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ABSTRACT: Metabolic differences between patients and within the tumor itself can be an 
important determinant in cancer treatment outcome. However, methods for determining these 
differences non-invasively in vivo have been lacking. Using pancreatic ductal adenocarcinoma as 
a model, we demonstrate that tumor xenografts with a similar genetic background can be 
distinguished by their differing rates of metabolism, as detected by imaging of uniformly 13C 
labeled glucose tracers using a newly developed technique using tensor decomposition for noise 
suppression to bring the signal to a detectable level without hyperpolarization of the tracer. Using 
this method, cancer subtypes that appeared to exhibit similar metabolic profiles by other 
techniques that measured steady state metabolism can be distinguished.  

Keywords: Dynamic Nuclear Polarization, In Vivo Imaging, 13C magnetic resonance 
spectroscopy, pancreatic cancer, metabolomics 

Tumor cells are metabolically flexible and redirect metabolites away from the citric acid 

cycle to the less energetically efficient aerobic glycolytic pathway to generate the biomass 

required for growth.1 Beyond this metabolic phenotype, known as the Warburg effect, tumor 

growth is further aided by neo-angiogenesis for developing vasculature to support tumor growth. 

Compared to normal vasculature, which is well organized and structurally robust, the vascular 

network of tumors is chaotically organized and leaky resulting in poor delivery of oxygen and 

regions of both chronic and acute hypoxia.2  Thus, the tumor microenvironment is typically 

distinguished by high uptake of glucose, high glycolytic flux and hypoxia and acidic conditions. 

This characteristic metabolic and physiologic phenotype is used to develop diagnostic imaging 

methods and to tailor appropriate therapies.  

While certain common features of the tumor microenvironment are retained in different 

cancers,3, 4 other features can vary considerably among patients and even within a single tumor 

itself.5, 6 Local concentrations of glucose,7, 8 fatty acids,9 and amino acids,8 for example,  have 

been shown to influence the efficacy of specific types of chemotherapy and radiotherapy, which 

could lead to a possible change of treatment.10 Personalizing treatment in response to fluctuations 

of metabolites requires a reliable way of measuring the local concentrations of small molecules, 

which is less well-established than techniques for measuring the cellular, genomic, and proteomic 

environment. Molecular imaging techniques based on PET have been successful at 

characterizing the upregulated uptake of several probes in cancer, though such measurements 

are usually limited to steady state uptake only and usually cannot characterize downstream 
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biochemical transformations.11 MALDI-MS has been employed to image metabolite 

concentrations of cancer tissue ex situ11, 12 but cannot be employed in vivo. Tumor metabolism in 

vivo can be imaged by 1H magnetic resonance spectroscopy, but as a steady state method it 

cannot distinguish the internal metabolism of the tumor from contributions from the surrounding 

stroma. 

13C MRI can in principle distinguish metabolic processes using exogenous metabolic 

tracers. The ~ 4 orders of magnitude lower sensitivity of 13C MRI is typically overcome by use of 

dynamic nuclear polarization, which takes advantage of the fact that the high spin polarization of 

a paramagnetic radical can be transferred to the 13C nucleus on another molecule under resonant 

microwave irradiation. However, this transfer happens efficiently only at temperatures near ~1 K 

and the hyperpolarization is rapidly lost when the sample is brought to room temperature before 

injecting. Due to this limitation, these studies are normally applied to probes whose 13C T1 

relaxation time is long enough that the enhanced polarization is not lost before the metabolic flux 

can be determined. Of these probes, pyruvate has proven one of the most useful as it interrogates 

the central switching point from glycolysis to the TCA cycle.13 By comparing the pyruvate-to-

lactate conversion between tumors or between pre- and post- treatment, it has been possible to 

assess the glycolytic profile of tumors in vivo and assess metabolic changes during treatment.14 

However, hyperpolarized MRI using pyruvate is unable to detect changes occurring upstream of 

the TCA cycle, which are common in many cancers.  

