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Summary 
Viruses like influenza are infamous for their ability to adapt to new hosts. Retrospective 
studies of natural zoonoses and passaging in the lab have identified a modest number of 
host-adaptive mutations. However, it is unclear if these mutations represent all ways that 
influenza can adapt to a new host. Here we take a prospective approach to this question 
by completely mapping amino-acid mutations to the avian influenza virus polymerase 
protein PB2 that enhance growth in human cells. We identify numerous previously 
uncharacterized human-adaptive mutations. These mutations cluster on PB2’s surface, 
highlighting potential interfaces with host factors. Some previously uncharacterized 
adaptive mutations occur in avian-to-human transmission of H7N9 influenza, showing 
their importance for natural virus evolution. But other adaptive mutations do not occur in 
nature because they are inaccessible via single-nucleotide mutations. Overall, our work 
shows how selection at key molecular surfaces combines with evolutionary accessibility 
to shape viral host adaptation. 
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Introduction 

Viruses are exquisitely adapted to interact with host-cell machinery in order to facilitate 

their replication. Despite significant differences in this machinery across host species, 

some viruses like influenza can evolve to infect divergent hosts (Parrish et al., 2008; 

Webster et al., 1992). Such zoonotic transmissions can have severe public health 

consequences: transmission of influenza virus from birds or pigs to humans has resulted 

in four pandemics over the last century (Taubenberger and Kash, 2010). These pandemics 

require the virus to adapt to the new host (Long et al., 2018). Delineating how viruses 

adapt to new hosts will aid in our ability to understand what determines if a chance 

zoonotic infection evolves into a human pandemic. 

One critical determinant of influenza host range is the viral polymerase (Long et 

al., 2018), which transcribes and replicates the viral genome (Eisfeld et al., 2014; Te 

Velthuis and Fodor, 2016). Avian influenza polymerases perform poorly in mammalian 

cells (Cauldwell et al., 2014; Mänz et al., 2012). This host range restriction likely arises 

from the need for the viral polymerase to interact with host proteins such as importin-a 

(Resa-Infante and Gabriel, 2013) and ANP32A (Long et al., 2016), which differ between 

avian and mammalian hosts. However, it remains unclear exactly how the molecular 

interfaces between the polymerase and these host proteins are altered during adaptation to 

humans (Long et al., 2018).  

Studies of natural zoonoses and experimental passaging of viruses in the lab have 

identified a number of mutations that adapt avian influenza polymerases to mammalian 

hosts (Bussey et al., 2010; Cauldwell et al., 2013, 2014; Chen et al., 2006; Finkelstein et 

al., 2007; Gabriel et al., 2005; Kim et al., 2010; Mänz et al., 2016; Mehle and Doudna, 

2009; Miotto et al., 2008; Mok et al., 2011; Naffakh et al., 2000; Reperant et al., 2012; 

Taft et al., 2015; Yamada et al., 2010; Zhou et al., 2011). The best known of these 

mutations is E627K in the PB2 subunit of the polymerase (Subbarao et al., 1993). This 

mutation alone significantly improves avian influenza polymerase activity in mammalian 

cells (Long et al., 2013; Mehle and Doudna, 2008), and was considered a key step in 

adaptation to humans (Taubenberger et al., 2005). But surprisingly, the recent 2009 

H1N1 pandemic lineage lacks the E627K mutation. Instead, it has acquired mutations to 
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PB2 at sites 590 and 591 that similarly confer improved polymerase activity (Mehle and 

Doudna, 2009; Yamada et al., 2010). This fact underscores the possibility that natural 

evolution has explored only a small fraction of the possible host-adaptation mutations. 

Examining only the currently available instances of adaptation in nature or the lab may 

therefore overlook additional mechanisms of adaptation and evolutionary paths to future 

zoonoses.  

Here, we map all single amino-acid mutations to an avian influenza PB2 protein 

that enhance growth in human cells versus avian cells. We do so by leveraging deep 

mutational scanning (Boucher et al., 2014; Fowler and Fields, 2014), which previously 

has only been used to measure the functional effects of mutations to several influenza 

proteins in mammalian cells (Ashenberg et al., 2017; Bloom, 2014; Doud and Bloom, 

2016; Du et al., 2018; Jiang et al., 2016; Lee et al., 2018; Wu et al., 2014, 2015). We 

show that comparative deep mutational scanning in human versus avian cells identifies 

numerous human-adaptive mutations that have never before been described. These 

mutations cluster on the surface of the PB2 protein, highlighting potential interfaces with 

host factors. Some of these mutations are enriched in avian-human transmission of H7N9 

influenza, demonstrating the utility of our experiments for anticipating PB2’s adaptation 

in nature. The human-adaptive mutations that have not been observed in nature are often 

inaccessible by single-nucleotide mutations. Overall, our complete map of human-

adaptive mutations sheds light on how species-specific selection and evolutionary 

accessibility shape influenza virus’s evolution to new hosts. 

 

Results 

Deep mutational scanning of an avian influenza PB2 

To identify host-adaptation mutations in PB2, we used deep mutational scanning to 

measure the effects of all amino-acid mutations to this protein in both human and avian 

cells. We performed these experiments using the PB2 from an avian influenza strain, 

A/Green-winged Teal/Ohio/175/1986 (also previously referred to as S009) (Jagger et al., 

2010; Mehle and Doudna, 2009). The PB2 from this strain is representative of avian 

influenza PB2s, most of which are highly similar (average pairwise amino-acid identity 
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of 98.7%) (Fig S1). We mutagenized all codons in PB2 to create three replicate mutant 

plasmid libraries with an average of 1.4 codon substitutions per clone (Fig 1A, S2A-F). 

Since there are 759 residues in PB2, there are 759 x 19 = 14,421 amino acid mutations, 

virtually all of which are represented in our libraries (Fig S2G). 

We generated a mutant virus library from each of the triplicate plasmid mutant 

libraries using a helper-virus approach, which reduces bottlenecks during generation of 

complex viral libraries (Doud and Bloom, 2016) (Fig 1A). For biosafety reasons, we 

rescued reassortant virus using polymerase (PB2, PB1, PA) and nucleoprotein (NP) genes 

from the avian influenza strain and the remaining viral genes (HA, NA, M, NS) from the 

lab-adapted A/WSN/1933(H1N1) mammalian influenza strain. We wanted to minimize 

selection for host-adaptive mutations during the initial library generation. Therefore, we 

generated the libraries in human HEK293T cells with a co-transfected protein-expression 

plasmid encoding the human-adapted PB2-E627K protein variant, so that all cells had a 

PB2 protein that could complement poorly functioning library variants.  

To select for functional PB2 variants in human versus avian cells, we passaged 

each replicate mutant virus library at low MOI in the A549 human lung epithelial 

carcinoma line and CCL-141 duck embryonic fibroblasts (Fig 1A, S2A). To quantify the 

functional selection on each mutation during viral growth, we deep sequenced the initial 

plasmid mutant libraries and the passaged mutant viruses to measure the frequency of 

mutations before and after selection (Fig 1B). All experiments were also performed in 

parallel on virus carrying wild-type PB2 as a control to quantify the rate of errors arising 

during sequencing, library preparation, and viral replication (Fig S2H). 

To assess the efficacy of selection without the complication of errors arising from 

sequencing and passaging, we examined the post-selection frequency of stop and 

nonsynonymous mutations accessible by >1 nucleotide substitution. Stop and 

nonsynonymous mutations fell to 2-7% and 26-35% of their initial frequencies 

respectively (Fig S2H). In contrast, synonymous mutations remained at 68-87% of their 

initial frequency. Therefore, the experiments effectively selected for functional PB2 

mutants.  
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We quantified selection at the amino-acid level in terms of the “preference” of 

each site in the protein for each amino acid (Fig 1B) (Bloom, 2015). The preference for 

an amino acid is proportional to its enrichment during functional selection. We assessed 

the reproducibility of our experiments across biological replicates by examining the 

correlations of preferences for all 14,421 amino acid (Fig S2I). Biological replicates 

passaged in each cell type were well correlated (Pearson’s R in human cells was 0.74 to 

0.79; Pearson’s R in avian cells was 0.76 to 0.79), and were generally better correlated 

within cell types than between cell types (Pearson’s R between cell types was 0.67 to 

0.78). For downstream analyses, we rescaled our preferences to match the stringency of 

selection in nature (see Methods, Table S1, S2). 

 

Experimental measurements are consistent with natural selection and known 

functional constraints on PB2 

Our experiments reflect known functional constraints on PB2 (Fig 2A, Fig S3). As 

expected, the start codon shows a strong preference for methionine in both human and 

avian cells. PB2’s cap-binding function is mediated by a hydrophobic cluster of five 

phenyalanines (F404, F323, F325, F330, F363), H357, E361, and K376 (Guilligay et al., 

2008). Phenylalanines are strongly preferred in the hydrophobic cluster in both host cell 

types, with the exception of site 323, which also tolerates aliphatic hydrophobic residues 

in human cells (Fig 2A). E361 is also strongly preferred in both cell types, as is K376 in 

the duck cells. A number of other amino acids are tolerated at site 376 in human cells, 

and at site 357 in both cell types. At site 357, aromatic residues tyrosine, tryptophan, and 

phenylalanine are preferred in addition to histidine, consistent with previous observations 

that the H357W substitution enhances binding to the m7GTP base (Guilligay et al., 2008). 

Finally, the two motifs comprising the C-terminal bipartitite nuclear import signal, 736-

KRKR-739 and 752-KRIR-755 (Tarendeau et al., 2007), are strongly and similarly 

preferred in both host cell types. Thus, our experimentally measured preferences largely 

agree with what is known about PB2 structure and function, and further suggest that 

functional constraints at these critical sites are similar in both human and avian cells. 
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To more broadly investigate whether functional constraints are similar between 

both cell types across the entire PB2 protein, we computed the entropy of the amino acid 

preferences at each site. A larger site entropy indicates a higher tolerance for mutations at 

that site. Site entropies are well correlated between cell types (Fig 2B, R = 0.78), 

indicating that sites are usually under similar functional constraint in both cell types. 

These protein-wide measures of mutational tolerance are also consistent with natural 

sequence variation: sites that are highly variable among publicly available natural 

influenza sequences tend to also be ones that we experimentally measured to be 

mutationally tolerant (Fig 2C, D). 

