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Abstract. Protein levels can be controlled by regulating protein syn-
thesis or half life. The aim of this paper is to investigate how introducing
feedback in burst frequency or protein decay rate affects the stochas-
tic distribution of protein level. Using a tractable hybrid mathematical
framework, we show that the two feedback pathways lead to the same
mean and noise predictions in the small-noise regime. Away from the
small-noise regime, feedback in decay rate outperforms feedback in burst
frequency in terms of noise control. The difference is particularly con-
spicuous in the strong-feedback regime. We also formulate a fine-grained
discrete model which reduces to the hybrid model in the large system-size
limit. We show how to approximate the discrete protein copy-number dis-
tribution and its Fano factor using hybrid theory. We also demonstrate
that the hybrid model reduces to an ordinary differential equation in the
limit of small noise. Our study thus contains a comparative evaluation
of feedback in burst frequency and decay rate, and provides additional
results on model reduction and approximation.

1 Introduction

Synthesis of protein molecules in bursts of multiple copies has been identified as
a major factor in gene expression noise [12]. The number of bursts per protein
lifespan determines the abundance of a bursty protein [9]. This ratio can be con-
trolled by the numerator, the burst frequency, or the denominator, the protein
decay rate. Feedback in burst frequency has been widely documented [2], and
examples of feedback in decay rate are available too [15, 26]. Linear noise approx-
imation based analysis suggest that the two feedback pathways are equivalent
in terms of controlling gene-expression noise [25].

In this paper we compare the two feedback pathways using a hybrid model
for bursty gene expression with negative feedback in burst frequency or decay
rate. Hybrid models mix continuous deterministic with discrete stochastic dy-
namics [10, 11, 18, 22]. The chosen modelling framework is hybrid in that it
combines stochastic dynamics of bursty production occurring at discrete time-
points with deterministic dynamics of protein decay [4].
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Intuition suggests that, by repressing production, negative feedback lowers
the protein mean, and, by improving regression to the mean, it also lowers the
protein noise [13]. Counter-intuitively, multiple studies report that the response
of noise to increasing feedback strength is U-shaped [19, 27]. The eventual in-
crease in the noise can be attributed e.g. to low copy number effects [24], loss
of time averaging [17], or the failure to control large bursts [5]. In this paper
we examine how the choice of feedback pathway (burst frequency or decay rate)
affects the shape of the noise response to strengthening feedback.

The outline of the paper is as follows. Section 2 introduces the chosen hy-
brid modelling framework on a protein which is expressed constitutively without
feedback. Section 3 extends the hybrid model by negative autoregulation, and
Section 4 derives the steady-state distribution for the extended model. Section 5
defines a specific noise metric that is used here to evaluate feedback performance.
Sections 6 and 7 elaborate on feedback in burst size and decay rate, respectively,
the two feedback pathways whose performance we are set to compare. Section 8
introduces a full discrete model for bursty protein expression. Section 9 contains
the bulk of the results of this paper that are based on the theoretical backbone
of the previous sections. The results compare the performance of the two feed-
back types, and draw connections between the full discrete, the hybrid and the
deterministic modelling formalisms. Section 10 concludes the paper with a short
summary.

2 Constitutive model

By the constitutive model we understand a hybrid stochastic bursting gene-
expression model without a feedback mechanism. The protein level dynamics
is given by the balance of deterministic protein decay and stochastic protein
synthesis in bursts. Between bursts, the protein concentration satisfies a linear
ordinary differential equation dx/dt = −γx, where γ is the decay rate constant,
implying that the temporal profile of protein concentration is piecewise expo-
nential (see Fig 1, left). Bursts occur randomly in time with frequency α per
unit time. It follows that the waiting time from one burst until the next one is
drawn from the exponential distribution with mean waiting time 1/α. The size
of a burst is also random and is drawn from the exponential distribution with
mean burst size β [9].

The master equation for the hybrid process as described above takes the form
of a partial integro-differential equation [23]

∂p

∂t
+
∂J

∂x
= 0, J = −γxp(x, t) + α

∫ x

0

exp

(
−x− y

β

)
p(y, t)dy. (1)

The solution p(x, t) gives the probability density function of protein concentra-
tion x at time t.