An alternative approach that allows a more comprehensive analysis is to use glucose as 

a metabolic tracer.15, 16 Although glucose itself is difficult to hyperpolarize, new techniques allow 

the dynamic imaging of metabolic tracers by MRI without hyperpolarization. This imaging clearly 

suffers from a lack of signal but this can be compensated for by efficient noise suppression.17 To 

see how a targeted approach using hyperpolarized pyruvate compares to the more 

comprehensive approach offered by non-hyperpolarized glucose, we analyzed two closely related 

cell lines with a similar genetic background in the metabolic pathways. MiaPaCa-2 and Hs766t 

are cell lines established from pancreatic ductal adenocarcinomas (PDACs) with similar mutations 

in major metabolic genes.18 However, other differences in the anatomy of the xenografts and in 

non-metabolic pathways of the cell lines can impact the tumor microenvironment. Hs766t was 

derived from a metastatic site and is expected to have a different stromal boundary compared to 

MiaPaCa-2, which is derived from a primary heterogeneous tumor. Hs766t tumor xenografts are 

more strongly hypoxic than MiaPaCa-2,19 have a more poorly developed vasculature system and 

was expected to have a different overall physicochemical environment as a result of this 

anatomical difference. While MiaPaCa-2 and Hs766t have similar metabolism overall,10 it is 

possible to detect a difference in glucose metabolism using a newly developed technique to image 

glycolysis using non-hyperpolarized 13C glucose as a tracer.17  Imaging of local metabolite 

concentrations and biochemistry in this manner may provide a new method for understanding the 

tumor biochemical microenvironment. 

Results 

MiaPaCa-2and Hs766t PDAC Xenografts have Distinct Anatomical and Histological 

Characteristics 

Figs 1A and C show transverse slices from the anatomical T2-weighted RARE MRI of 

xenografts of Hs766t and MiaPaCa-2. Both tumors are poorly differentiated and show the gross 

anatomy typical of Grade 3 PDACs.20 While the gross anatomy is similar, the anatomical 
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microstructure and histology of the two tumors is distinctly different. The MiaPaCa-2 tumors 

appear entirely homogenous and undifferentiated, an observation that holds down to the cellular 

level (Fig 1B). By contrast, the homogeneity of the Hs766t tumors is broken by hypointense spots, 

a feature characteristic of focal necrosis (Fig 1D).21 As noted in previous reports,2 we found similar 

levels of CD31, a common biomarker for angiogenesis (Fig S1),22 suggesting immature, rather 

than deficient, vasculature may be responsible for the higher hypoxia levels in Hs766t.2  At the 

cellular level, cell rupture and inflammation were evident in Hs766t but not in MiaPaCa-2   cells 

(Figs. 1B and D arrows). Despite their overall genetic similarity, the tumor microenvironment 

differs and Hs766t and MiaPaCa-2 can be easily distinguished by either anatomical MRI or 

histology. 

PDAC Xenografts Can Easily be Differentiated from Non-cancerous Host Tissue by 

Metabolic Differences  

Both the MRI and histology results point to substantial differences in the tumor 

microenviroment between the two tumor types that may influence metabolism. Accordingly, we 

looked for alterations in central metabolic pathways for biosynthesis, stress response, and 

energetics that are commonly modified in tumor cell lines using capillary electrophoresis mass 

spectrometry (CE-MS) targeted metabolic profiling.23 CE-MS separates molecules by 

electrophoretic mobility. It has a different specificity than the more commonly used LC/MS, which 

separates molecules largely by size and charge rather than polarity. CE-MS displays greater 

sensitivity for small charged molecules such as amino acids compared to LC/MS, which is 

selective for large hydrophobic molecules such as lipids. CE/MS metabolic profiling can therefore 

give additional information not present in previous LC/MS experiments10. 

As expected, pancreatic host tissue from the mouse was metabolically distinct from 

Hs766t and MiaPaca2 xenografts (p <0.001 based on two-way ANOVA), with numerous 

metabolic differences across multiple metabolic pathways (Fig. S2). The largest changes were 

concentrated in pathways connected to amino acid biosynthesis and degradation, reflecting an 

imbalance between amino acid metabolism and protein biosynthesis caused by unsustainable 

growth. Amino acid levels of all types and amino acid synthetic intermediates were strongly 

decreased in both cells lines. Both cell lines also show a strong depletion in the level of 

intermediates throughout the urea cycle, the primary pathway for protein catabolism, as well as 

the polyamine biosynthetic pathway downstream of the urea cycle. 

