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Abstract

Machine learning models used to predict phenomena such as gene expression, enhancer activity,
transcription factor binding, or chromatin conformation are most useful when they can generalize to
make accurate predictions across cell types. In this situation, a natural strategy is to train the model
on experimental data from some cell types and evaluate performance on one or more held-out cell types.
In this work, we show that when the training set contains examples derived from the same genomic loci
across multiple cell types, the resulting model can be susceptible to a particular form of bias related to
memorizing the average activity associated with each genomic locus. Consequently, the trained model
may appear to perform well when evaluated on the genomic loci that it was trained on but tends to
perform poorly on loci that it was not trained on. We demonstrate this phenomenon by using epigenomic
measurements and nucleotide sequence to predict gene expression and chromatin domain boundaries, and
we suggest methods to diagnose and avoid the pitfall. We anticipate that, as more data and computing
resources become available, future projects will increasingly risk suffering from this issue.

Machine learning has been applied to a variety of genomic prediction problems, such as predicting tran-
scription factor binding, identifying active cis-regulatory elements, constructing gene regulatory networks,
and predicting the effects of single nucleotide polymorphisms. The inputs to these models typically include
some combination of nucleotide sequence and signals from epigenomics assays.

Given such data, the most common approach to evaluating predictive models is a “cross-chromosomal”
strategy, which involves training a separate model for each cell type and partitioning genomic loci into
some number of folds for cross-validation (Figure 1a). Typically, the genomic loci are split by chromosome.
This strategy has been employed for models that predict gene expression [1, 2, 3], elements of chromatin
architecture [4, 5], transcription factor binding [6, 7], and cis-regulatory elements [8, 9, 10, 11, 12, 13].
Although the cross-chromosomal approach measures how well the model generalizes to new genomic loci, it
does not measure how well the model generalizes to new cell types. As such, the cross-chromosomal approach
is typically used when the primary goal is to obtain biological insights from the trained model.

An alternative, “cross-cell type” validation approach can be used to measure how well a model generalizes
to a new cell type. This approach involves training a model in one or more cell types and then evaluating it
in one or more other cell types (Figure 1b). Researchers have used this approach to identify cis-regulatory
elements [14, 15, 16, 17, 18], impute epigenomics assays that have not yet been experimentally peformed
[19, 20], and predict CpG methylation [21]. The cross-cell type strategy is typically adopted when the goal
is to yield predictions in cell types for which experimental data is not yet available.

In this work, we point out a potential pitfall associated with cross-cell type validation, in which this eval-
uation strategy leads to overly optimistic assessment of the model’s performance. In particular, we observed
that models evaluated in a cross-cell type setting seem to perform better as the number of parameters in
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Figure 1: The performance of neural network models of varying complexity in three predictive
settings on two tasks. Schematic diagrams of (a) cross-chromosome, (b) cross-cell type, and (c) hybrid
cross-cell type / cross-chromosomal model evaluation schemes. (d–f) The figure plots the average precision
(AP) of a machine learning model predicting gene expression as a function of model complexity. Evaluation
is performed via (d) cross-chromosome, (e) cross-cell type, and (f) a combination of cross-chromosome and
cross-cell type validation. In each panel, each point represents the test set performance of a single trained
model. (g–i) is the same as (d–f) but predicting TAD boundaries rather than gene expression.
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the model increases. To illustrate this phenomenon, we train a series of increasingly large neural networks
to predict gene expression as measured by RNA-seq in the H1 cell line (E003), evaluating each model using
the cross-chromosomal and the cross-cell type approaches. As input, each model receives a combination
of nucleotide sequence and epigenomic signal from examples in the H1 cell line or 55 other cell lines, de-
pending on evaluation setting (see Methods). In every case, we evaluate model performance using the
average precision score relative to a binary gene expression label (“high” versus “low” expression). In the
cross-chromosome setting, the performance of the models remains fairly constant as the complexity of the
learned model increases (green points in Figure 1d). On the other hand, the cross-cell type results show a
surprising trend: using more complex models appears to yield consistently better results, even as the models
become very large indeed (up to 100 million parameters; Figure 1e).