 

Identification of human-adaptive mutations  

To identify mutations that are adaptive in human versus avian cells, we quantified the 

host-specific effect of each mutation using two different metrics. The first metric, 

differential selection, quantifies how much a mutation is selected in one condition versus 

another (Doud et al., 2017). Differential selection is computed by taking the logarithm of 

the relative enrichment of the mutation relative to the wild-type residue in human versus 

avian cells (Fig 1C, S4A, Table S2). Differential selection greater than zero indicates that 

a mutation is relatively more favorable in human than avian cells.  

To test if differential selection accurately identifies host-specific mutations, we 

asked if a set of 24 previously characterized human- or mammalian-adaptive mutations 

(Table S3) have differential selection values greater than zero. Indeed, most of these 

previously characterized mutations had positive differential selection values, as expected 

for human-adaptive mutations (Fig 3A). In contrast, all other mutations have a 

distribution of differential selection values centered around zero.  

However, there are many previously uncharacterized mutations that have 

differential selection values similar to or greater than those of known human-adaptive 

mutations (Fig 3A). Of course, differential selection only quantifies the extent to which a 

mutation is more beneficial in human than avian cells. But importantly, for a mutation to 

be truly adaptive, it must also be more beneficial than the wild-type amino acid in human 

cells. To quantify each mutation’s effect relative to wild type in each cell type, we 
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computed the logarithm of the ratio of preferences of the mutant versus wild-type amino 

acid (Fig 3B, Table S3). Mutation effect values greater than zero indicate that a mutation 

is more preferred than the wild-type residue.  

We identified top experimentally adaptive mutations using both differential 

selection and mutation effect metrics (Fig 3B, S4B). We focused on the 34 mutations 

most adaptive in our human cell selection (differential selection >1.5 and mutational 

effect in human cells >1). Among these 34 mutations, only one (D701N) has already been 

described as human adaptive. The E627K mutation is favored in human cells in our 

experiments, though it is not in this set of top 34 mutations. However, two other 

mutations at this site (E627C and E627S) are among the top 34 mutations (Fig 3C). In 

fact, it appears that many mutations at site 627 are human adaptive, with the exception of 

E627D. We additionally identified 42 mutations as adaptive in avian cells (differential 

selection <-2 and mutational effect in avian cells >1), and 7 mutations that are more 

favorable than the wild-type amino acid in both cell types (mutational effect >1 in both 

human and avian cells).  

From these top adaptive mutations identified in our deep mutational scanning, we 

chose 26 for experimental validation. Specifically, we chose 18, 4, and 3 mutations 

adaptive in human, avian, or both cell types, respectively (Fig 3C, D). We prioritized 

mutations that had consistent measurements across biological replicates. When there 

were multiple strongly adaptive mutations at a site, we chose just one mutation at that site 

to test mutations across more sites. Finally, we also validated additional mutations of 

particular interest, such as those observed in avian-to-human transmission of H7N9 

influenza (see below for more details).  

 

Human-adaptive mutations identified in deep mutational scanning improve polymerase 

activity and viral growth in human cells 

The main function of the influenza polymerase is to transcribe and replicate the viral 

genome. We quantified the effect of mutations on polymerase activity using a 

minigenome assay which measures transcription of an engineered viral RNA encoding 

GFP by reconstituted influenza polymerase. To test whether the results of our deep 
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mutational scanning are generalizable to human cells beyond the A549 cell line used in 

the scanning, we performed the minigenome polymerase activity assay in HEK293T as 

well as A549 cells. 

Almost all the putative human-adaptive mutations identified in the deep 

mutational scanning improved polymerase activity in human cells relative to the wild 

type or a synonymous mutant (Fig 4A, B, Table S4). Mutations that did not improve 

polymerase activity retained at least wild-type activity. The effect of mutations in both 

human cell lines were remarkably consistent, suggesting that our deep mutational 

scanning yielded results that generalize across human cells. 

In contrast, all but one of the putative avian-adaptive mutations decreased 

polymerase activity in human cells compared to wild type, as expected (Fig 4A, B). The 

one mutation that did not decrease polymerase activity had comparable activity to wild 

type. Finally, mutations that are putatively adaptive in both human and avian cells had 

modestly improved or comparable polymerase activity in human cells compared to wild 

type. 

We also tested the effect of some of the mutations on viral growth in order to 

capture any effects of mutations beyond polymerase activity. We performed viral growth 

assays by competing virus carrying each mutant PB2 against wild-type virus. We mixed 

mutant and wild-type virus at a 1:1 ratio, infected human (A549) or avian (CCL-141) 

cells at low MOI, and then measured the frequencies of mutant to wild-type virus at 10 

and 48 hours post infection by deep sequencing.  

Almost all putative human-adaptive mutations identified in the deep mutational 

scanning improved growth in human over avian cells, as reflected by an increase in the 

ratio of mutant to wild type in human cells versus avian cells over the time course of the 

competition (Fig 4C, Table S5). One of the putative human-adaptive mutations that did 

not improve polymerase activity (R355G) improved growth in human over avian cells at 

both 10 and 48 hours post-infection. An additional three of the putative human-adaptive 

mutations that did not have an effect on polymerase activity (I292T, S532D, R355K) 

improved growth in human cells by 48 hours compared to 10 hours post-infection. 

Therefore, these four mutations confer a human-specific growth benefit due to some 
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mechanism other than polymerase activity. As expected, both putative avian-adaptive 

mutations resulted in poorer growth in human versus avian cells. Finally, the N82K 

mutation that is putatively adaptive in both human and avian cells resulted in comparable 

growth in both human and avian cells, as expected. 

Thus, our deep mutational scanning identified numerous previously undescribed 

PB2 mutations that improve polymerase activity or viral growth in human cells. In 

addition, it also identified an intriguing small set of mutations that enhance viral growth 

but not polymerase activity in human cells. 

 

Human-adaptive mutations cluster in regions of PB2 that are potentially important for 

host adaptation 

The additional human-adaptive mutations we identified may improve PB2’s ability to 

interact with important human cell factors. To identify potential interfaces for such 

interactions, we mapped the sites of top human-adaptive mutations identified in the deep 

mutational scanning onto the structure of PB2. Many of the sites cluster in regions of PB2 

that may play a role in host adaptation (Fig 5, S5).  

Specifically, in the transcription pre-initiation form of the polymerase (PDB: 

4WSB) (Reich et al., 2014) (Fig 5A, B), top sites 532 and 292 occur near sites of known 

human-adaptive sites 286, 534, and 535 (Cauldwell et al., 2013; Mänz et al., 2016) (Fig 

5B: i). Top sites 69 and 82 occur close to sites 64 and 81 (Fig 5B: ii), which are located 

near the template exit channel and were recently shown to modulate generation of mini 

viral RNAs that act as innate-immune agonists (te Velthuis et al., 2018). We also find a 

cluster of top sites in the PB2-N terminal domain (169, 176, 183, 190, Fig 5B: iii) that is 

partially occluded by the flexible PA endonuclease domain in the transcription pre-

initiation structure. The influenza polymerase, particularly the domains of PB2 outside of 

the N-terminal domain, undergoes dramatic conformational rearrangement between the 

transcription pre-initiation and apo form (PDB: 5D98) (Hengrung et al., 2015). Some 

sites, such as the pair 521 and 522, and 355, which face the product exit channel and core 

of the polymerase in the transcription pre-initiation structure (Fig 5B: iv, v), are more 

fully surface-exposed in the apo structure (Fig 5C, D: i, ii). Similar results are obtained if 
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we instead analyze the structures in terms of a continuous variable representing the extent 

of human-specific adaptation at each site (Fig S5). Taking a comprehensive approach to 

identify human-adaptive mutations has therefore allowed us to map surfaces of PB2 that 

might mediate host-interactions.  

Next, we asked if host-adaptation mutations occur at known interaction interfaces 

with host proteins. One known interacting host protein is importin-a, which mediates 

nuclear import of PB2 and has been proposed to have a role in viral transcription and 

replication (Resa-Infante et al., 2008; Tarendeau et al., 2007).  PB2 of avian viruses uses 

importin-a3 in human cells, whereas PB2 of mammalian-adapted viruses uses importin-

a7 (Gabriel et al., 2008, 2011). We mapped total positive differential selection on each 

site of PB2 (see legend for Fig 5E), and asked how this selection on PB2 relates to its 

interaction with importin-a. Sites on PB2 that interact with the major and minor NLS-

binding surfaces of importin-a (Pumroy et al., 2015; Tarendeau et al., 2007) generally 

have low differential selection, indicating that host-adaptation mutations do not occur at 

these sites (Fig 5E; PDB: 4UAD) (Pumroy et al., 2015). This is expected, since all 

importin-a isoforms share an invariant NLS-binding surface. However, adjacent PB2 

sites have higher differential selection (Fig 5E: i-iii). Some of these PB2 sites are in close 

proximity to regions of importin-a that differ between the a-7 and a-3 isoforms (Fig 5D: 

i, iii), suggesting that adaptation at these PB2 sites affects importin-a usage.  

PB2 also interacts with the C-terminal domain of RNA polymerase II, and this 

interaction is proposed to stabilize the polymerase in the transcription-competent 

conformation (PDB: 6F5O) (Serna Martin et al., 2018). Similar to what we observe with 

importin-a, PB2 sites thought to directly interact with RNA polymerase II tend to have 

low differential selection, whereas adjacent PB2 sites have higher differential selection 

(Fig S5C). Thus, it appears that host adaptation may involve mutations at sites adjacent to 

the core residues that directly interact with host proteins.    

 

Experimentally defined human-adaptive mutations are enriched in avian-to-human 

transmission of H7N9 influenza 
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A challenge in the surveillance of non-human influenza and assessment of pandemic risk 

is determining which of the many mutations that occur during viral evolution are human-

adaptive (Lipsitch et al., 2016; Russell et al., 2014). We investigated whether our 

experimental measurements can identify host-adaptation mutations that occur during the 

actual transmission of avian influenza to humans.  

Avian H7N9 influenza viruses have recently caused a large number of sporadic 

human infections (Su et al., 2017). We examined mutations occurring during the 

evolution of H7N9 viruses that have jumped from avian to human hosts to determine 

whether they were enriched for changes predicted by our deep mutational scanning to be 

human adaptive. First, we constructed a phylogeny of H7N9 PB2 sequences, inferred 

ancestral sequences for all internal nodes, and assigned mutations to specific branches of 

the phylogenetic tree (Fig 6A). We then classified each mutation on the phylogenetic tree 

as “avian” or “human” based on whether it occurred on a branch connecting two avian 

isolates, or on a branch leading to a human isolate respectively (Table S6). As human 

infections by H7N9 are evolutionary dead-ends, mutations occurring during human 

infections should appear immediately proximal to human isolates in the phylogeny, while 

mutations occurring during bird infections will be ancestral. 