The first equation in (1) states the principle of probability conservation in
differential form. It says that the probability changes in time due to differentials
in the probability flux J . The probability flux is described in the second equation
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Fig. 1. Left: Sample protein path corresponding to the constitutive model (1). The
concentration of protein decays with rate constant γ between bursts (solid lines). Bursts
occur randomly in time with burst frequency α and lead to positive discontinuous jumps
of mean size β in protein level (dotted vertical lines). In this example, α = β = γ = 1.
Right: The two feedback types considered in this paper are feedback in burst frequency
and feedback in decay rate. Protein X is produced in bursts of size B and degrades one
molecule at a time. The protein controls its level either by reducing the frequency of
burst occurrence or by enhancing its own decay.

of (1). The flux consists of a negative local flux and a positive non-local flux. In
general, a flux is local if it depends on the value of the solution at the point x of
flux evaluation, whereas a non-local flux depends on the values of the solution
away from the evaluation point; the sign of a flux corresponds to the direction
of probability mass transfer. In our particular model (1), the negative local flux
represents the downward transfer of probability mass due to deterministic decay
of protein, and the positive non-local flux represents the upward transfer of
probability mass due to bursts of protein production. Note in particular that
the integral kernel in the nonlocal flux expresses the probability that a burst
occurs which takes the protein concentration from a value y below x into any
value above x.

Previous studies established that the gamma distribution [14]

p(x) =
1

Γ (a)βa
xa−1e−

x
β (2)

is a steady-state solution to the master equation (1). The parameter a in (2) is
defined by

a =
α

γ
, (3)

and gives the average number of protein bursts per protein lifetime. The mean
and variance of (2) are

〈x〉 = aβ, Var(x) = aβ2. (4)

It follows immediately from (4) that the squared coefficient of variation, defined
as the ratio of the variance to the square of mean, is equal to a−1. Therefore,
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Fig. 2. As the average number a of bursts per protein lifetime increases, the trajectories
of the stochastic bursting model (6) become well approximated by the solution (9) to
the ordinary differential equation model (8). Without loss of generality, the burst size
is scaled to 1/a in order that the steady-state protein mean is equal to 1 regardless of
the choice of a.

if a large number of bursts occur on average per protein lifetime, the noise in
protein concentration is low.

It is convenient to measure the protein concentration in units of its mean and
time in units of the protein lifetime. This is achieved via nondimensionalisation

x = aβx̃, t =
t̃

γ
, p(x, t) = p̃(x̃, t̃), (5)

where x̃ and t̃ represent the dimensionless concentration and time variables.
We insert (5) into (1) and, for simplicity, drop the tildes in the dimensionless
variables symbols, obtaining

∂p

∂t
+
∂J

∂x
= 0, J = −xp(x, t) + a

∫ x

0

exp(−a(x− y))p(y, t)dy. (6)

Comparing the dimensional problem (1) to the dimensionless problem (6), we
see that the latter can be formally obtained from the former by setting α = a,
β = 1/a, γ = 1. However, the assignment β = 1/a should not be interpreted
as implying that burst sizes are physically small if the burst frequency is large.
Rather, it means that burst sizes are small in comparison to the steady-state
mean.

In the regime a� 1 of very frequent (and very short) bursts, the probability
flux J in (6) can be approximated using the Laplace method [16] by

J ∼ (1− x)p(x, t) for a� 1. (7)

The reduced flux (7) corresponds to deterministic dynamics governed by the
ordinary differential equation

ẋ = 1− x, (8)
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whose solutions have the explicit form of

x(t) = 1 + (x(0)− 1)e−t. (9)

Figure 2 compares sample paths of the hybrid model (6) to the deterministic
solution (9) for two different initial conditions, x(0) = 0 (Fig 2, left) and x(0) = 2
(Fig 2, right). As expected from the use of the Laplace method, stochastic sample
paths are close to the deterministic solution for large burst frequencies a.