To see that this apparently good predictive performance is misleading, we perform a third type of vali-
dation, a hybrid “cross-chromosome / cross-cell type” approach in which the model is evaluated on loci and
cell types that were not present in the training set (Figure 1c). This approach eliminates the positive trend
in model performance as a function of model complexity (Figure 1f). Very similar trends are seen when we
train neural networks to predict the locations of topologically associating domain (TAD) boundaries in the
H1 cell line (Figure 1g–1i). Further, these results do not appear to be specific to deep neural networks, as
gradent boosted decision tree classifiers show similar trends as the number of trees increases (Supplementary
Figure S1).

Interestingly, we note that the performance of models that use only epigenomic signal is fairly invariant to
the number of parameters in the model. This suggests that there is an association between our representation
of histone modification and gene expression that requires only few parameters to capture, such as H3K4me3
and H3K4me1 generally being activating marks and H3K27me3 generally being a repressive mark. Indeed,
when we project the epigenomic signal into two dimensions, we observe regions in 2D where highly expressed
genes can be easily separated from lowly expressed genes and regions where separation seems difficult by any
method (Supplementary Figure S2a/b). We see a similar trend in model performance on synthetic Gaussian
data when the two classes partially overlap (Supplementary Figure S3b). This is likely because while larger
models have greater potential to overfit to samples in the overlap, the overall metric is not significantly
influenced because the majority of points can be correctly classified by a simple rule.

The following two observations suggest that the positive trend in Figure 1e arises because more complex
models effectively “memorize” the genomic location associated with expressed versus non-expressed genes.
First, if we train a model using only the epigenomic signal, without including the nucleotide sequence as
input, then the model performance no longer improves as a function of model complexity (orange points
in Figure 1e); conversely, providing only nucleotide sequence as input yields very good performance across
many cell types (blue points in Figure 1e). Second, comparison to a suitable baseline predictor—namely, the
average expression value associated with a given locus across all cell types in the training set—outperforms
any of the trained models (solid yellow line in Figure 1e). Thus, it seems that the more complex neural
networks achieve good performance by effectively remembering which genes tend to exhibit high or low
expression across cell types. Furthermore, though we demonstrate here that models may use nucleotide
sequence to memorize gene activity, the phenomenon is more general, in the sense that any signal that
is constant across cell types can be exploited in this fashion. Examples include features derived from the
nucleotide sequence—k-mer counts, GC content, nucleotide motifs occurences, or conservation scores—or
even epigenomic data when the input is signal from a constant set of many cell types rather than a single
cell type.

It is worth pointing out that, from a machine learning perspective, the neural network is not doing
anything wrong here. On the contrary, the neural network is simply taking advantage of the fact that most
genomic or epigenomic phenomena that are subjected to machine learning prediction exhibit low variance,
on average, across cell types. For example, the gene expression level of a particular gene in a particular cell
type is much more similar, on average, to the level of that same gene in a different cell type than it is to
the level of some other gene in the same cell type. Similarly, many transcription factors bind to similar sets
of sites across cell types, most pairs of promoters and enhancers will never interact, and most regions of the
genome are unlikely to ever serve as TAD boundaries.

This pitfall can be identified in several ways. First, comparison of model performance to an appropriate
baseline, such as the average activity in the training cell types at the given locus (yellow lines in Fig-
ure 1e,f,h,i), will often show that an apparently good model underperforms this relatively simple competitor.
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As an example, we note that this average activity baseline outperforms two of the top four participants in
the ENCODE-DREAM transcription factor binding challenge at predicting CTCF in the iPSC cell line when
the models were evaluated on loci that they were also trained on (Supplementary Figure S4). This demon-
strates that it is not sufficient to perform evaluations in the hybrid setting, but that one should also perform
evaluations in the same setting that one would practically use the model. Importantly, even when a model is
evaluated in the hybrid setting, one should compare to the performance of this baseline to demonstrate that
a downstream user of the predictions would not be better suited by using this simple method. If the trained
machine learning model cannot outperform this “average activity” baseline, then the predictions from this
model may not be practically useful.

Second, the performance of the model can be more fully characterized by partitioning genomic loci into
groups according to their variability across cell types and then evaluating model performance separately
for each group (Supplementary Figure S5). This partitioning removes the predictive power of the average
activity; thus, models that have memorized this average activity will no longer perform well. Indeed, we
observe that models that use only nucleotide sequence appear to perform well in the cross-cell type setting
but perform markedly worse when evaluated in this partitioned manner.