We next asked whether mutations occurring in human hosts had higher 

differential selection values in our deep mutational scanning than mutations in avian 

hosts. Indeed, human mutations more often had high differential selection (a value >0.5) 

than avian mutations (Fisher’s exact test, p = 2.69e-7) (Fig 6B). The H7N9 human 

mutations with differential selection >0.5 include the well-studied human-adaptive 

mutations 627K and 701N. Indeed, these two mutations make up the majority of H7N9 

human mutations with high differential selection. But we also identified a number of 

other mutations with high differential selection that occurred at least four independent 

times in jumps of H7N9 influenza into humans: 627V, 534F, 355K, and 521I (Fig 6A, 

6B, 3D), only one of which has been previously characterized (A627V, Taft et al., 2015). 

A second mutation at site 355 (355G) with high differential selection also occurs during 

jumps of H7N9 influenza into humans. Thus, our deep mutational scanning identifies 

both previously characterized and novel mutations that occur in natural avian-to-human 

transmission of influenza.  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 4, 2019. ; https://doi.org/10.1101/512525doi: bioRxiv preprint 

https://doi.org/10.1101/512525
http://creativecommons.org/licenses/by/4.0/


 12 

 

Most human-adaptive mutations are not accessible by single nucleotide substitutions 

Our deep mutational scanning identifies many human-adaptive mutations. Why do we not 

observe all of them in nature? One possible explanation is that some of these mutations 

are inaccessible by single nucleotide substitution from existing sequences, and are 

therefore less likely to arise during natural evolution (Fragata et al., 2018). 

We examined if accessibility by single nucleotide substitution imposes constraint 

on which human-adaptive mutations arise in nature. To do so, we calculated the mean 

nucleotide substitutions required to access known human-adaptive mutations from all 

avian influenza PB2 sequences collected in the past three years. This mean number of 

nucleotide substitutions can range from less than one (if the mutation is already present in 

some avian PB2 sequences) to three (if the mutation requires three nucleotide changes 

from all avian PB2 sequences). The majority of previously characterized human-adaptive 

mutations are accessible by single nucleotide substitutions from avian PB2 sequences 

(Fig 7), suggesting that these mutations have already been characterized because they 

readily occur in the context of current avian influenza viruses. In contrast, most of the top 

human-adaptive mutations identified in our deep mutational scanning require multiple 

nucleotide substitutions from current avian PB2 sequences (Fig 7). Therefore, many of 

the novel human-adaptive mutations uncovered by our experiment have probably not 

been previously identified because they are evolutionarily inaccessible from current avian 

influenza sequences.  

The importance of evolutionary accessibility is especially obvious if we examine 

the adaptive mutations that actually occur in natural influenza virus evolution. Of the five 

top human adaptive mutations accessible by single nucleotide substitution (Fig 7), three 

have occurred repeatedly during recent transmissions of H7N9 influenza to humans 

(355G, 521I, 701N; see Fig 6A). Thus, it may be possible to combine deep mutational 

scanning measurements of phenotypes with analyses of evolutionary accessibility to 

anticipate which mutations are most likely to arise in the context of any given starting 

sequence (Fragata et al., 2018). 
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Discussion 

We have measured how all single amino-acid mutations to an avian influenza PB2 affect 

viral growth in both human and avian cells. Our results separate the constraints on PB2 

into those that are maintained across cells from diverse species versus those that are 

specific to human or avian cells. The vast majority of sites are under extremely similar 

constraint in human and avian cells, including at residues already known to be critical for 

PB2 function. Layered upon this conserved constraint are mutations with host-specific 

effects. Our approach therefore represents a powerful strategy for mapping viral 

determinants of cross-species transmission. 

While our complete experimental mapping of human-adaptive mutations does not 

directly explain how these mutations act, it does provide molecular footholds for 

investigating their mechanism. Specifically, human-adaptive mutations cluster on the 

structure of PB2, highlighting regions of the protein that impact host adaptation. Further, 

we identify some novel human-adaptive mutations that improve viral growth but not 

polymerase activity in human cells. We speculate that the effects of these mutations on 

viral growth is mediated by other effects of PB2, such as in modulating the innate-

immune response (Graef et al., 2010; te Velthuis et al., 2018).   

We also show that our comprehensive experimental measurements can identify 

human-adaptive mutations that occur during avian-to-human transmission of H7N9 

influenza. These measurements therefore help address a fundamental challenge in 

assessing the risk of potential pandemic influenza virus strains: determining which of the 

many mutations observed during viral surveillance affect whether a virus will be 

successful in human hosts (Lipsitch et al., 2016; Russell et al., 2014). Our high-

throughput approach therefore enables phenotypic measurements to keep pace with the 

challenge of interpreting the many viral mutations that are observed during genotypic 

surveillance of virus evolution (Grubaugh et al., 2019). 

Some amino-acid mutations we experimentally identified as human-adaptive 

occur frequently in nature, but others have never been observed. Most human-adaptive 

mutations observed in natural influenza evolution are accessible by single nucleotide 

substitution from current avian genotypes, showing that evolutionary accessibility shapes 
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which mutations occur during viral adaptation (Fragata et al., 2018). But of course, the 

evolutionary accessibility of codon mutations can change over time as avian influenza 

sequences themselves evolve.  Integrating our complete maps of the effects of amino-acid 

mutations with other data that sheds light on evolutionary opportunity, such as nucleotide 

accessibility, mutation rates, transmission bottlenecks, and environmental and 

epidemiological factors (Geoghegan and Holmes, 2017; Geoghegan et al., 2016; Moncla 

et al., 2016; Olival et al., 2017; Peck and Lauring, 2018; Varble et al., 2014) will help us 

understand how viruses cross species barriers in nature.  

  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 4, 2019. ; https://doi.org/10.1101/512525doi: bioRxiv preprint 

https://doi.org/10.1101/512525
http://creativecommons.org/licenses/by/4.0/


 15 

Acknowledgements 

We thank William Fowler for help with molecular cloning, Juhye Lee, Adam Dingens, 

and John Huddleston for advice and computer code, and Harmit Malik, Katherine Xue, 

Allison Greaney, and Tyler Starr for providing comments on this manuscript. We thank 

Jeffrey Taubenberger for providing plasmids for A/Green-winged Teal/Ohio/175/1986 

(S009), and Andrew Mehle and Steven Baker for advice about growing virus containing 

S009 polymerase and NP genes.  

YQSS was supported by the Mahan Postdoctoral Fellowship (Computational Biology 

Program of Fred Hutchinson Cancer Research Center) and the Damon Runyon 

Postdoctoral Fellowship. This work was supported by NIH grant R01 AI127893 from the 

NIAID to TB and JDB, and NIH grant R35 GM119774-01 from the NIGMS to TB. TB is 

a Pew Biomedical Scholar. JDB is an Investigator of the Howard Hughes Medical 

Institute.  

 

Author Contributions 

Conceptualization, YQSS, JDB; Methodology, YQSS, LHM, TB, JDB; Validation, 

YQSS, RE; Investigation, YQSS, LHM, RE; Software, YQSS, LHM, JDB; Writing – 

Original Draft, YQSS; Writing – Review & Editing, YQSS, LHM, RE, TB, JDB; 

Supervision, TB, JDB; Funding Acquisition, TB, JDB 

 

Declaration of Interests 

The authors have no competing interests.  

  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 4, 2019. ; https://doi.org/10.1101/512525doi: bioRxiv preprint 

https://doi.org/10.1101/512525
http://creativecommons.org/licenses/by/4.0/


 16 

References 
Ashenberg, O., Padmakumar, J., Doud, M.B., and Bloom, J.D. (2017). Deep mutational 
scanning identifies sites in influenza nucleoprotein that affect viral inhibition by MxA. 
PLoS Pathog. 13, 1–23. 
Barber, M.R.W., Aldridge, J.R., Webster, R.G., and Magor, K.E. (2010). Association of 
RIG-I with innate immunity of ducks to influenza. Proc. Natl. Acad. Sci. 107, 5913–
5918. 
Bloom, J.D. (2014). An Experimentally Determined Evolutionary Model Dramatically 
Improves Phylogenetic Fit. Mol. Biol. Evol. 31, 1956–1978. 
Bloom, J.D. (2015). Software for the analysis and visualization of deep mutational 
scanning data. BMC Bioinformatics 16, 1–13. 
Bloom, J.D. (2017). Identification of positive selection in genes is greatly improved by 
using experimentally informed site-specific models. Biol. Direct 12, 1. 
Bloom, J.D., Gong, L.I., and Baltimore, D. (2010). Permissive secondary mutations 
enable the evolution of influenza oseltamivir resistance. Science 328, 1272–1275. 
Boucher, J.I., Cote, P., Flynn, J., Jiang, L., Laban, A., Mishra, P., Roscoe, B.P., and 
Bolon, D.N.A. (2014). Viewing Protein Fitness Landscapes Through a Next-Gen Lens. 
Genetics 198, 461–471. 
Bussey, K.A., Bousse, T.L., Desmet, E.A., Kim, B., and Takimoto, T. (2010). PB2 
residue 271 plays a key role in enhanced polymerase activity of influenza A viruses in 
mammalian host cells. J. Virol. 84, 4395–4406. 
Cauldwell, A. V., Moncorge, O., and Barclay, W.S. (2013). Unstable Polymerase-
Nucleoprotein Interaction Is Not Responsible for Avian Influenza Virus Polymerase 
Restriction in Human Cells. J. Virol. 87, 1278–1284. 
Cauldwell, A. V., Long, J.S., Moncorge, O., and Barclay, W.S. (2014). Viral 
determinants of influenza A virus host range. J. Gen. Virol. 95, 1193–1210. 
Chen, G.-W., Chang, S.-C., Mok, C., Lo, Y.-L., Kung, Y.-N., Huang, J.-H., Shih, Y.-H., 
Wang, J.-Y., Chiang, C., Chen, C.-J., et al. (2006). Genomic signatures of human versus 
avian influenza A viruses. Emerg. Infect. Dis. 12, 1353–1360. 
Dingens, A.S., Haddox, H.K., Overbaugh, J., and Bloom, J.D. (2017). Comprehensive 
Mapping of HIV-1 Escape from a Broadly Neutralizing Antibody. Cell Host Microbe 21, 
777–787.e4. 
Doud, M.B., and Bloom, J.D. (2016). Accurate measurement of the effects of all amino-
acid mutations on influenza hemagglutinin. Viruses 8, 1–17. 
Doud, M.B., Ashenberg, O., and Bloom, J.D. (2015). Site-Specific Amino Acid 
Preferences Are Mostly Conserved in Two Closely Related Protein Homologs. Mol. Biol. 
Evol. 32, 2944–2960. 
Doud, M.B., Hensley, S.E., and Bloom, J.D. (2017). Complete mapping of viral escape 
from neutralizing antibodies. PLOS Pathog. 13, e1006271. 
Du, Y., Xin, L., Shi, Y., Zhang, T.H., Wu, N.C., Dai, L., Gong, D., Brar, G., Shu, S., 
Luo, J., et al. (2018). Genome-wide identification of interferon-sensitive mutations 
enables influenza vaccine design. Science 359, 290–296. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 4, 2019. ; https://doi.org/10.1101/512525doi: bioRxiv preprint 