3 Feedback model

Here we extend the hybrid stochastic model (6) with feedback in burst frequency
and decay rate (Fig 1, right). In the feedback model, the probability of a burst
to occur in a time interval of length dt is equal to ah(x)dt+ o(dt), where x gives
the current protein concentration and h(x) is a response function as specified
below. Bursts sizes are exponentially distributed with mean size 1/a like in the
(dimensionless) constitutive model. Between bursts, the protein concentration
satisfies ẋ = −g(x)x, in which g(x) is another response function. We assume
that the response functions satisfy

g(0) = 1, g′(x) ≥ 0, h(0) = 1, h′(x) ≤ 0. (10)

If there is a shortage of protein (x is close to zero), bursts occur with frequency a
and decay with rate constant 1 as in the constitutive model. However, as the pro-
tein concentration increases, bursts become less frequent and/or the propensity
of protein molecules for decay increases.

The master equation for the feedback model reads

∂p

∂t
+
∂J

∂x
= 0, J = −g(x)xp(x, t) + a

∫ x

0

exp(−a(x− y))h(y)p(y, t)dy. (11)

Applying the Laplace method on the non-local flux yields

J ∼ (h(x)− g(x)x)p(x, t) for a� 1, (12)

which corresponds to the ordinary differential equation

ẋ = h(x)− g(x)x. (13)

Under assumptions (10), equation (13) has a single globally stable steady state
which is smaller than the steady state 1 of the constitutive deterministic model
(8).

4 Steady state distribution and moments

At steady state, the probability flux J in the master equation (11) vanishes,
leading to the Volterra integral equation

g(x)xp(x) = a

∫ x

0

exp(−a(x− y))h(y)p(y)dy (14)
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for the stationary protein distribution p(x). In order to solve (14) in the unknown
p(x), we multiply both sides by eax,

eaxg(x)xp(x) = a

∫ x

0

eayh(y)p(y)dy, (15)

and differentiate with respect to x to obtain a linear first-order ordinary differ-
ential equation

d

dx
(eaxg(x)xp(x)) = aeaxh(x)p(x) =

ah(x)

xg(x)
× eaxg(x)xp(x). (16)

Solving (16) in eaxg(x)xp(x) implies that up to a normalisation constant we have

p(x) =
eaΦ(x)

xg(x)
, (17)

in which the potential Φ(x) is defined through the indefinite integral

Φ(x) =

∫
h(x)

xg(x)
dx− x. (18)

The n-th moment of the steady-state protein distribution is given by

〈xn〉 =
Mn

M0
, where Mn =

∫ ∞
0

xnp(x)dx. (19)

In general, the moments can be evaluated by numerical integration of (19). In
special parametric regimes, asymptotic approximations to the integrals (19) can
be developed (Appendices A and B). In the next section, we use the moments
(19) to define a specific characteristic of protein noise.

5 Relative noise

In this section we provide a definition of relative noise in protein concentration.
The purpose of this quantity is to compare the steady-state variance in a feedback
model to the steady-state variance in a referential constitutive model. The latter
is chosen so as to have the same steady-state mean as the feedback model. By
doing such a comparison, we compensate for the increase in noise in the feedback
model that results from the decrease of the time-averaged number of bursts per
protein lifetime. What remains is the change in noise that results from improved
mean reversion in a feedback model. Indeed, we shall see that the relative noise
is always less than 1 in our examples of negative autoregulatory pathways. For
this section only, we refer to the concentration of a self-regulating protein as xreg
and to the concentration of the referential constitutive protein as xconst.

In the absence of regulation, the normalised burst frequency is equal to a
and the burst size is equal to 1/a. These values lead to the mean value of 1.
In order to satisfy the constraint 〈xconst〉 = 〈xreg〉, we decrease the normalised
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burst frequency in the constitutive model to a〈xreg〉 whilst keeping the burst
size equal to 1/a. Since the protein variance is equal to the product of burst
frequency and the square of burst size, cf. (4), we find that

Var(xconst) =
〈xreg〉
a

. (20)

The relative noise compares the variances in the regulated model and the refer-
ential constitutive model,

η2 =
Var(xreg)

Var(xconst)
= a

Var(xreg)

〈xreg〉
= a

(
M2

M1
− M1

M0

)
. (21)

The definition (21) of the relative noise superficially resembles the Fano factor [6].
However, the two should not be confused. The value one of Fano factor means
Poissonian noise. On the other hand, η2 = 1 means that the regulated protein
has the same variance as the referential unregulated protein. Nevertheless, that
can still correspond to a very large Fano factor: how large the actual Fano factor
is depends on how many molecule copies are encompassed in an average burst. In
Section 8, we consider a discrete modelling approach and systematically establish
the relationship between the Fano factor of a full discrete model and the relative
noise of the hybrid model.