Major metabolic changes are also evident in other pathways. Consistent with previous 

reports on PDAC tumors,24 flux through the glycolytic pathway is elevated in both cell lines but 

diverted into the pentose phosphate pathway for nucleotide and NADPH production. To counter 

the increased oxidative stress, there is increased activity through the methionine redox cycle: the 

reduced equivalents are depressed and the oxidized equivalents elevated compared to normal 

tissue.  Finally, lactate levels are also highly elevated,25 consistent with a Warburg phenotype for 

both Hs766t and MiaPaCa-2.   

Fumarate Metabolism Distinguishes PDAC hypoxic subtypes  

The metabolic differences between Hs766t and MiaPaca2 PDAC tumors were more 

subtle. Although it is possible to distinguish between the two types of PDAC tumors using the 

entirety of the metabolic profile (p=0.00015 for N=4, two-way ANOVA with Sidak’s correction for 

multiple comparisons), no single pathway stood out as being distinct (Fig. 1E). Only a few 

biomarkers are distinct at the 5% confidence level with most of the differences that do exist are in 
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the TCA cycle. The most striking difference was in fumarate levels (p=0.003), which were 

significantly depressed (decreased 4 fold relative to normal) in MiaPaCa-2 and normal or slightly 

elevated in Hs766t (elevated 1.4 fold). Fumarate has been suggested as an oncometabolite26, 27 

created both through the TCA cycle and as a byproduct of the urea cycle that competitively inhibits 

2-OG dependent oxygenases to stabilize the HIF complex and induce pseudohypoxia. Malate 

and arginosuccinate, two other intermediates in the fumarate pathway were also significantly 

depressed in MiaPaCa-2.  

Pyruvate metabolism is indistinguishable between PDAC hypoxic subtypes  

The CE/MS experiment measures the static distribution of metabolites within the tumor, 

which is the sum of multiple biochemical pathways. While the data suggests that a difference in 

glycolysis and oxidative phosphorylation may exist between the MiaPaCa-2  and Hs766 cell lines, 

the statistical significance of these changes is mostly uncertain and the origin of the effect is not 

clear - it is uncertain whether the difference is the result of upregulation of specific genes or is a 

more general effect from changes in the underlying physiology of the tumor microenvironment. 

To more directly probe specific enzyme activities within the glycolytic and TCA cycles, we first 

tracked the in vivo utilization of hyperpolarized 13C labelled pyruvate using magnetic resonance 

spectroscopy to detect the de novo generation of new metabolites from pyruvate. Pyruvate 

metabolism is a central control point between glycolysis and oxidative phosphorylation and 

dysregulation of pyruvate dehydrogenase can be an important component of the Warburg effect.28 

Quantifying pyruvate to lactate exchange through a 13C tracer provides an estimate of flux through 

the TCA, Cahill,  and anaerobic fermentation pathways, and can provide a measurement of the 

degree of dysregulation of central metabolism.29 

Figs. 2A and B shows typical spectra after the injection of 98 mM solution of 

hyperpolarized [1-13C]pyruvate into the tail vein of nude mice bearing MiaPaCa-2 or Hs766t 

xenografts in the left leg. The five peaks correspond to pyruvate (172.6 ppm), lactate (184.9), 

alanine (178.2), bicarbonate (162.6 ppm), and inactive pyruvate hydrate (180.9 ppm). Few 

differences could be seen when using C-1 labeled pyruvate as a metabolic tracer; pyruvate 

metabolism appears to be statistically indistinguishable in the MiaPaCa-2 and Hs766t cell lines. 

The rate of pyruvate to lactate conversion was similar in MiaPaCa-2   and Hs766t as was the flux 

through the Cahill cycle to alanine and the first step of the TCA cycle as measured by bicarbonate 

production (see Fig. 2). While differences in pyruvate metabolism in hypoxic and oxidative 

SU8686 tumors has previously been shown by hyperpolarized C-1 labeled pyruvate, pyruvate 

metabolism is not a sensitive biomarker for distinguishing subtle differences among hypoxic 

pancreatic adenocarcinoma subtypes. 