https://doi.org/10.1101/512525
http://creativecommons.org/licenses/by/4.0/


 17 

Eisfeld, A.J., Neumann, G., and Kawaoka, Y. (2014). At the centre: influenza A virus 
ribonucleoproteins. Nat. Rev. Microbiol. 13, 28–41. 
Finkelstein, D.B., Mukatira, S., Mehta, P.K., Obenauer, J.C., Su, X., Webster, R.G., and 
Naeve, C.W. (2007). Persistent host markers in pandemic and H5N1 influenza viruses. J. 
Virol. 81, 10292–10299. 
Fowler, D.M., and Fields, S. (2014). Deep mutational scanning: a new style of protein 
science. Nat. Methods 11, 801–807. 
Fragata, I., Matuszewski, S., Schmitz, M.A., Bataillon, T., Jensen, J.D., and Bank, C. 
(2018). The fitness landscape of the codon space across environments. Heredity (Edinb). 
121, 422–437. 
Gabriel, G., Dauber, B., Wolff, T., Planz, O., Klenk, H.-D., and Stech, J. (2005). The 
viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. 
Proc. Natl. Acad. Sci. USA 102, 18590–18595. 
Gabriel, G., Herwig, A., and Klenk, H.-D. (2008). Interaction of Polymerase Subunit PB2 
and NP with Importin α1 Is a Determinant of Host Range of Influenza A Virus. PLoS 
Pathog. 4, e11. 
Gabriel, G., Klingel, K., Otte, A., Thiele, S., Hudjetz, B., Arman-Kalcek, G., Sauter, M., 
Shmidt, T., Rother, F., Baumgarte, S., et al. (2011). Differential use of importin-α 
isoforms governs cell tropism and host adaptation of influenza virus. Nat. Commun. 2, 
156. 
Geoghegan, J.L., and Holmes, E.C. (2017). Predicting virus emergence amid 
evolutionary noise. Open Biol. 7, 170189. 
Geoghegan, J.L., Senior, A.M., and Holmes, E.C. (2016). Pathogen population 
bottlenecks and adaptive landscapes: overcoming the barriers to disease emergence. Proc. 
R. Soc. B Biol. Sci. 283, 20160727. 
Gerhard, W., Yewdell, J., Frankel, M.E., and Webster, R. (1981). Antigenic structure of 
influenza virus haemagglutinin defined by hybridoma antibodies. Nature 290, 713–717. 
Graef, K.M., Vreede, F.T., Lau, Y.-F., McCall, A.W., Carr, S.M., Subbarao, K., and 
Fodor, E. (2010). The PB2 Subunit of the Influenza Virus RNA Polymerase Affects 
Virulence by Interacting with the Mitochondrial Antiviral Signaling Protein and 
Inhibiting Expression of Beta Interferon. J. Virol. 84, 8433–8445. 
Grubaugh, N.D., Ladner, J.T., Lemey, P., Pybus, O.G., Rambaut, A., Holmes, E.C., and 
Andersen, K.G. (2019). Tracking virus outbreaks in the twenty-first century. Nat. 
Microbiol. 4, 10–19. 
Guilligay, D., Tarendeau, F., Resa-Infante, P., Coloma, R., Crepin, T., Sehr, P., Lewis, J., 
Ruigrok, R.W.H., Ortin, J., Hart, D.J., et al. (2008). The structural basis for cap binding 
by influenza virus polymerase subunit PB2. Nat. Struct. Mol. Biol. 15, 500–506. 
Hadfield, J., Megill, C., Bell, S.M., Huddleston, J., Potter, B., Callender, C., Sagulenko, 
P., Bedford, T., and Neher, R.A. (2018). Nextstrain: real-time tracking of pathogen 
evolution. Bioinformatics 34, 4121–4123. 
Hengrung, N., El Omari, K., Serna Martin, I., Vreede, F.T., Cusack, S., Rambo, R.P., 
Vonrhein, C., Bricogne, G., Stuart, D.I., Grimes, J.M., et al. (2015). Crystal structure of 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 4, 2019. ; https://doi.org/10.1101/512525doi: bioRxiv preprint 

https://doi.org/10.1101/512525
http://creativecommons.org/licenses/by/4.0/


 18 

the RNA-dependent RNA polymerase from influenza C virus. Nature 527, 114–117. 
Hilton, S.K., Doud, M.B., and Bloom, J.D. (2017). <Tt>Phydms</Tt> : Software for 
Phylogenetic Analyses Informed By Deep Mutational Scanning. PeerJ 5, e3657. 
Hoffmann, E., Neumann, G., Kawaoka, Y., Hobom, G., and Webster, R.G. (2000). A 
DNA transfection system for generation of influenza A virus from eight plasmids. Proc. 
Natl. Acad. Sci. 97, 6108–6113. 
Jagger, B.W., Memoli, M.J., Sheng, Z.-M., Qi, L., Hrabal, R.J., Allen, G.L., Dugan, 
V.G., Wang, R., Digard, P., Kash, J.C., et al. (2010). The PB2-E627K mutation 
attenuates viruses containing the 2009 H1N1 influenza pandemic polymerase. MBio 1, 
e00067-10. 
Jiang, L., Liu, P., Bank, C., Renzette, N., Prachanronarong, K., Yilmaz, L.S., Caffrey, 
D.R., Zeldovich, K.B., Schiffer, C.A., Kowalik, T.F., et al. (2016). A Balance between 
Inhibitor Binding and Substrate Processing Confers Influenza Drug Resistance. J. Mol. 
Biol. 428, 538–553. 
Kelley, L.A., Mezulis, S., Yates, C.M., Wass, M.N., and Sternberg, M.J.E. (2015). The 
Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845. 
Kim, J.H., Hatta, M., Watanabe, S., Neumann, G., Watanabe, T., and Kawaoka, Y. 
(2010). Role of host-specific amino acids in the pathogenicity of avian H5N1 influenza 
viruses in mice. J. Gen. Virol. 91, 1284–1289. 
Kowarz, E., Löscher, D., and Marschalek, R. (2015). Optimized Sleeping Beauty 
transposons rapidly generate stable transgenic cell lines. Biotechnol. J. 10, 647–653. 
Lee, J.M., Huddleston, J., Doud, M.B., Hooper, K.A., Wu, N.C., Bedford, T., and Bloom, 
J.D. (2018). Deep mutational scanning of hemagglutinin helps predict evolutionary fates 
of human H3N2 influenza variants. Proc. Natl. Acad. Sci. 115, E8276–E8285. 
Liang, Y., Hong, Y., and Parslow, T.G. (2005). cis -Acting Packaging Signals in the 
Influenza Virus PB1 , PB2 , and PA Genomic RNA Segments cis -Acting Packaging 
Signals in the Influenza Virus PB1 , PB2 , and PA Genomic RNA Segments. J. Virol. 79, 
10348–10355. 
Lipsitch, M., Barclay, W., Raman, R., Russell, C.J., Belser, J.A., Cobey, S., Kasson, 
P.M., Lloyd-Smith, J.O., Maurer-Stroh, S., Riley, S., et al. (2016). Viral factors in 
influenza pandemic risk assessment. ELife 5. 
Long, J.S., Howard, W.A., Núñez, A., Moncorgé, O., Lycett, S., Banks, J., and Barclay, 
W.S. (2013). The effect of the PB2 mutation 627K on highly pathogenic H5N1 avian 
influenza virus is dependent on the virus lineage. J. Virol. 87, 9983–9996. 
Long, J.S., Giotis, E.S., Moncorgé, O., Frise, R., Mistry, B., James, J., Morisson, M., 
Iqbal, M., Vignal, A., Skinner, M.A., et al. (2016). Species difference in ANP32A 
underlies influenza A virus polymerase host restriction. Nature 529, 101–104. 
Long, J.S., Mistry, B., Haslam, S.M., and Barclay, W.S. (2018). Host and viral 
determinants of influenza A virus species specificity. Nat. Rev. Microbiol. 
Mänz, B., Brunotte, L., Reuther, P., and Schwemmle, M. (2012). Adaptive mutations in 
NEP compensate for defective H5N1 RNA replication in cultured human cells. Nat. 
Commun. 3, 802. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 4, 2019. ; https://doi.org/10.1101/512525doi: bioRxiv preprint 