There are several approaches that may improve the cross-cell type predictive performance of models that
underperform the average activity baseline. A natural approach is to use the average activity directly as a
feature in the machine learning model. As an input feature, the average activity would have to be defined
over a held-out subset of the training cell types to prevent a leakage of information between the input features
and the target labels, but would nonetheless be a straightforward addition. Another approach would be to
phrase the prediction problem not as predicting the activity directly, but predicting the difference from the
average activity at that locus for that specific cell type. This approach allows the model to focus on learning
cell type-specific differences. It is likely that different architectural decisions would need to be made when
predicting the difference from the average activity instead of the activity directly, such as changing the loss
function from a classification one to, potentially, a regression one. These strategies both explicitly use the
average activity during the training procedure, with the first using it as an input and the second using it to
create a new set of labels.

While most cross-cell type predictive tasks would benefit from a comparison to the average activity
baseline, it is important to note in some settings beating the average activity baseline is not necessary. One
such setting is when the goal is to inspect the trained model to derive new biological insights. For example,
a researcher studying chromatin architecture may build a machine learning model that aims to predict
genomic 3D structure using epigenomic state. If the trained model does not outperform using the average
chromatin architecture from other cell types, then one may not be inclined to use the resulting predictions
in downstream analyses. However, inspecting the model may still yield useful insights into the association
between certain epigenomic marks and chromatin architecture. Another such setting is the semi-supervised
setting, where only a portion of labels are known in advance and the goal is to identify previously unidentified
annotations. In this case, because the full set of true labels is not known in advance, a comparison to the
average activity may be a poor estimator of the ability of the model to identify novel elements. A final
setting is that of anomaly detection, where one identifies regions that are poorly modeled for further study.
In both of these settings, it is still informative to compare the performance of the models to the average
activity baseline to demonstrate the strength of the predictive model.

As more data becomes available, we anticipate that more projects will risk suffering from the pitfall that
we describe. Fortunately, avoiding this trap is straightforward: compare model performance to a baseline
method that extracts the experimental signal from one or more training cell types. The simplest such
strategy is to average the signal at a given locus across all training cell types. A more sophisticated strategy
would be to use as a baseline the activity of a cell type in the training set whose biological activity, such as
epigenomic state, is empirically similar to the target cell type. Regardless, comparing a model’s predictions
to the activity of the training cell types is a necessary component of demonstrating the utility of the model.
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Methods

Data sets
Nucleotide sequence are extracted from the hg19 reference genome. Before input to our models, each sequence
is one-hot encoded such that each genomic position is represented by four bits, of which only a single one is
1. For the task of active gene prediction, a 2 kbp region is extracted upstream of the transcription start site,
accounting for the strand of the gene. For the task of TAD boundary prediction, a 2 kbp region is extracted
from the middle of the 40 kbp region to be considered.

The ChIP-seq, DNase-seq and gene expression RPKM values were downloaded from the
Roadmap compendium (https://egg2.wustl.edu/roadmap/data/byFileType/signal/consolidated/
macs2signal/pval/ and https://egg2.wustl.edu/roadmap/data/byDataType/rna/expression/). Each
ChIP-seq and DNase-seq experiment is reported using − log10 p-values, indicating the statistical significance
of the enrichment of the measured phenomenon at each genomic position. Additionally, these tracks are
arcsinh transformed, which is similar to a log transform and is a standard technique to reduce the effect of
outliers on the model. After this transformation, the average signal value for each epigenomic mark across
the 2 kbp region of interest is used as input to our models. We used experimental measurements of H3K4me3,
H3K27me3, H3K36me3, H3K9me3, and H4K3me1 for the prediction of gene expression, and additionally
measurements of DNase-seq and H3K27ac for predicting TAD boundaries.

Gene bodies were defined as GENCODE v19 gene elements (https://www.gencodegenes.org/human/
release_19.html) on chr1–22, resulting in 17,951 gene bodies for each of 56 different human cell types. We
define active genes as those that have an RPKM value of > 0.5.

TAD boundary calls were obtained from the supplementary material of [22] for the seven cell lines TRO,
H1, NPC, GM12878, MES, IMR90, and MSC. These calls are binary indicators and were specified at 40 kbp
resolution.

Predictions from the top four participants in the ENCODE-DREAM challenge and the CTCF test set
labels were provided by the ENCODE-DREAM challenge organizers. The training set CTCF peak calls
were downloaded from the challenge website. All data from the challenge is used with permission from the
organizers.