6 Feedback in burst frequency

Sections 3–4 provided general results for feedback in burst frequency and decay
rate acting concurrently. Here we provide additional details for the situation
if feedback is in burst frequency only. We thereby focus on a specific type of
response function, the decreasing Hill function. This leads to choices

h(x) =
1

1 + (x/K)H
, g(x) = 1 (22)

in the general model (11). The parameter K gives the critical concentration
of protein that is required to halve the burst frequency. The parameter H is
the cooperativity coefficient. Large values of H imply that the burst freuquency
decreases rapidly from its maximal value to zero as the protein concentration
exceeds the critical threshold K. The critical threshold K is a reciprocal measure
of feedback strength: small values of K mean that low amounts of protein suffice
to turn off the production. For this reason we refer from now on to the reciprocal
K−1 of the critical threshold as feedback strength. It is easy to verify that the
choices in (22) satisfy the assumptions (10) imposed on the feedback model.

With choices (22), the limiting ordinary differential equation (13) takes the
form of

ẋ =
1

1 + (x/K)H
− x. (23)
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Solutions to (23) converge to a unique, globally stable, steady state, which sat-
isfies the fixed-point equation

1

1 + (x0/K)H
= x0. (24)

Elementary analysis shows that x0 is an increasing function of K, i.e. that the
deterministic steady state x0 decreases with increasing feedback strength K−1.

With choices (22), the potential (18) is an elementary function

Φ(x) =

∫
dx

x(1 + (x/K)H)
− x = lnx−

ln
(
1 + (x/K)H

)
H

− x. (25)

Inserting (25) into (17) we find an explicit formula

p(x) = e−axxa−1
(
1 + (x/K)H

)− a
H (26)

for the steady-state protein pdf which holds up to a normalisation constant. The
asymptotic behaviour of the mean 〈x〉 (19) and the relative noise η2 (21) for
the protein pdf (26) in the small-noise regime (a� 1) and the strong feedback
regime (K � 1) is provided in Appendices A and B.

7 Feedback in decay rate

Here we explore in detail the situation if feedback is in decay rate only. Specifi-
cally, we use the choices

h(x) = 1, g(x) = 1 + (x/K)H . (27)

The polynomial response function g(x) consist of a basal term 1 and a monomial
term which is proportional to xH . Biologically, this means that in addition to
spontaneous decay, there is an additional decay pathway, which is cooperatively
activated by the protein itself. The critical concentration K gives the amount of
protein that is necessary to double the rate of decay per protein molecule. Small
values of K mean that few proteins suffice to turn on the decay, suggesting that
the reciptocal K−1 can again be used as a measure of feedback strength.

With choices (27), the limiting ordinary differential equation (13) reads

ẋ = 1− (1 + (x/K)H)x. (28)

Equation (28) describes a different time-dependent dynamics than the limit-
ing equation (23) for feedback in burst frequency. Nevertheless, solutions to
(28) converge to the same steady-solution x0 satisfying (24). Furthermore, the
probability-distribution potential (18) for the choices (27) is the same as (25)
obtained for feedback in burst frequency.

The steady-state protein pdf (17) simplifies to

p(x) = e−axxa−1
(
1 + (x/K)H

)− a
H−1 . (29)
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We note that the pdf (29) differs from (26) only in the exponent of the third
factor. The asymptotic behaviour of the mean 〈x〉 (19) and the relative noise η2

(21) for the protein pdf (29) in the small-noise regime (a � 1) and the strong
feedback regime (K � 1) is provided in Appendices A and B.