https://doi.org/10.1101/512525
http://creativecommons.org/licenses/by/4.0/


 19 

Mänz, B., de Graaf, M., Mögling, R., Richard, M., Bestebroer, T.M., Rimmelzwaan, 
G.F., and Fouchier, R.A.M. (2016). Multiple Natural Substitutions in Avian Influenza A 
Virus PB2 Facilitate Efficient Replication in Human Cells. J. Virol. 90, 5928–5938. 
Mehle, A., and Doudna, J.A. (2008). An Inhibitory Activity in Human Cells Restricts the 
Function of an Avian-like Influenza Virus Polymerase. Cell Host Microbe 4, 111–122. 
Mehle, A., and Doudna, J.A. (2009). Adaptive strategies of the influenza virus 
polymerase for replication in humans. Proc. Natl. Acad. Sci. 106, 21312–21316. 
Miotto, O., Heiny, A., Tan, T., August, J.T., and Brusic, V. (2008). Identification of 
human-to-human transmissibility factors in PB2 proteins of influenza A by large-scale 
mutual information analysis. BMC Bioinformatics 9, S18. 
Mok, C.K., Yen, H.L., Yu, M.Y., Yuen, K.M., Sia, S.F., Chan, M.C., Qin, G., Tu, W.W., 
and Peiris, J.S. (2011). Amino acid residues 253 and 591 of the PB2 protein of avian 
influenza virus A H9N2 contribute to mammalian pathogenesis. J Virol 85, 9641–9645. 
Moncla, L.H., Zhong, G., Nelson, C.W., Dinis, J.M., Mutschler, J., Hughes, A.L., 
Watanabe, T., Kawaoka, Y., and Friedrich, T.C. (2016). Selective Bottlenecks Shape 
Evolutionary Pathways Taken during Mammalian Adaptation of a 1918-like Avian 
Influenza Virus. Cell Host Microbe 19, 169–180. 
Naffakh, N., Massin, P., Escriou, N., Crescenzo-Chaigne, B., and Van Der Werf, S. 
(2000). Genetic analysis of the compatibility between polymerase proteins from human 
and avian strains of influenza A viruses. J. Gen. Virol. 81, 1283–1291. 
Neumann, G., Watanabe, T., Ito, H., Watanabe, S., Goto, H., Gao, P., Hughes, M., Perez, 
D.R., Donis, R., Hoffmann, E., et al. (1999). Generation of influenza A viruses entirely 
from cloned cDNAs. Proc. Natl. Acad. Sci. 96, 9345–9350. 
Olival, K.J., Hosseini, P.R., Zambrana-Torrelio, C., Ross, N., Bogich, T.L., and Daszak, 
P. (2017). Host and viral traits predict zoonotic spillover from mammals. Nature 546, 
646–650. 
Parrish, C.R., Holmes, E.C., Morens, D.M., Park, E.-C., Burke, D.S., Calisher, C.H., 
Laughlin, C.A., Saif, L.J., and Daszak, P. (2008). Cross-species virus transmission and 
the emergence of new epidemic diseases. Microbiol. Mol. Biol. Rev. 72, 457–470. 
Peck, K.M., and Lauring, A.S. (2018). Complexities of Viral Mutation Rates. J. Virol. 92, 
e01031-17. 
Pflug, A., Lukarska, M., Resa-Infante, P., Reich, S., and Cusack, S. (2017). Structural 
insights into RNA synthesis by the influenza virus transcription-replication machine. 
Virus Res. 234, 103–117. 
Pumroy, R.A., Ke, S., Hart, D.J., Zachariae, U., and Cingolani, G. (2015). Molecular 
determinants for nuclear import of influenza A PB2 by importin α isoforms 3 and 7. 
Structure 23, 374–384. 
Reich, S., Guilligay, D., Pflug, A., Malet, H., Berger, I., Crepin, T., Hart, D., Lunardi, T., 
Nanao, M., Ruigrok, R.W.H., et al. (2014). Structural insight into cap-snatching and 
RNA synthesis by influenza polymerase. Nature 516, 361–366. 
Reperant, L.A., Kuiken, T., and Osterhaus, A.D.M.E. (2012). Adaptive pathways of 
zoonotic influenza viruses: From exposure to establishment in humans. Vaccine 30, 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 4, 2019. ; https://doi.org/10.1101/512525doi: bioRxiv preprint 

https://doi.org/10.1101/512525
http://creativecommons.org/licenses/by/4.0/


 20 

4419–4434. 
Resa-Infante, P., and Gabriel, G. (2013). The nuclear import machinery is a determinant 
of influenza virus host adaptation. BioEssays 35, 23–27. 
Resa-Infante, P., Jorba, N., Zamarreño, N., Fernández, Y., Juárez, S., and Ortín, J. 
(2008). The host-dependent interaction of α-importins with influenza PB2 polymerase 
subunit is required for virus RNA replication. PLoS One 3, e3904. 
Russell, C.A., Kasson, P.M., Donis, R.O., Riley, S., Dunbar, J., Rambaut, A., Asher, J., 
Burke, S., Davis, C.T., Garten, R.J., et al. (2014). Improving pandemic influenza risk 
assessment. ELife 3, e03883. 
Sagulenko, P., Puller, V., and Neher, R.A. (2018). TreeTime: Maximum-likelihood 
phylodynamic analysis. Virus Evol. 4. 
Serna Martin, I., Hengrung, N., Renner, M., Sharps, J., Martínez-Alonso, M., Masiulis, 
S., Grimes, J.M., and Fodor, E. (2018). A Mechanism for the Activation of the Influenza 
Virus Transcriptase. Mol. Cell 70, 1101–1110.e4. 
Su, S., Gu, M., Liu, D., Cui, J., Gao, G.F., Zhou, J., and Liu, X. (2017). Epidemiology, 
Evolution, and Pathogenesis of H7N9 Influenza Viruses in Five Epidemic Waves since 
2013 in China. Trends Microbiol. 25, 713–728. 
Subbarao, E.K., London, W., and Murphy, B.R. (1993). A single amino acid in the PB2 
gene of influenza A virus is a determinant of host range. J. Virol. 67, 1761–1764. 
Taft, A.S., Ozawa, M., Fitch, A., Depasse, J. V., Halfmann, P.J., Hill-Batorski, L., Hatta, 
M., Friedrich, T.C., Lopes, T.J.S., Maher, E.A., et al. (2015). Identification of 
mammalian-adapting mutations in the polymerase complex of an avian H5N1 influenza 
virus. Nat. Commun. 6, 7491. 
Tarendeau, F., Boudet, J., Guilligay, D., Mas, P.J., Bougault, C.M., Boulo, S., Baudin, F., 
Ruigrok, R.W.H., Daigle, N., Ellenberg, J., et al. (2007). Structure and nuclear import 
function of the C-terminal domain of influenza virus polymerase PB2 subunit. Nat. 
Struct. Mol. Biol. 14, 229–233. 
Taubenberger, J.K., and Kash, J.C. (2010). Influenza Virus Evolution, Host Adaptation, 
and Pandemic Formation. Cell Host Microbe 7, 440–451. 
Taubenberger, J.K., Reid, A.H., Lourens, R.M., Wang, R., Jin, G., and Fanning, T.G. 
(2005). Characterization of the 1918 influenza virus polymerase genes. Nature 437, 889–
893. 
Varble, A., Albrecht, R.A., Backes, S., Crumiller, M., Bouvier, N.M., Sachs, D., García-
Sastre, A., and tenOever, B.R. (2014). Influenza A Virus Transmission Bottlenecks Are 
Defined by Infection Route and Recipient Host. Cell Host Microbe 16, 691–700. 
te Velthuis, A.J.W., Long, J.C., Bauer, D.L.V., Fan, R.L.Y., Yen, H.L., Sharps, J., 
Siegers, J.Y., Killip, M.J., French, H., Oliva-Martín, M.J., et al. (2018). Mini viral RNAs 
act as innate immune agonists during influenza virus infection. Nat. Microbiol. 3, 1234–
1242. 
Te Velthuis, A.J.W., and Fodor, E. (2016). Influenza virus RNA polymerase: Insights 
into the mechanisms of viral RNA synthesis. Nat. Rev. Microbiol. 14, 479–493. 
Webster, R.G., Bean, W., Gorman, O., Chambers, T., and Kawaoka, Y. (1992). Evolution 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 4, 2019. ; https://doi.org/10.1101/512525doi: bioRxiv preprint 

https://doi.org/10.1101/512525
http://creativecommons.org/licenses/by/4.0/


 21 

and ecology of influenza A viruses. Microbiol. Rev. 56, 152–179. 
Wu, N.C., Young, A.P., Al-Mawsawi, L.Q., Olson, C.A., Feng, J., Qi, H., Luan, H.H., Li, 
X., Wu, T.-T., and Sun, R. (2014). High-Throughput Identification of Loss-of-Function 
Mutations for Anti-Interferon Activity in the Influenza A Virus NS Segment. J. Virol. 88, 
10157–10164. 
Wu, N.C., Young, A.P., Al-Mawsawi, L.Q., Olson, C.A., Feng, J., Qi, H., Chen, S.-H., 
Lu, I.-H., Lin, C.-Y., Chin, R.G., et al. (2015). High-throughput profiling of influenza A 
virus hemagglutinin gene at single-nucleotide resolution. Sci. Rep. 4, 4942. 
Yamada, S., Hatta, M., Staker, B.L., Watanabe, S., Imai, M., Shinya, K., Sakai-Tagawa, 
Y., Ito, M., Ozawa, M., Watanabe, T., et al. (2010). Biological and Structural 
Characterization of a Host-Adapting Amino Acid in Influenza Virus. PLoS Pathog. 6, 
e1001034. 
Zhou, B., Li, Y., Halpin, R., Hine, E., Spiro, D.J., and Wentworth, D.E. (2011). PB2 
residue 158 is a pathogenic determinant of pandemic H1N1 and H5 influenza a viruses in 
mice. J. Virol. 85, 357–365. 
 
  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 4, 2019. ; https://doi.org/10.1101/512525doi: bioRxiv preprint 

https://doi.org/10.1101/512525
http://creativecommons.org/licenses/by/4.0/


 22 

Figures 
 

 
 