Glucose metabolism, but not glucose uptake, distinguishes PDAC hypoxic subtypes  

The failure of hyperpolarized [1-13C] pyruvate encouraged us to look elsewhere for 

possible metabolic biomarkers. The CE/MS data is suggestive of an upregulation in MiaPaCa-2 

of the later stages of glycolysis relative to Hs766t, but the sample-sample variability inherent to 

MS techniques obscures the magnitude of any difference (see Fig. S3). Hyperpolarized 13C MRS 

is more precise in this respect, but the transient nature of hyperpolarization restricts analysis to 

only the first few metabolic steps away from the probe.17 To probe the glycolytic pathway, a 

different technique is needed.  

We have previously shown that it is possible to use the correlation of the 13C signal in both 

time and space to reduce the noise level in the signal by an order of magnitude or more (see 
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Methods).17 Using this technique, we first checked the glucose metabolism of each tumor type 

following an injection of 50 mg bolus of [U-13C]glucose using non-localized spectroscopy. The 

resulting spectra are complex and include contributions from the α and β forms of glucose, the 

endogenous lipid signal, and the signals from the end products of anaerobic fermentation and the 

Cori and Cahill cycle lactate and alanine (Fig. 3A). The peak at 95 ppm is of particular interest as 

it can be assigned to specifically glucose and glucose-6-phosphate without contributions from 

other glycolytic intermediates. Following the intensity of the peak at 95 ppm therefore gives an 

indication of the first steps of glycolysis, glucose import and phosphorylation. The other major 

glucose peak at 60 ppm contains contributions from all glycolytic intermediates and serves as a 

measure of the overall progress of glycolysis. Lactate and alanine are observed as partially 

resolved shoulders of the broad lipid peak at 19.8 ppm and 16.8 ppm, respectively.  

The overall kinetics of glycolysis from following the 60 ppm peak approximately matched 

previous 13C measurements of glycolysis (Fig. 3B). However, the improvement in temporal 

resolution (5 m vs 12 s) afforded by greatly increased signal to noise allows an assessment of the 

fast glucose import step by MRI, which could not be resolved effectively before. No difference 

between cell lines could be detected in the rate of glucose uptake (Fig.3D), in agreement with the 

similar levels of the glucose transporter GLUT1, detected by western blot (see Fig. S1), or in the 

rate of lactate formation (Fig. 3F). The rate of glucose metabolism after import; on the other hand, 

distinguishes MiaPaCa-2  and Hs766t xenografts. Hs766t xenografts displayed a statistically 

significant slower glucose metabolism than MiaPaCa-2   xenografts (Fig. 3E, Mann-Whitney rank 

test, p=0.02). This difference is also reflected in the time-averaged glucose to lactate ratio (Fig. 

3C, Mann-Whitney rank test, p=0.04); however, interpretation of the ratio as a rate30 is 

complicated by the contribution of the endogenous lipid signal to peak. 

Local differences in metabolism exist within PDAC tumors  

Figure 1E shows that a metabolomic profile from a CE/MS can distinguish between 
xenografts of the MiaPaCa-2 and Hs766t cell lines. Unfortunately, mass spectrometry can only 
be done ex situ and it is impossible to apply this procedure to see the distribution of metabolites 
in a living tumor.  MRI spectroscopy can see the distribution but cannot distinguish the source. 
The higher signal to noise afforded by the rank reduction technique allowed the direct 
determination of the kinetics of glucose metabolism in vivo by MRI. A multidimensional extension 
of the technique, tensor decomposition, may open up the possibility of metabolic imaging. As a 
first test, we used chemical shift imaging to provide a low-resolution (1.5x1.5x16 mm) map of the 
rates of glycolysis and anaerobic fermentation (Fig.4 A-D). Simple chemical shift imaging was 
used to minimize potential imaging artifacts; considerable acceleration can be achieved by a more 
efficient pulse sequence and is the focus of ongoing research.  