8 Discrete approach

The full discrete model for feedback in burst frequency and decay rate is based
on chemical reactions

∅
ah( PΩ )
−−−−→ B × P, P

g( PΩ )
−−−→ ∅. (30)

The first reaction in (30) is the production of protein P in bursts of size B. The
second reaction in (30) is the degradation of protein P . The response functions
depend on the ratio P/Ω of the protein copy number to a system-size parameter
Ω. Large values of Ω mean that feedback is sensitive to large changes in protein
molecules. As with the hybrid model, we treat the discrete model (30) separately
for the choices (22) (feedback in burst frequency) and the choices (27) (feedback
in decay rate).

The burst size B is assumed to be drawn from the geometric distribution [21]
with mean Ω/a

Prob[B = n] =
a

a+Ω

(
Ω

a+Ω

)n
, n = 0, 1, 2 . . . (31)

Due to previously developed theoretical arguments [3, 8, 20], the protein con-
centration x = P/Ω approximately satisfies in the large system-size limit Ω � 1
the hybrid bursting model (11).

The Fano factor, which is defined as the variance to mean ratio, is a widely
used measure of variability in discrete probability distributions and discrete
stochastic models for gene expression [6]. The protein Fano factor satisfies

F =
Var(P )

〈P 〉
= Ω

Var(x)

〈x〉
∼ η2Ω

a
, for Ω � 1, (32)

where η2 is the relative noise of the hybrid model as defined by (21). Hence, for
large system sizes, the Fano factor is proportional to the mean burst size Ω/a,
with the relative noise of the hybrid model giving the factor of proportionality.

9 Results

In this paper we explored a bursting model for stochastic gene expression with
negative feedback. The model is hybrid in the sense that it combines a determin-
istic decay of protein with stochastic protein production in bursts. Two separate
versions of the model were considered, depending on whether the feedback is in
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burst frequency or decay rate. The model (either version) is characterised by
three parameters: the maximal burst frequency a; the critical concentration K;
and the cooperativity coefficient H.

The maximal burst frequency a gives the average number of bursts per pro-
tein lifetime at full gene activation. Without loss of generality, the mean burst
size is scaled to 1/a. This choice of scaling implies that the mean protein level,
which is equal to the product of the burst frequency and the burst size, is
bounded by one. In the regime a� 1 of frequent bursts, the trajectories of the
stochastic model fluctuate near the deterministic solution (Fig 2). The regime
a� 1 is therefore referred to as the small-noise regime.

The parameters K and H determine the character of the feedback response.
The critical concentration K gives the amount of protein that is required to
halve the frequency of bursts (in case of feedback in burst frequency) or double
the propensity for decay (in case of feedback in decay rate). The reciprocal K−1

is used as a measure of feedback strength. The regime K � 1 (i.e. K−1 � 1)
is referred to as the strong-feedback regime of the model. The cooperativity
coefficient H determines how steeply the response changes as the protein con-
centration passes through the critical threshold K.

Figure 3 shows the steady-state values of protein mean and relative noise as
functions of feedback strength. The relative noise is defined in Equation (21)
as the ratio of the variance of the protein with feedback to the variance of
a constitutively expressed protein with the same mean. Several values of the
maximal burst frequency a are selected, including the limit value of a→∞, the
results for which are derived in Appendix A using a small-noise approximation.
The cooperativity coefficient is set to H = 4.

The small-noise approximation leads to the same mean and noise values for
both feedback types. In particular, the small-noise approximation suggests that,
regardless of the feedback type, a maximal (H+1)-fold reduction of relative noise
can be achieved in the limit K → 0 of strong feedback. However, the assumption
of high burst frequency, on which the use of small-noise approximation is based,
eventually breaks down as feedback strengthens. Indeed, finite values of the
maximal burst frequency a paint a radically different picture from that obtained
by the small-noise approximation. In case of feedback in burst frequency, the
relative noise starts increasing for large feedback strengths, eventually returning
to the value of one. Contrastingly, in case of feedback in decay rate, the relative
noise decreases down to zero. Thus, despite the small-noise prediction that the
two feedbacks are indistinguishable in terms of controlling protein mean and
noise, we see that at high feedback strengths, feedback in decay rate can be
much more effective than feedback in burst frequency.