Figure 1. Deep mutational scanning of avian influenza PB2 in human and avian 
cells.  
(A) We mutagenized all codons of PB2 from an avian influenza strain. We generated 
mutant virus libraries using a helper-virus approach, and passaged libraries at low MOI in 
human (A549) or duck (CCL-141) cells to select for functional PB2 variants. (B) We 
deep sequenced PB2 mutants from the initial mutant plasmid library and the mutant virus 
library after passage through each cell type. We computed the “preference” for each 
amino acid in each cell type by comparing the frequency of each mutation before and 
after selection. In the logo plots, the height of each letter is proportional to the preference 
for that amino acid at that site. (C) To identify mutations that are adaptive in one cell type 
versus the other, we computed the differential selection by comparing the frequency of 
each amino-acid mutation in human versus avian cells. Letter heights are proportional to 
the log enrichment of the mutation in human versus avian cells. See also Figure S1 and 
S2. 
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Figure 2. Functional constraints on PB2. 
(A) The amino acid preferences measured in human and avian cells for key regions of 
PB2: the start codon, sites involved in cap-binding, and sites comprising the nuclear 
localization sequence (NLS). The height of each letter is proportional to the preference 
for that amino acid at that site. Known critical amino acids are generally strongly 
preferred in both cell types. (B) Correlation of the site entropy of the amino-acid 
preferences measured in each cell type. (C) Sites of high variability (as measured by 
entropy) in natural human influenza sequences occur at sites of high entropy as 
experimentally measured in human cells. (D) Sites with high variability in natural avian 
influenza sequences occur at sites of high entropy as experimentally measured in duck 
cells. See also Figure S3 and Table S1, S2. 
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Figure 3. Deep mutational scanning identifies known and novel host-adaptive 
mutations. 
(A) Distribution of experimentally measured differential selection for previously 
characterized human adaptive mutations and all other possible mutations to PB2. Positive 
differential selection means a mutation is favored in human versus avian cells. (B) 
Scatterplot of each mutation’s effect in human versus avian cells, showing the top 
adaptive mutations identified in the deep mutational scanning. (C) Logoplots showing the 
differential selection at the sites of mutations that we chose for functional validation. The 
height of each letter above the line indicates how strongly it was selected in human 
versus avian cells. Top adaptive mutations are colored in orange (human-adaptive) or 
green (avian-adaptive). Top adaptive mutations chosen for functional validation are 
indicated by an asterisk(*). Additional mutations chosen for validation are indicated by ^ 
and are colored orange (human-adaptive) or green (avian-adaptive). Mutations observed 
in H7N9 avian-to-human transmission are indicated by #. Note that not all mutations with 
high differential selection in human versus avian cells are classified as top adaptive 
mutations because we also filtered for mutations that are substantially beneficial relative 
to wildtype. (D) Logoplots showing amino acid preferences at sites of top mutations 
measured to be beneficial in both human and avian cells. Mutations that we selected for 
further validation are colored in purple. See also Figure S4 and Table S2, S3.  
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Figure 4. Validation of top experimentally adaptive mutations. 
The polymerase activity of selected PB2 mutants as measured using mini-genome assays 
in A549 (A) and HEK293T (B) human cells. Minigenome activity is represented as 
percent of transfected cells that expressed a viral GFP reporter. The gray horizontal line 
indicates the mean value measured for the wild type avian PB2. E627E is a synonymous 
mutation at site 627. (C) Competition of virus bearing the indicated mutant PB2 against 
virus with wild-type PB2. We mixed the mutant and wild-type viruses at a 1:1 ratio of 
infectious particles as determined in the respective cell type, infected human A549 and 
avian CCL-141 cells, and measured the frequency of each variant at 10 and 48 hours 
using deep sequencing. The plots show the relative ratios of the mutant over wild-type 
variant in A549 versus CCL-141 cells. These ratios are shown to start at 100 at time zero, 
since the starting ratio of mutant to wildtype variant in each cell type should be one. 
Subsequent points above the horizontal line at 100 indicate that a viral mutant grows 
better in human than avian cells. See also Table S4 and S5. 
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Figure 5. Locations of top human-adaptive mutations on the structure of the 
influenza polymerase. 
Overall structure of the influenza polymerase complex comprising PB2, PB1 and PA in 
(A, B) the transcription pre-initiation form (PDB: 4WSB) and (C, D) the apo form (PDB: 
5D98). PB2 domains defined as in Pflug et al. (2017). (B, D) Sites of top human-adaptive 
mutations identified by deep mutational scanning are shown in red on the PB2 subunit of 
the structure. Sites of previously known human-adaptive mutations are in blue. Sites 
identified by deep mutational scanning and which were also previously known are in 
purple. Surface-exposed adaptive sites, particularly those forming clusters, are circled 
and numbered. (E) Structure of PB2 C-terminal fragment co-crystalized with importin-a7 
(PDB: 4UAD). Sites on PB2 interacting with major and minor NLS binding surfaces of 
importin-a7 are in green and cyan respectively. Importin-a7 is depicted in ribbon form in 
tan. We used the deep mutational scanning to define a continuous variable indicating the 
extent of host-specific adaptation at each site of PB2. Specifically, for each site, we 
computed the positive site differential selection by summing all positive mutation 
differential selection values at that site (i.e., the total height of the letter stack in the 
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positive direction in logoplots such as in Fig 3D). We mapped this differential selection 
onto the PB2 C-terminal fragment in red; PB2 sites with high differential selection are 
numbered. Regions of importin-a7 that differ from importin-a3 are colored in orange, 
those near PB2 sites with high differential selection are shown as spheres. For all 
structures, the avian influenza (S009) PB2 amino acid sequence was mapped onto the 
PB2 chain by one-2-one threading using Phyre2 (Kelley et al., 2015) (Confidence in 
models for 4WSB, 5D98, and 4UAD are 100%, 100%, and 99% respectively). Sites are 
numbered according to the S009 PB2 sequence. See also Figure S5.  
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Figure 6. Experimentally identified human-adaptive mutations are enriched in 
avian-human transmission of H7N9 influenza. 
(A) Phylogeny of H7N9 influenza PB2 sequences. Branches in human and avian hosts 
are colored black and grey respectively. Orange or red dots indicate where a mutation 
was inferred to have occurred. Branch lengths are scaled by annotated and inferred dates 
of origin of each sequence. (B) Distribution of experimentally measured differential 
selection values for mutations occurring during H7N9 evolution in human and avian 
hosts. A positive differential selection value means that our experiments measured the 
mutation to be beneficial in human versus avian cells. Top differentially selected 
mutations that occur frequently are labeled. See also Table S6. 
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Figure 7. Evolutionary accessibility of mutations from current avian influenza PB2 
sequences. 
Distribution of mean nucleotide substitutions required to access all amino-acid mutations, 
previously characterized human-adaptive mutations, and top human-adaptive mutations 
identified in our deep mutational scanning. Mean nucleotide substitution is calculated by 
averaging over all avian influenza PB2 sequences collected from 2015 to 2018. Most 
previously characterized human-adaptive mutations are accessible by single nucleotide 
substitution, whereas many of the new adaptive mutations that we identified require 
multiple nucleotide substitutions.  
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STAR Methods 
 
Contact for reagent and resource sharing 
Further information and requests for resources and reagents should be directed to and will 
be fulfilled by the Lead Contact, Jesse D. Bloom (jbloom@fredhutch.org). 
 
Experimental model and subject details 
 
Cell lines and media 
HEK293T, MDCK-SIAT1, and A549 (ATCC CCL-185) cells were maintained in D10 
media (DMEM supplemented with 10% fetal bovine serum, 2 mM L-glutamine, 100 
U/ml penicillin, and 100 µg/ml of streptomycin). CCL-141 cells (ATCC CCL-141) were 
maintained in E10 media (identical to D10 except that EMEM is used in place of 
DMEM).  Cells were grown in WSN growth media (WGM: Opti-MEM supplemented 
with 0.5% FBS, 0.3% BSA, 100ug/ml CaCl2, 100 U/ml penicillin, and 100 µg/ml of 
streptomycin) for viral infections.  
For an avian cell line, we chose to use a duck rather than a chicken cell line because 
ducks are natural hosts of influenza that (unlike chickens) possess RIG-I, a key innate-
immune sensor of influenza (Barber et al., 2010).  
For expansion of helper virus, we generated MDCK-SIAT1 cells expressing S009 PB2-
E627K under control of a doxycycline-inducible promoter (MDCK-SIAT1-tet-S009-
PB2-E627K) using a Sleeping Beauty transposon system (Kowarz et al., 2015). Briefly, 
MDCK-SIAT1 cells were transfected with pSBtet_RP_S009_PB2_E627K and pSB100X 
transposase vector using Lipofectamine 3000 (ThermoFisher Scientific, L3000015), and 
then subject to selection with 1 ug/ml puromycin. At three days post-transfection, we 
sorted for individual transfected cells expressing mCherry. All subsequent experiments 
were performed with a clonal expansion of a single transfected cell. 
All cell lines tested negative for mycoplasma at the time they were expanded for either 
generating helper virus or passaging mutant plasmid libraries. 
 
Method details 
 
Plasmids 
Sequences for plasmids generated in this study are provided in File S1.  
Avian influenza polymerase plasmids: Original plasmids for PB2, PB1, PA, and NP 
genes from avian influenza strain A/Green-winged Teal/Ohio/175/1986 (S009) were gifts 
of Jeffrey Taubenberger (Jagger et al., 2010). For generating the mutant plasmid library, 
we cloned the S009 PB2 coding sequence into a pHW2000 vector (Hoffmann et al., 
2000) from which we removed the CMV promoter (final plasmid 
pHW_noCMV_S009_PB2). The mutant library insert was cloned into the recipient 
vector pHW_noCMVnoTerm_BsmBI, which lacks the Pol I terminator (terminator 
sequence is part of the insert). The reason that we generated a pHW plasmid without a 
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CMV promoter is that we were unable to maintain a stable bacterial clone of the S009 
PB2 coding sequence on the pHH21 plasmid backbone – we observed frequent deletions 
in the coding sequence during plasmid propagation, suggesting that the insert on the 
pHH21 plasmid backbone is toxic to the bacterial host. For generating helper virus and 
virus for viral competitions, we cloned the S009 PB2, PB1, PA, and NP coding sequences 
into pHW2000 (pHW_S009_PB2, pHW_S009_PB1, pHW_S009_PA, pHW_S009_NP). 
In all cases we used non-coding viral-RNA termini from the respective 
A/WSN/1933(H1N1) gene segment. For protein expression and the minigenome assay, 
we cloned the PB2, PB1, PA, and NP coding sequences from S009 into a protein-
expression plasmid with a CMV promoter (HDM_S009_PB2, HDM_S009_PB1, 
HDM_S009_PA, HDM_S009_NP). All mutants of PB2 were made by site-directed 
mutagenesis on the appropriate plasmid backbone.  
Helper virus plasmids: To generate a PB2 vRNA lacking a functional PB2 protein, we 
cloned GFP flanked by PB2 sequence into the pHH21 vector (Neumann et al., 1999) 
(pHH_PB2_S009_flank_99_eGFP_100). The flanking non-coding viral-RNA termini are 
from WSN PB2, and the coding sequences are from S009 PB2. The length of flanking 
sequences, 99 and 100 bases on the 5’ and 3’ end of the PB2 coding sequence 
respectively, are based on prior experiments analyzing how much terminal sequence is 
needed for effective genome packaging (Liang et al., 2005). We mutated out start codons 
5’ to the GFP start site in the mRNA sense. Our helper virus rescue also required the 
reverse genetics plasmids encoding HA, NA, M, and NS from WSN (pHW184_HA, 
pHW186_NA, pHW187_M, pHW188_NS) (Hoffmann et al., 2000). To generate a cell 
line with doxycycline-inducible expression of S009 PB2 for expansion of PB2-deficient 
helper virus, we cloned the S009 PB2-E627K coding sequence into the pSBtet vector 
(pSBtet_RP_S009_PB2_E627K) (Kowarz et al., 2015). 
Minigenome assay: In addition to protein expression plasmids described above, we used 
a pHH-PB1-flank-eGFP reporter (Bloom et al., 2010), and pcDNA-mCherry as a 
transfection control (pcDNA3.1_mCherry).  
 
Primers 
All primer sequences used in this study are provided in Table S7. Note that this Excel file 
has several worksheets giving primers for different aspects of the experiments. 
 