Figure 4 shows representative results from chemical shift imaging of MiaPaCa-2 and 
Hs766t xenografts before and after noise suppression (see Methods). While the raw images are 
mainly noise, (Fig.4 E) the processed images by tensor decomposition clearly show localized 
uptake of glucose within the tumor. As in the non-localized experiment, the glucose signal can be 
seen to decay and the corresponding lactate signal at 19 ppm to simultaneously increase as the 
tumor metabolized the bolus (Figure 4G). Local differences in metabolism can be detected in 
many tumors. For example, in one Hs766t xenograft (Figure 4G) glucose metabolism is 
distributed relatively uniformly after taking into account the overall tumor anatomy. Lactate 
production, on the other hand, is localized in this tumor to one side where focal necrosis is more 
evident. In comparable MiaPaCa-2 tumors (Fig. 5), glucose and lactate production appears to be 
more tightly correlated, congruent with the greater homogeneity apparent in the anatomical MRIs.  
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Discussion  
Pancreatic ductal adenocarcinoma (PDAC) represent 90% of pancreatic cancers and are 

characterized by a poor prognosis and limited treatment strategies.31, 32 Given PDACs resistance 

to traditional chemo- and radiotherapy regimes,33 alternative points of attack are being 

considered. One potential point of attack is the dysregulated metabolism of PDACs,34 which is 

highly dependent on protein autophagy and catabolism35, 36  and exogenous glutamine and 

glucose.24, 37 Further, PDAC tumors usually have alterations in the activity in the urea cycle to 

support pyrmidine and amino acid synthesis38, 39 and often display a Warburg phenotype of 

increased glycolysis followed by diversion to lactate.40 Each alteration and dependency 

represents a potential point of intervention. Although targeting the master genetic switches for 

these transformations, p53 and kRAS,24, 41 is difficult, the downstream enzymes are practical 

targets. Inhibitors for lactate dehydrogenase42 and the lactate transporter MCT143 have shown 

promise in preclinical trials and may enter clinical trials in the near future. Beyond the Warburg 

effect, researchers have begun to target other vulnerable aspects of PDAC metabolism such as 

amino acid synthesis44 or the unique chemical environment of tumors by hypoxia activated 

prodrugs.2, 45  

Targeting aberrant metabolism requires a method of monitoring treatment progress and 

selecting suitable patient populations. Response to cancer treatment can be highly variable and 

there is a concerted push to tailor treatment regimes to individual patients.46 For protein targets 

such as receptors, genome sequencing or protein expression profiling is often sufficient to 

demonstrate a patient has a vulnerable mutation. Targeting aberrant metabolism is more difficult 

as the metabolism of tumors is not limited to the tumor itself, but contains substantial contributions 

from the surrounding cells both directly through diffusion of metabolites across the tumor 

boundary47 and indirectly through the influence of regulatory and epigenetic signals.48 The 

physical microenvironment of the tumor can also affect metabolism. Deficient or improperly 

formed2 vasculature often induces hypoxia in PDAC tumors49 which can induce metabolic 

changes23, 50 that would not be evident by genetic analysis alone.  

The steady state metabolism of PDAC tumors can be probed indirectly through analysis 

of urine, blood, or pancreatic cyst fluid51 or more directly through magnetic resonance 

spectroscopy.  However, metabolic networks are more flexible than protein networks and flux 

through the network can be rerouted to limit the impact of targeted enzymes.37 Evaluating the 

target engagement of potential inhibitors can be difficult under these conditions. We demonstrate 

the potential of multimodal metabolic profiling of PDAC tumors for distinguishing animal models 

that are genetically similar but display very different phenotypes. Hs766t is a cell line derived from 

lymphatic metastasis of pancreatic cancer that generates highly necrotic, hypoxic, slow growing 

heterogenous tumors. MiaPaCa-2 is derived from primary cancer whose tumors are less necrotic, 

grow faster, and are highly homogenous. Despite their dissimilar origin and physiological 

differences, the steady state metabolism probed by CE/MS of Hs766t and MiaPaCa-2 is fairly 

similar with only a few potential differentiating biomarkers (Fig. 1E). Hyperpolarized pyruvate-

lactate fluxes of Hs766t and MiaPaCa-2   xenografts estimated by 13C hyperpolarized pyruvate 