The stark differences between the small-noise prediction and the exact results
motivated us to develop in Appendix B an alternative asymptotic approxima-
tion in the regime K � 1 of strong feedback. For feedback in decay rate the
asymptotics (B6) reveal that the relative noise is: of the order of K if H > 2;
of the (asymptotically larger) order of KH−1 if 1 < H < 2; or converges to
the constant 1 − H if 0 < H < 1. For feedback in burst frequency the strong-
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Fig. 3. The mean, the relative noise and skewness of protein concentration subject to
feedback in burst frequency or decay rate. The exact values (coloured lines) are based
on numerical integration of (19), in which the probability density function p(x) is given
by (26) (feedback in burst frequency) or (29) (feedback in decay rate). The small-noise
approximation (SNA) of the protein mean is the fixed-point solution x0 to Equation
(24); the SNA of the relative noise is given by (A4). The feedback cooperativity coef-
ficient is fixed to H = 4 throughout.

feedback asymptotics (B7) confirm the numerical observation that the relative
noise eventually returns to the value of one as K tends to zero.

The protein skewness is quantified by the third standardised moment of its
steady-state distribution. In the nethermost panels of Fig 3 we report the re-
sponse of a relative protein skewness to increasing feedback strength. By the
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Fig. 4. Steady-state protein copy number distribution by discrete simulations and hy-
brid (continuous) theory. The theoretical distribution is given by 1

M0Ω
p
(
P
Ω

)
, where p is

the continuous probability density function (26) (feedback in burst frequency) or (29)
(feedback in decay rate) of the hybrid model and M0 is the zero-th moment (19) (the
reciprocal of the normalisation constant). Discrete simulation results are based on 106

Gillespie iterations of the discrete model (30), in which the response functions h(x) and
g(x) are given by (22) (feedback in burst frequency) or (27) (feedback in decay rate).
The model parameters are: burst frequency a = 5; cooperativity coefficient H = 4;
critical concentration K = 0.1; system size Ω = 100.

relative skewness we understand the ratio of the skewness of the auto-regulated
protein to that of a referential constitutive protein with the same mean. The pro-
tein skewness responds to increasing feedback strength in a complicated manner
featuring first a trough and then a peak. Feedback in burst frequency is more
conducive to skewness than feedback in decay rate. Details on the mathematical
definition and calculation of the (relative) skewness are provided in the Appendix
C.

In order to cross-validate the hybrid framework, we constructed a fine-grained
discrete stochastic bursting model (30) with feedback in burst frequency or decay
rate. In the discrete model, burst sizes are geometrically distributed; decay is
stochastic and leads to the removal of one molecule at a time. In addition to the
three parameters of the hybrid model, the discrete model features an additional
system-size parameter Ω, which is equal to the copy number P of protein that
are encompassed in a unit of protein concentration x. Provided that Ω is large,
discrete protein distributions obtained by stochastic simulation of the discrete
model (30) are well approximated by the explicit continuous protein distributions
(26) or (29) obtained using hybrid theory (Fig 4).

The variability of a discrete distribution is conveniently quantified using the
Fano factor (the variance to mean ratio). Figure 5 shows the Fano factor for the
steady-state protein copy number obtained by stochastic simulation of the full
discrete model (30) and the hybrid theory approximation (32). For large values
of Ω the two agree well. For small values of Ω, single-molecule effects become
important in discrete simulations; by neglecting them, the hybrid theory tends
to underestimate the Fano factor.
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Fig. 5. The Fano factor of steady-state protein copy number as function of system
size Ω (upper panels) and feedback strength K−1 (lower panels). The discrete results
are obtained by simulation of system (30). The hybrid (continuous) are based on (32),
(21), and (19). The model parameters are set to a = 5, H = 4, K = 0.1 (upper
panels) Ω = 10 or Ω = 100 (lower panels). The number of Gillespie iterations is set to
104 × bΩc.

The hybrid approximation (32) implies that the protein Fano factor is pro-
portional to the relative noise of the hybrid model. The factor of proportionality
is the mean copy number Ω/a of protein molecules produced per burst. The
hybrid model can thus be consistent with a range of different Fano factors de-
pending on the chosen value of the system size. Provided that the value of the
system size is fixed to a sufficiently large value, the response of the Fano factor
to increasing feedback strength coincides with that of the relative noise (Fig 5,
lower panels).