PB2 codon mutant plasmid libraries 
We generated all possible codon mutations of the entire PB2 coding sequence using the 
PCR-based strategy described in Bloom (2014) with the modifications described in 
Dingens et al. (2017). Briefly, we designed mutagenic primers tiling across the entire 
coding region (https://github.com/jbloomlab/CodonTilingPrimers). We performed 10 
cycles of fragment PCR using the mutagenic primers and end primers flanking the 
vRNA, followed by 20 cycles of joining PCR using only end primers (Table S7: 
Mutagenesis worksheet). We generated three independent libraries starting from 
mutagenesis of independent bacterial clones. The PB2 variants were cloned into the 
BsmBI-digested vector pHW_noCMVnoTerm_BsmBI using NEBuilder HiFi DNA 
Assembly Master Mix (NEB, E2621S), and electroporated into ElectroMAX DH10B 
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competent cells (Invitrogen, 18290015). We obtained 18-22 million transformants for 
each replicate library, from which we extracted plasmid by maxiprep. We randomly 
selected 48 clones for Sanger sequencing to evaluate the library mutation rate 
(https://github.com/jbloomlab/SangerMutantLibraryAnalysis) (Fig S1A-F).  
 
Generation and passaging of mutant virus libraries 
We generated mutant virus libraries using the helper-virus approach in Doud and Bloom 
(2016), with modifications. We rescued reassortant virus using polymerase and 
nucleoprotein genes (PB2, PB1, PA, NP) from S009, and remaining genes (HA, NA, M, 
NS) from A/WSN/1933(H1N1) (WSN).  
Helper virus: We plated a co-culture of 4 x 105 HEK293T and 0.5 x 105 MDCK-SIAT1-
tet-S009-PB2-E627K in D10 media per well of a 6-well plate. At 18 hours after seeding 
cells, we added 1 ug/ml doxycycline to induce PB2 expression. One hour after adding 
doxycycline, we transfected each well with 250 ng each of 
pHH_PB2_S009_flank_99_eGFP_100, HDM_S009_PB2-E627K, pHW_S009_PB1, 
pHW_S009_PA, pHW_S009_NP, pHW184_HA, pHW186_NA, pHW187_M, and 
pHW188_NS using BioT (Bioland Scientific, B01-01). At four hours post-transfection, 
we replaced D10 media with WGM supplemented with 1 ug/ml doxycycline. We 
collected viral supernatant 52 hours post-transfection. To expand the helper virus, we 
seeded MDCK-SIAT1-tet-S009-PB2-E627K cells in D10 media 4 hours prior to infection 
at 4 x 106 cells per 15 cm dish. We then infected each dish with 40 ul of fresh viral 
supernatant, using WGM supplemented with 1 ug/ml doxycycline to induce PB2 
expression. At 48 hours post-infection, we collected viral supernatant containing 
expanded helper virus and clarified the supernatant by centrifugation at 400x g for 4 min. 
We measured the infectious particle (IP)/ul titer of the helper virus by infecting 
HEK293T cells with a known volume of viral supernatant, and quantifying the number of 
GFP+ cells by flow cytometry 18 hours post-infection. 
Mutant virus library rescue: For each mutant plasmid library, we seeded 36 wells of a 6-
well dish with 1 x 106 HEK293T cells, and transfected each well 17 hours later with 375 
ng each of HDM_S009_PB2-E627K, HDM_S009_PB1, HDM_S009_PA, 
HDM_S009_NP, and 500 ng of PB2 mutant plasmid library using BioT. For the wild-
type control, we seeded 6 wells and used pHW_noCMV_S009_PB2 in place of the 
mutant plasmid library. At 6 hours post-transfection, we infected cells with helper virus 
at MOI of 1 IP/cell in WGM. At 2 hours post-infection, we replaced the inoculum with 
fresh WGM. At 20 hours post-infection, we harvested viral supernatants and clarified the 
supernatant by centrifugation at 400x g for 4 min. Supernatants were titered by TCID50 
on MDCK-SIAT1 cells. The titers for the three library replicates and wild-type control 
were 262, 68, 100, and 1467 TCID50/ul respectively. 
Passaging of mutant virus libraries: We aimed to passage 1 x 106 TCID50 of each mutant 
virus library in A549 and CCL-141 cells at MOI of 0.01 TCID50/cell as determined in 
MDCK-SIAT1 cells. Therefore, we aimed to have 1 x 108  total cells each at the time of 
infection. The day prior to each infection, we seeded between 8 x 107 to 1 x 108  A549 
cells in D10 in 4 x 5-layered cell culture flasks (Corning, 353144), and 8 x 107 to 1 x 108   
CCL-141 cells in E10 in 8 x 5-layered cell culture flasks. To estimate the total number of 
each cell type at the time of each infection, we plated an equivalent density of cells in a 
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T225 flask. Just prior to infection, we counted the number of cells in the T225 flask, and 
extrapolated the total number of cells to be infected. We calculated, for an MOI of 0.01, 
the number of TCID50s to be passaged for each of the three library replicates and wild-
type control in A549 cells to be 9.39 x 105, 1.02 x 106 , 1.20 x 106 , and 9.30 x 105 

respectively, and in CCL-141 cells to be 8.46 x 105, 8.92 x 105 , 9.54 x 105 , and 8.58 x 
105 respectively. We infected cells by removing D10 or E10 media, rinsing each flask 
with PBS, and then adding the calculated amount of virus diluted in WGM. At 3 hours 
post-infection, we replaced the inoculum with fresh WGM. We harvested viral 
supernatant 48 hours post-infection, and clarified the supernatant by centrifugation at 
400x g for 4 min. 
 
Barcoded subamplicon sequencing 
We ultracentrifuged clarified viral supernatant at 27,000 rpm in a Beckman Coulter 
SW28 rotor, for 2 hours at 4ºC. We resuspended the virus the residual media, then 
extracted RNA from 280 ul of concentrated virus using the Qiagen RNeasy Mini Kit 
(Qiagen, 74104). We titered the concentrated viral supernatant by TCID50 on MDCK-
SIAT1 cells to estimate the total TCID50 from which we extracted RNA (ranged from 
2.80 x 105 to 8.8 x 106 TCID50); we expect the TCID50 titer to be a lower-bound and 
underestimate of the total viral variants present in the supernatant, since it measures only 
infectious virus, whereas we would extract RNA from both infectious and non-infectious 
virions. 
We used a barcoded-subamplicon deep sequencing strategy that reduces the sequencing 
error rate (Doud and Bloom, 2016, 
https://jbloomlab.github.io/dms_tools2/bcsubamp.html). Briefly, we reverse transcribed 
the full PB2 vRNA with Accuscript Reverse Transcriptase (Agilent, 200820) (primer 
S009-PB2-full-1F, Table S7: Barcoded subamplicon sequencing worksheet), and then 
PCR amplified the full PB2 vRNA (primers S009-PB2-full-1F and S009-PB2-full-8R, 
Table S7) using KOD Host Start Master Mix (EMD Millipore, 71842), making sure to 
have amplified from an estimated 1 x 107 cDNA molecules. We then PCR amplified the 
PB2 gene in 8 subamplicons using primers containing a random barcode to uniquely 
identify each template cDNA molecule (Table S7). Approximately 7.5 x 105 uniquely 
barcoded molecules from each subamplicon library were then amplified by primers that 
add Illumina sequencing adaptors (Table S7). Finally, these libraries were deep 
sequenced on an Illumina HiSeq 2500 using 2 x 250 bp paired-end reads to a target 3.3x 
coverage per barcode.  
 
Analysis of deep mutational scanning data 
Deep mutational scanning sequence data was analyzed using dms_tools2 
(https://jbloomlab.github.io/dms_tools2, version 2.3.0). The GitHub repository 
https://github.com/jbloomlab/PB2-DMS contains Jupyter notebooks that perform all steps 
of the analyses and provide detailed step-by-step explanations and plots. The README 
file explains the organization of the notebooks and other files. HTML renderings of the 
notebooks are provided in File S2. Processed results on preferences, differential selection, 
and mutation effect are provided in Table S3.  
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Rescaling of preferences: We rescaled our preferences to match the stringency of 
selection in nature. To do so, we first asked how well the preferences measured by the 
deep mutational scanning in either human or avian cells describes evolution of PB2 in 
both human and avian hosts. We used the preferences to generate an experimentally 
informed codon substitution model (ExpCM) (Bloom, 2017; Hilton et al., 2017), and 
asked if the ExpCMs described PB2’s natural evolution better than a standard 
phylogenetic substitution model. The ExpCMs using amino-acid preferences vastly 
outperformed standard phylogenetic substitution models, suggesting that our experiments 
do capture some of the natural evolutionary constrain on PB2 (Table S1). The ExpCM 
stringency parameter had a value of 2.5, indicating that natural selection favors the same 
amino acids as our experiments, but with greater stringency (Hilton et al., 2017). We thus 
rescaled our preferences to match the stringency of selection in nature using the ExpCM 
stringency parameter, and use these rescaled preferences for all subsequent analyses (Fig 
S3, Table S1, S2).  
 
Minigenome activity 
Minigenome assays were performed in biological triplicate (starting from independent 
bacterial clones of each PB2 mutant) in both A549 and HEK293T cells. We seeded 2.5 x 
104 A549 or HEK293T cells per well of a 96-well plate. Cells were transfected the next 
day with 10 ng each of HDM_S009_PB2 (for the respective mutant), HDM_S009_PB1, 
HDM_S009_PA, HDM_S009_NP, 30 ng of pHH-PB1-flank-eGFP reporter, and 30 ng of 
pcDNA-mCherry as transfection control, using Lipofectamine 3000 (A549) or BioT 
(HEK293T). At 22 hours post-transfection, cells were trypsinized and analyzed by flow 
cytometry. We report minigenome activity as the percent of mCherry-positive cells that 
are GFP-positive. 
 
