could also be harnessed for more systematic improvement of variant

impact prediction and interpretation. Firstly, the analysis concerning protein stability suggests it is important

to consider the base-line stability of the protein in question when assessing the impact a variant could bring.

A number of algorithms have used the estimated change in protein stability upon mutation (∆∆G) as a proxy

for variant impact. From their analysis of the ProTherm database, Serahijos and colleagues [87] found that

mutations in more stable proteins generally led to greater destabilisation (∆∆G variation). They interpret this

as suggesting that proteins which have evolved to become more stable are in a state closer to their peak stability,
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where any changes will result in strong destabilisation. Similarly, Pucci and Rooman [88] used temperature-

dependent statistical potentials to investigate the thermal stability of the structurome (all proteins with resolved

structure), and concluded that mutations in proteins which are highly thermally stable lead to a larger decrease

in thermal stability, compared with those in less thermally stable proteins. We believe that our results point to

the fact that, even under a scenario in which mutations in proteins with higher stability result in a greater change

in stability, a mutation in an already unstable protein is more likely to result in complete/partial unfolding under

physiological conditions. This is likely to be relevant to globular proteins, whereas for other types of proteins,

e.g. intrinsically disordered proteins, function will be related less to the fold and the density of the protein core.

These factors should be brought into consideration when the impact of missense variants.

Secondly, we show that greater insight into the properties of variants in health and disease can be obtained

by combining protein structural and functional pathway information. For example, it can be clearly seen

that population variants are most enriched on the surface of proteins which take part in pathways we have

defined as belonging to the “proliferation” cluster (Figure 4B). Moreover, pathways belonging to this cluster

also appear to be enriched in proteins with less thermal stability (Figure 7C), suggesting a possible mechanistic

basis underlying the localisation of variants (variants tend to localise to the surface and avoid disrupting the

core of these already unstable proteins). This indicates that the combined use of such features may aid in both

improving the prediction of variant impact, and in assessing the underlying molecular mechanisms.

Thirdly, our analysis highlights the tissue specificity of variant impact, in terms of the stability and abundance

of the altered protein. Our association analysis (Figure 7) of variant enrichment with proteomics features

complements a body of research which concludes that the rate of protein evolution correlates negatively with

protein expression and abundance [89], the extent of which has been found to be tissue-specific; those tissues

with a high neuron density demonstrating the highest anti-correlation [90]. Consistent with this, we found

the largest negative correlation for the protein-wise enrichment of rare variants, from the gnomAD dataset,

with protein abundance in the brain, and, interestingly also in the ovary and testis, which both harbour long-

lived germline progenitor cells (Figure 7B; SI Appendix Figure S10). Purportedly the lifespan of long-lived

cells renders them more sensitive to (and therefore necessitate protective strategies [91] against) the toxicity of

misfolded proteins. Our analysis highlights the importance of considering the underlying context, specific to

the affected organ alongside with the abundance and stability levels of the affected proteins, in assessing the

potential impact a missense variant could pose.

Fourthly, the wealth of data presented here could have implications in the development of therapeutic strate-

gies. Rare population variants are known to be abundant in known drug targets, potentially modulating disease

risk and drug response [92]. Here we envisage that our domain-centric landscape of variant enrichment (Figure

6), which includes the mapping of targeted drugs, besides providing another feature for the characterisation

of variants, will allow for more informed decisions in optimising therapeutic strategies. For example, targets

with few population variants could be selected, to minimise differential drug response due to genetic differences

between individuals. Interestingly it has recently been shown that genetic variants in such domains (GPCRs),

identified in the general population, may be associated with differential drug response between individuals

[93]. By viewing variant enrichment and drug availability together, such a domain-centric landscape of variant

localisation has implications useful for both understanding variant impact and motivating therapeutic design.

In conclusion, our work highlights the complex interplay between different factors which may determine

variant pathogenicity, from atomistic protein structural features (“microscopic”) to large-scale (“macroscopic”)

functional pathways and proteomics features. We believe that these insights will prove important in the prioriti-

sation of likely disease-associated variants, and the prediction of variants which drive disease phenotypes. More-

over, the ZoomVar database, which we have made available at http://fraternalilab.kcl.ac.uk/ZoomVar,

will facilitate users in the structural analysis of variants. A script is downloadable from the site to allow large-

scale programmatic access to the webpage for the structural annotation of user-input variant data; we also

provide in the webpage precomputed data underlying all analyses presented here. Further advancement in the

structural coverage of the proteome, and the exploitation of high throughput proteomics technologies, such as

those analysed here [23, 79], will ultimately offer a finer-grained picture of features which segregate variants in
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“health” and “disease”.
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