10 Summary

We evaluated the noise suppression capabilities of feedback in burst frequency
and feedback in decay rate using a hybrid model for bursty protein dynamics.
Using a relative noise measure, we systematically related the noise levels of a
regulated protein to those of a constitutive protein expressed at the same mean
value. It was found that introducing feedback of either kind brings about a
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decrease in the relative noise. Nevertheless, feedback in decay rate was shown
to perform better in suppressing noise, in particular under high-noise and/or
strong-feedback conditions.

We identified the relationships between the hybrid model and other modelling
frameworks, in particular a deterministic one, based on an ordinary differential
equation, and a discrete stochastic framework. The deterministic model is re-
covered from the hybrid model in the limit of very frequent bursts. The discrete
stochastic model reduces to the hybrid model in the limit of large system sizes.
Discrete protein distributions estimated by a kinetic Monte Carlo method were
found to be in agreement with the continuous distributions provided explicitly
by the hybrid framework. The relative noise metric from the hybrid framework
was shown to determine the leading order behaviour of the protein Fano factor
in the large system size regime.

Overall, our results illustrate the tractability and usefulness of hybrid frame-
works in studying non-linear fluctuations in stochastic gene expression.
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Appendix A: Small-noise asymptotics

The potential (25), which applies for both regulation types (22) and (27), is a
concave function with a single maximum situated at x = x0, where x0 satisfies
the fixed-point equation (24).

For a � 1, the most important part of the pdf lies around the maximum
x = x0 of the potential. Therefore we use the parabolic approximation in (17)
to obtain

p(x) =
CeaΦ(x)

xg(x)
≈ Ce

a
(
Φ(x0)+

Φ′′(x0)
2 (x−x0)

2
)

x0g(x0)
= C ′e

aΦ′′(x0)
2 (x−x0)

2

, (A1)

where C ′ = CeaΦ(x0)/x0g(x0) is a constant. The parabolic approximation (A1)
implies that at steady state the protein concentration is normally distributed
with statistics

〈x〉 ∼ x0, Var(x) ∼ − 1

aΦ′′(x0)
. (A2)

Note that the variance in (A2) is in fact positive since the second derivative of
the potential Φ(x) at the point x = x0 of its maximum is negative.

We see that the (leading-order) approximations (A2) to the protein statistics
in the small-noise regime depend on their shared potential (25) but not on the
fine differences between the pdfs (26) and (29). Therefore we arrive at a first
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important conclusion of the present work: feedback in burst frequency and feed-
back in decay rate are equivalent in terms of control of both mean and noise in
the small-noise regime.

Evaluating the second derivative of the potential yields

Φ′′(x0) =
d

dx

1

x(1 + (x/K)H)

∣∣∣∣
x=x0

= −1 + (H + 1)(x/K)H

x2(1 + (x/K)H)2

∣∣∣∣
x=x0

= −
(

1 + (H + 1)

(
1

x0
− 1

))
= −H(1− x0) + 1

x0
. (A3)

in which we used the fixed-point equation (24) several times. For the relative
noise (21) we find

η2 = a
Var(x)

〈x〉
∼ − 1

x0Φ′′(x0)
=

1

H(1− x0) + 1
. (A4)

The asymptotic approximation of the relative noise on left-hand side of (A4),
which we denote by η2SNA, is a decreasing function of K which satisfies

η2SNA ∼
1

H + 1
for K � 1. (A5)

The small-noise asymptotics thus predict that a maximal (H + 1)-fold reduc-
tion in relative noise can be achieved in the strong-feedback regime using either
feedback type.

11 Appendix B: Strong-feedback asymptotics

In this Section we develop the relative noise asymptotics for the strong feedback
regime K � 1. We separately treat feedback in decay rate and refer to literature
for treatment of feedback in burst frequency.