Viral competition 
Mutant virus: We generated mutant virus by reverse genetics using pHW_S009_PB2 (for 
the respective mutant), pHW_S009_PB1, pHW_S009_PA, pHW_S009_NP, 
pHW184_HA, pHW186_NA, pHW187_M, and pHW188_NS. We seeded 5 x 105 
HEK293T cells per well of a 6-well plate, and transfected cells the next day with 250 ng 
each of the 8 pHW plasmids using BioT. At 2 hours post-transfection, we replaced media 
with WGM. At 40 hours post-infection, we collected viral supernatant. We measured the 
infectious particle (IP)/ul titer of the supernatant by infecting A549 or CCL-141 cells 
with a known volume of viral supernatant, and quantifying the number of HA+ cells 9 
hours post-infection. Cells were stained for HA using the H17-L19 antibody (Gerhard et 
al., 1981), which reacts with the WSN HA (Doud et al., 2017).  
Competitions: Viral competition assays were performed in biological duplicate (starting 
from independent bacterial clones of each PB2 mutant) in both A549 and CCL-141 cells. 
Cells were infected with a mixture of wild-type and PB2-mutant virus at a 1:1 ratio based 
on the IP/ul titer as measured in the given cell type. We infected a minimum of 3.78 x 105 

or 7.62 x 105 cells, at MOIs of 0.1 or 0.01, for the 10 h and 48 h timepoints respectively. 
At 2 hours post-infection, we replaced either D10 or E10 media with fresh WGM. At 10 
hours post-infection, cells infected at MOI of 0.1 were lysed in buffer RLT and cellular 
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RNA was extracted using the Qiagen RNeasy Mini Kit. At 48 hours post-infection, we 
collected viral supernatant from cells infected at MOI of 0.01, and extracted RNA using 
the QIAamp Viral RNA Mini Kit (Qiagen, 52904).  
Sequencing to determine mutant frequency: We reverse transcribed the full length PB2 
vRNA from the extracted RNA with SuperScript III (ThermoFisher Scientific, 18080051) 
(primer S009-PB2-full-1F, Table S7: Viral competition). For each PB2 mutant, we PCR 
amplified from the cDNA the region of PB2 centered around that mutated codon site 
(Table S7). This product was then subject to a second PCR using primers that add 
Illumina sequencing adaptors. Finally, these libraries were deep sequenced on an 
Illumina MiSeq using 50 bp single-end reads. Computational analyses to quantify mutant 
versus wild-type frequency are provided in File S2, and at 
https://github.com/jbloomlab/PB2-DMS. 
 
H7N9 phylogenetic analysis 
The phylogenetic tree was generated using Nextstrain’s augur pipeline (Hadfield et al., 
2018), and ancestral state reconstruction and adjustment of branch lengths according to 
sequence isolation date were performed with TreeTime (Sagulenko et al., 2018). 
Ancestral state reconstruction was only performed for nucleotide states, and was not used 
to infer ancestral host states. Instead, we inferred host-state transitions associated with 
each branch of the tree in a way that leveraged the prior knowledge that most H7N9 
viruses circulate in avian hosts, and that most human infections arise from direct avian-
to-human transmissions (Su et al., 2017). Specifically, for each node in the tree, starting 
from the root, we gathered all tips descending from that node. If that clade included only 
human sequences, and its parent node also included only human sequences, then the 
current clade falls within a monophyletic human clade, and the branch leading to it was 
labeled human-to-human. If the current clade includes only human sequences but the 
parent node includes non-human sequences, then the branch leading to the clade was 
labeled avian-to-human. If the current clade includes both human and non-human 
sequences, then the branch leading to the clade was labeled avian-to-avian. Mutations 
were classified as human if they occurred on human-to-human and avian-to-human 
branches, and are classified as avian if they occurred on avian-to-avian branches. Note 
that since H7N9 human influenza typically results from avian-to-human transmissions, 
the branches we label as human-to-human in reality likely arise from avian-to-human 
transmissions, but which we cannot accurately reconstruct due to insufficient sampling of 
avian sequences. For this reason, human-to-human and avian-to-human branches were 
grouped together. Further details are provided in Jupyter notebook at 
https://github.com/jbloomlab/PB2-DMS, or in File S2. 
 
Accessibility of mutations 
We calculated the accessibility, or mean nucleotide substitutions required to access an 
amino-acid mutation, from avian influenza PB2 sequences collected from 2015 through 
2018. The accessibility of codon c to amino-acid a by single-nucleotide mutations is 
defined as the minimum number of nucleotide mutations needed to generate any codon 
for that amino-acid. For a collection of sequences, we calculate the accessibility as the 
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weighted average of the accessibilities of all codons observed at that site in the collection 
of sequences. Accessibility was calculated using code as documented here 
(https://jbloomlab.github.io/dms_tools2/dms_tools2.utils.html?highlight=accessibility#d
ms_tools2.utils.codonEvolAccessibility), in Jupyter notebook at 
https://github.com/jbloomlab/PB2-DMS, and in File S2. 
 
Quantification and statistical analysis 
Quantification and statistical analysis was performed in Python and a complete 
description is available in main text, methods, associated figure legends, and 
computational Jupyter notebooks.  
 
Data and software availability 
Deep sequencing data have been deposited in the NCBI Sequence Read Archive under 
BioProject accession number PRJNA511556.  
The GitHub repository https://github.com/jbloomlab/PB2-DMS contains Jupyter 
notebooks that perform all steps of computational analyses and provide detailed step-by-
step explanations and plots. The README file explains the organization of the 
notebooks and other files. HTML renderings of the notebooks are provided in File S2. 
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Supplemental Information 
 

 
 
Figure S1. Related to Figure 1. Phylogenetic relationship of PB2 sequence of chosen 
avian influenza strain to other influenza strains 
(A) Phylogenetic tree of influenza PB2. We used PB2 sequences from the following 
influenza strains: A/Green-winged Teal/Ohio/175/1986 (indicated with a green dot), 
diverse strains sampled across years and hosts (Doud et al., 2015), and representatives of 
lineage-defining strains (human H3N2, human pandemic H1N1) and recent sporadic 
human cases of avian influenza strains (H5N1, H7N9). PB2 nucleotide sequences (of the 
coding sequence) were aligned using MAFFT and the phylogenetic tree was built using 
RAxML using the GTRCAT substitution model. Scale bar: mean nucleotide substitutions 
per site. (B) Pairwise amino-acid identity between all PB2 sequences shown in the tree, 
between just avian strains, between just human strains, and between human and avian 
strains.  
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Figure S2. Related to Figure 1. Details of deep mutational scanning experiment. 
(A) Experiments were performed in biological triplicate, starting from plasmid 
mutagenesis. All experimental steps were also performed on a wild-type PB2 gene (blue) 
in order to estimate error rates during deep sequencing and other experimental steps. 
(B—F) We picked 48 clones across the three replicate mutant plasmid libraries for 
Sanger sequencing. (B) There was an average of 1.4 codon mutants per clone, with the 
number of mutations per clone roughly following a Poisson distribution. (C) Distribution 
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of number of nucleotide changes for each codon mutation. (D) Nucleotide frequencies in 
the mutant versus parent codons. (E) Mutations were distributed uniformly across the 
PB2 gene. (F) Cumulative distribution of pairwise distance between pairs of codon 
mutations, for clones with multiple mutations. The observed distribution is close to the 
expected distribution of pairs of mutations occurred independently. (G) Cumulative 
distribution of the fraction of mutations that are found less than or equal to the indicated 
number of times. “DNA” refers to the mutant plasmid library. (H) Per codon frequencies 
of nonsynonymous, stop, and synonymous mutations for each mutant library replicate 
and wild type, measured either in the DNA plasmid library or after passaging in human 
(A549) or avian (CCL-141) cells. The top plot shows all mutations; the bottom plot 
shows only mutations accessible by 2 and 3 nucleotide substitutions. (I) Correlations 
among experimental replicates of all amino-acid preferences. Correlations compare 
replicates passaged in human cells (orange), avian cells (green), and between the two cell 
types (black).  
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Figure S3. Related to Figure 2. Complete map of amino acid preferences measured 
in human and avian cells.  
(A) Measurements in human (A549) cells. (B) Measurements in avian (CCL-141) cells. 
The height of the letter at each site is proportional to the rescaled preference for that 
amino acid at that site. Domains of PB2 (Pflug et al., 2017) are indicated by the top color 
bar. The wild-type S009 PB2 sequence is indicated by the letters above each site’s 
logoplot.  
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Figure S4. Related to Figure 3. Complete map of differential selection in human 
versus avian cells.  
(A) Differential selection for PB2. The height of the letter at each site is proportional to 
the differential selection in human versus avian cells for that amino acid at that site. 
Letters above the center line are favored in human cells. The wild-type avian influenza 
(S009) PB2 sequence is indicated above each site’s logoplot. (B) Scatter plots of 
differential selection versus mutation effect as measured in human or avian cells. Top 
experimentally adaptive mutations identified in our deep mutational scanning (orange, 
green, purple dots) are indicated on the plots.  
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Figure S5. Related to Figure 5. Locations of identified human adaptive mutations on 
influenza polymerase. 
Positive site differential selection mapped onto the PB2 subunit of the influenza 
polymerase complex in (A) the transcription pre-initiation form (PDB: 4WSB), and (B) 
the apo form (PDB: 5D98). (C) Positive site differential selection mapped onto PB2 
(PDB: 6F5O). Sites in PB2 involved in RNA Pol II CTD binding indicated in green. Sites 
with high differential selection are numbered. The avian influenza (S009) PB2 amino 
acid sequence was mapped onto the PB2 chain by one-2-one threading using Phyre2 
(Kelley et al., 2015) (Confidence in model for 6F5O: 100%). Sites are numbered 
according to the S009 PB2 sequence. 
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Table S1. Related to Methods. Comparison of ExpCM to standard phylogenetic 
substitution models. 
 
  

 Model  deltaAIC  LogLikelihood  nParams ParamValues                                   

 ExpCM_A549avgprefs 0 -30634.89 6
beta=2.51, kappa=8.63, 
omega=0.15             

 ExpCM_CCL141avgprefs 385.04 -30827.41 6
beta=2.57, kappa=8.58, 
omega=0.12             

 YNGKP_M5 3507.84 -32382.81 12
alpha_omega=0.30, 
beta_omega=6.07, 
kappa=7.77 

 averaged_ExpCM_CCL141avgprefs 3516.34 -32393.06 6
beta=0.44, kappa=8.63, 
omega=0.04             

 averaged_ExpCM_A549avgprefs 3516.92 -32393.35 6
beta=0.33, kappa=8.64, 
omega=0.04             

 YNGKP_M0 4131.2 -32695.49 11
kappa=7.74, 
omega=0.04                        
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Table S2. Related to Figure 2 and 3. Preference, mutation effect, and differential 
selection results for all mutations. 
 
Table S3. Related to Figure 3. Catalog of previously described human/mammalian 
adaptive mutations. 
 
Table S4. Related to Figure 4. Flow cytometry data for minigenome assays. 
 
Table S5. Related to Figure 4. Mutant frequency data for competition assay. 
 
Table S6. Related to Figure 6. H7N9 human and avian mutation counts. 
 
Table S7. Related to Methods. Primers sequences. 
 
File S1. Related to Methods. Plasmid sequences. 
 
File S2. Related to Methods. Jupyter notebooks documenting computational 
analyses. 
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