MRI were statistically indistinguishable (Fig. 3). The flux through the TCA cycle and anaerobic 

respiration is similar, as expected from the presence of KRAS and P53 mutations in both cell lines 

and similar LDHA levels (Fig. S1). 
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Using [U-13C] glucose instead of [1-13C] pyruvate allowed a more encompassing overview 

of metabolism. Measurements of in vivo glucose metabolism by 13C MRI have proved difficult 

because of difficulty of hyperpolarizing glucose and the low SNR in non-hyperpolarized 

experiments. The recently developed a post-processing novel denoising algorithm recovered 

sufficient SNR from non-hyperpolarized MRI imaging experiments of glucose metabolism.17 The 

most important information acquired by this method is the direct measurement of rates of 

glycolysis and anaerobic respiration, allowing imaging of the Warburg effect. High glucose uptake 

is one of the most well studied features of cancer and has been utilized in FDG-PET imaging in 

clinical settings. FDG-PET is limited in that the radiotracer cannot differentiate among the later 

steps of glycolysis. By allowing detection further down metabolic pathways than FDG-PET, 

investigating glucose metabolism by 13C MRI can potentially probe more subtle defects. We see 

a similar effect in Fig 3; among Hs766t and MiaPaCa-2  PDAC xenograft animal models, glucose 

uptake is similar but glucose metabolism is distinct.  

These results suggest some advantages for 13C glucose imaging. Compared to FDG-PET, 

there is no need for a radioactive tracer, which makes this imaging potentially safer and less 

invasive. By observing the lactate production at later time points, 13C glucose imaging can 

potentially detect cancer even in highly glucose consuming tissue such as brain or liver. It can 

also potentially detect cancer in the bladder because glucose is not excreted immediately in urine, 

while FDG excreted in the urinary tract and excess signal in the bladder can interfere with lesion 

detection within or near the bladder wall. In comparison to hyperpolarized MRI, non-

hyperpolarized 13C glucose imaging does not require onsite preparation of the probe, removing 

one of the main barriers to clinical translation of metabolic imaging by MRI. While some challenges 

remain and the technique is inferior to PET in some respects, particularly with respect to resolution 

and imaging time, 13C glucose imaging by MRI may emerge as a viable adjunct or alternative to 

FDG-PET.    

Materials and Methods  

Mouse Models 

The animal experiments were conducted according to a protocol approved by the Animal 
Research Advisory Committee of the NIH (RBB-159-2SA) in accordance with the National 
Institutes of Health Guidelines for Animal Research. Female athymic nude mice weighing 
approximately 26 g were supplied by the Frederick Cancer Research Center, Animal Production 
(Frederick, MD) and housed with ad libitum access to NIH Rodent Diet #31 Open Formula 
(Envigo) and water on a 12-hour light/dark cycle. Xenografts were generated by the subcutaneous 
injection of 3 ×106 MIA PaCa-2 (America Type Cell Collection (ATCC), Manassas, VA, USA) or 
Hs766t (Threshold Pharmaceuticals, Redwood City, CA, USA) pancreatic ductal 
adenocarcinoma cells.52 Both cell lines were tested in May 2013 and authenticated by IDEXX 
RADIL (Columbia, MO) using a panel of microsatellite markers. 

CE/MS analysis 

Tumors were excised when the volume reached 600 mm3 and immediately frozen in liquid 
nitrogen and stored at -80 °C until analysis. A total of 116 metabolites involved in glycolysis, the 
pentose phosphate pathway, the tricarboxylic acid cycle, the urea cycle, and polyamine, creatine, 
purine, glutathione, nicotinamide, choline, and amino acid metabolism were analyzed using CE-
TOF and QqQ mass spectrometry (Carcinoscope Package, Human Metabolome Technologies, 
Inc.) 
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Western Blotting Analysis 

The mice bearing MiaPaCa-2 and Hs766t tumors (n = 4 for each group) were euthanized 
by breathing carbon dioxide gas, and tumor biopsy samples were excised. The tumor tissues 
were immediately homogenized with T-PER tissue protein extraction reagent (Thermo scientific). 
The homogenate was centrifuged, and the supernatant was used for Western blot analysis. 
Hexokinase-2, Glut-1, LDHA proteins in tumor extract were separated on 4% to 20% Tris-Glycine 
gel and CD31 was separated on NuPAGE 3 to 8 % Tris-Acetate gel (Life Technologies) by SDS-
PAGE and were transferred to nitrocellulose membrane. The membranes were blocked for 1hour 
in blocking buffer (3% nonfat dry milk in 0.1% Tween 20/TBS), which was then replaced by the 
primary antibody (1:500-1:1,000) diluted in blocking buffer, and were incubated for 1 hour at room 
temperature. The membranes were then washed three times in washing buffer (0.1% Tween 
20/TBS). The primary antibody was detected using horseradish peroxidase–linked goat anti-
mouse or goat anti-rabbit IgG antibody at a 1:2,000 dilution (Santa Cruz Biotechnology), 
visualized with Western Lightning Plus-ECL enhanced chemiluminescence substrate (Perkin 
Elmer Inc.) and measured by the Fluor Chem HD2 chemiluminescent imaging system (Alpha 
Innotech Corp.). Density values for each protein were normalized to actin or HSC70. 