11.1 Feedback in decay rate

The purpose of this section is to provide asymptotic approximations as K � 1
to the integral

Mn =

∫ ∞
0

e−axxa+n−1
(
1 + (x/K)H

)− a
H−1 dx, (B1)

giving the n-th moment of the protein pdf (29). In particular, M−10 gives the
normalisation constant C in the protein pdf.

If K � 1 and x = O(1), then x/K � 1 so that(
1 + (x/K)H

)− a
H−1 ∼ (x/K)−a−H for K � 1. (B2)
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Inserting (B2) into (B1) we find

Mn ∼ Ka+H

∫ ∞
0

e−axxn−H−1dx = Ka+HaH−nΓ (n−H), (B3)

which converges for n > H. For n < H, we need to use a different method of
approximating the integral (B1).

Substituting (x/K)H = z in the integral (B1) yields

Mn =
Ka+n

H

∫ ∞
0

e−aKz
1
H z

a+n
H −1(1 + z)−

a
H−1dz. (B4)

Neglecting the O(K) term in the exponential in (B4) yields

Mn ∼
Ka+n

H

∫ ∞
0

z
a+n
H −1(1 + z)−

a
H−1dz

=
Ka+n

H
B

(
a+ n

H
, 1− n

H

)
, for K � 1, (B5)

where B(µ, ν) is the beta function [1]. The right-hand side in (B5) converges for
n < H, which complements the condition for validity of the previous approxi-
mation (B5). The nongeneric case n = H can be treated by method of splitting
the integration range [16].

Using the asymptotic approximations (B3) and (B5) in the formula η2 =
a(M2/M1−M1/M0) for the relative noise, we obtain asymptotic approximations

η2 ∼



aK

(
B
(
a+2
H , 1− 2

H

)
B
(
a+1
H , 1− 1

H

) − B
(
a+1
H , 1− 1

H

)
B
(
a
H , 1

) )
if H > 2,

aH−1HKH−1Γ (2−H)

B
(
a+1
H , 1− 1

H

) if 1 < H < 2,

1−H if 0 < H < 1.

(B6)

Hence, as K ↘ 0, the relative noise decreases to zero linearly if H > 2, sub-
linearly if 1 < H < 2, or tends to a positive constant 1 − H if 0 < H < 1.
High cooperativity in feedback in decay rate thus improves its performance in
the strong-feedback regime. Even in the worst case scenario 0 < H < 1 in terms
of noise control, the limiting value 1−H of relative noise is less than the limiting
value 1/(1 +H) of the small-noise prediction (A5) for the relative noise.

11.2 Feedback in burst frequency

The strong-feedback asymptotic approximation of the relative noise for feedback
in burst frequency has been developed in [7] and reads

η2 ∼ 1− 1

ln 1
aK − q

for K � 1. (B7)
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The constant q in (B7) is defined by

q = γ

(
1 +

1

H

)
+

1

H
ψ
( a
H

)
, (B8)

where γ is the Euler–Mascheroni constant and ψ(s) is the digamma function
(the logarithmic derivative of the gamma function) [1].

Appendix C: Skewness of protein distributions

The nth central moment is defined by

κn =
1

M0

∫ ∞
0

(x− 〈x〉)np(x)dx, (C1)

where p(x) is the protein pdf (26) (feedback in burst frequency) or (29) (feedback
in decay rate), M0 is the normalisation constant (19), and 〈x〉 is the protein
mean (19).

The skewness of a distribution is defined by

Skewness =
κ3

κ
3/2
2

. (C2)

Instead of using absolute skewness values, we report the values of a relative
skewness of the steady-state protein distribution (Fig 3 in the Main Text, bottom
panels).

The relative skewness compares the skewness in a regulated model to that in
a constitutive model with the same mean. The pdf for a referential constitutive
model is given by the gamma distribution with shape (mean burst size) 1/a and
scale a〈x〉, where 〈x〉 is the common value of the mean for the regulated and
unregulated models. Since the skewness for the gamma distribution is equal to
2/
√
a〈x〉, we obtain

Relative skewness =

√
a〈x〉κ3
2κ

3/2
2

. (C3)

Equation (C3) provides the theoretical basis for the calculations behind the
nethermost panels in Fig 3 of the Main Text.
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