Model architectures
We evaluated the performance of a variety of neural network models for our tasks. For models that used
only epigenomic signal as input, we considered all models that had between 1 and 5 layers and all powers of
2 between 1 and 4096 neurons per layer.

For models that used only nucleotide sequence as input, we considered two different types of models. The
first are fully dense networks similar to those that used only epigenomic signal. These models had between
1 and 3 layers with all powers of 2 between 1 and 1024 neurons per layer. The second are convolutional
models that are composed of a variable number of convolutional layers followed by max pooling layers and
ending with a single dense layer. These convolutional models had between 1 and 3 convolutional layers,
between 1 and 256 filters per convolutional layer, and between 1 and 1024 nodes in the final dense layer.
The convolutional layers used a kernel of size 8 and a stride of 1. The max pooling layers had a kernel of
size 4 and a stride of 4.

The models that used both nucleotide sequence and epigenomic signal were composed of one of the
nucleotide models above and one of the epigenomic models. The final hidden layers of the two models were
concatenated together and fed through an additional hidden layer before the output. Rather than consider
all potential model architectures that utilized nucleotide sequence, we limited our evaluation to only 100
randomly selected model architectures for computational reasons.

In all models, both the convolutional layers and the hidden dense layers used ReLU activations, where
f(x) = max(0, x).

Model training
The neural network models were trained in a standard fashion for neural network optimization. This involved
using the Adam optimizer [23] and a binary cross-entropy loss. All model hyperparameters were set to their
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defaults as specified by Keras version 2.0.8 [24], and no additional regularization was used. The models
were trained on balanced mini-batches of size 32, and an epoch was defined as 400 mini-batches. Training
proceeded for 100 epochs, but was stopped early if performance on a balanced validation minibatch of size
3,200 did not improve after five consecutive epochs.

The gradient boosted decision tree models were trained using XGBoost [25]. The default values were
used for all parameters, except that training progressed for 300 iterations, instead of 100, and the maximum
depth of each tree was set to 6, instead of 3. The model was trained using a binary logistic loss and a L2
regularization strength of 1. A single model was trained for each input feature set. These models are then
evaluated using the first N trees, using N between 1 and 300, to get the performance of models of varying
complexity. Because subsampling is not used, this procedure is identical to independently training models
of varying sizes.

The training, validation, and test sets consisted of different genomic loci depending on the model eval-
uation setting. In the cross-chromosomal setting, the validation set was derived from chromosome 2 and
the test set was derived from chromosome 1 for both tasks. For the gene expression task, the training set
consisted of all genes in chromosomes 3 through 22, while for the TAD boundary prediction task, it consisted
of all 40 kbp bins in chromosome 3. In the cross-cell type setting, the training, validation, and test sets were
derived from chromosomes 2 through 22 in the gene expression task and chromosomes 2 and 3 in the TAD
boundary prediction task. In the hybrid setting, the training and validation sets were the same as in the
cross-cell type setting, but the test set for both tasks were samples derived from chromosome 1. We chose to
hold the training set constant between the cross-cell type and hybrid approaches, rather than the test set, in
order to demonstrate that models trained on the same data exhibit markedly different trends with respect
to model complexity depending on the evaluation set.

Depending on the evaluation setting, these models were also trained on either a single, or multiple, cell
types. In all cases, models were evaluated on data derived from the H1 cell line (E003). In the cross-
chromosomal setting, models for both tasks were also trained on data from the H1 cell line (E003). For
the gene expression task in both other settings, samples drawn from spleen (E113), H1 BMP4 derived
mesendoderm cultured cells (E004), CD4 memory primary cells (E037), and sigmoid colon (E106) were used
as the validation set, and all other cell types (excluding the H1 cell line) were used as the training set (see
Supplementary Table S1). For predicting TAD boundaries, the validation set was drawn from GM12878
(E116) and the training set consisted of all other cell lines (excluding the H1 cell line).
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Figure S2: Projections of the epigenomic signal used to predict gene expression. The five histone
modifications that were used to predict gene expression were projected down to two dimensions using (a)
PCA and (b) UMAP. The projections are then colored by whether the gene is highly expressed (orange) or
lowly expressed (blue) in H1.
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Roadmap ID Biosample Summary

E004 H1 BMP4 Derived Mesendoderm Cultured Cells
E005 H1 BMP4 Derived Trophoblast Cultured Cells
E006 H1 Derived Mesenchymal Stem Cells
E007 H1 Derived Neuronal Progenitor Cultured Cells
E011 hESC Derived CD184+ Endoderm Cultured Cells
E012 hESC Derived CD56+ Ectoderm Cultured Cells
E013 hESC Derived CD56+ Mesoderm Cultured Cells
E016 HUES64 Cell Line
E024 4star
E027 Breast Myoepithelial Cells
E028 Breast vHMEC
E037 CD4 Memory Primary Cells
E038 CD4 Naive Primary Cells
E047 CD8 Naive Primary Cells
E050 Mobilized CD34 Primary Cells Female
E053 Neurosphere Cultured Cells Cortex Derived
E054 Neurosphere Cultured Cells Ganglionic Eminence Derived
E055 Foreskin Fibroblast Primary Cells skin01
E056 Foreskin Fibroblast Primary Cells skin02
E057 Foreskin Keratinocyte Primary Cells skin02
E058 Foreskin Keratinocyte Primary Cells skin03
E059 Foreskin Melanocyte Primary Cells skin01
E061 Foreskin Melanocyte Primary Cells skin03
E062 Peripheral Blood Mononuclear Primary Cells
E065 Aorta
E066 Adult Liver
E070 Brain Germinal Matrix
E071 Brain Hippocampus Middle
E079 Esophagus
E082 Fetal Brain Female
E084 Fetal Intestine Large
E085 Fetal Intestine Small
E087 Pancreatic Islets
E094 Gastric
E095 Left Ventricle
E096 Lung
E097 Ovary
E098 Pancreas
E100 Psoas Muscle
E104 Right Atrium
E105 Right Ventricle
E106 Sigmoid Colon
E109 Small Intestine
E112 Thymus
E113 Spleen
E114 A549 EtOH 0.02pct Lung Carcinoma
E116 GM12878 Lymphoblastoid
E117 HeLa-S3 Cervical Carcinoma
E118 HepG2 Hepatocellular Carcinoma
E119 HMEC Mammary Epithelial
E120 HSMM Skeletal Muscle Myoblasts
E122 HUVEC Umbilical Vein Endothelial Cells
E123 K562 Leukemia
E127 NHEK-Epidermal Keratinocytes
E128 NHLF Lung Fibroblasts

Table S1: Training cell lines used to predict gene expression in the cross-cell type and hybrid
evaluation settings. The Roadmap Epigenomics Mapping Consortium ID and biosample description are
given for each.
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B. Performance of differently sized NNs

Figure S3: Classification performance of neural networks when the decision boundary is simple.
(a) Random data was generated from two overlapping 2D Gaussian distributions. (b) Neural networks
of increasing size were trained to classify points as either orange or blue and evaluated using the average
precision. The y-axis is scaled to the same range as Figure 1d/e/f to demonstrate a similar trend.
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CTCF Challenge Predictions

Average Activity: 0.7827
Yuanfang Guan: 0.7292
dxquang: 0.8557
autosome.ru: 0.7596
J-Team: 0.7983

Figure S4: Performance of the top four participants in the ENCODE-DREAM TF binding
challenge compared to the average activity baseline at predicting CTCF in iPSC. Precision-
recall curves for each of the top four participants in the ENCODE-DREAM TF binding challenge, as well
as a precision-recall curve for the average activity baseline at the same task. The average precision of each
approach is shown in the legend.
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Figure S5: Epigenomic signal yields more predictive models than nucleotide sequence in the
cross-cell type setting when locus-specific biases are factored out. Genes in the cross-cell type
setting were split into 54 groups based on the number of training and validation set cell types that they are
active in. (a) For each group, the AP score was calculated using the predicted probabilities from models
that use only nucleotide sequence or use only epigenomic signal. Each box shows the three quartile values,
with whiskers extending to 1.5 the inter-quartile range. (b) The AP scores from those two groups were then
compared using a one-sided Mann-Whitney U test. The -log10 p-values of this test are displayed for each
group. The null hypothesis is rejected for most groups, indicating that models that use epigenomic signal
outperform those that use only nucleotide sequence when the average activity is factored out of the evaluation.
As expected, the epigenetics-only case is relatively better as the uncertainty increases, corresponding to the
middle of the plot above.
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