13C MRS with hyperpolarization 

Samples for NMR were prepared and analyzed as previously described in Ref. 17. [1-
13C]pyruvic acid (30 μL), containing 15 mM TAM and 2.5 mM gadolinium chelate ProHance 
(Bracco Diagnostics, Milano, Italy), was hyperpolarized at 3.35 T and 1.4 K using the Hypersense 
DNP polarizer (Oxford Instruments, Abingdon, UK) according to the manufacturer’s instructions. 
Typical polarization efficiencies were around 20%. After 40-60 min, the hyperpolarized sample 
was rapidly dissolved in 4.5 mL of a superheated HEPES based alkaline buffer. The dissolution 
buffer was neutralized with NaOH to pH 7.4. The hyperpolarized [1-13C]pyruvate solution (96 mM) 
was intravenously injected through a catheter placed in the tail vein of the mouse (1.1 mmol/kg 
body weight). Hyperpolarized 13C MRI studies were performed on a 3 T scanner (MR Solutions, 
Guildford, UK) using a home-built 13C solenoid leg coil. After the rapid injection of hyperpolarized 
[1-13C] pyruvate, spectra were acquired every second for 240 s using a single pulse acquire 
sequence with a sweep width of 3.3 kHz and 256 FID points.  

Dynamic 13C Glucose MRS without hyperpolarization 

The magnetic resonance spectroscopy experiments were performed on either a 9.4 T 
Biospec 94/30 horizontal scanner or a MR Solutions 3 T horizontal scanner using a 16 mm double 
resonance 1H/13C coil constructed as described in Ref. 17.  Each mouse was anesthetized 
during imaging with isoflurane 1.5–2.0% administered as a gaseous mixture of 70% N2 and 30% 
O2 and kept warm using a circulating hot water bath. Both respiration and temperature were 
monitored continuously through the experiment and the degree of anesthesia adjusted to keep 
respiration and body temperature within a normal physiological range of 35-37º C and 60-90 
breaths per min. Anatomical images were acquired with a RARE fast spin echo sequence53 with 
15 256×256 slices of 24 mm × 24 mm × 1 mm size with 8 echoes per acquisition, a 3 s repetition 
time, and an effective sweep width of 50,000 Hz. Samples were shimmed to 20 Hz on the 9.4 T 
with first and second order shims using the FASTMAP procedure.54 Non-localized spectra of [U-
13C] glucose without DNP at 9.4 T were acquired with the NSPECT pulse-acquire sequence using 
maximum receiver gain, a repetition time of 50 ms, Ernst Angle excitation of 12º, 256 FID points, 
a sweep width of 198.6 ppm, 16 averages per scan, and 4500 scans for a total acquisition time 
of 1 hour. MLEV16 decoupling55, 56 was applied during acquisition using -20 dB of decoupling 
power and a 0.2 ms decoupling element. The decoupling pulse was centered on the main proton 
lipid resonance at 1.3 ppm. Chemical shift imaging experiments were performed similarly except 
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an 8x8 image using 0.3 cm x 0.3 cm x 1.5 cm voxels was acquired every 48 seconds (4 averages 
per scan) for 90 minutes.  

Signal processing: 

For non-localized (two dimensional) experiments, the first 67 points of the FID in the time 
dimension were removed to eliminate the distortion from the group delay corresponding to the 13 
ms dead time of the Bruker 9.4 T.57 The FID was Fourier transformed and the phase estimated 
by the entropy minimization method of Chen et al,58 as implemented in MatNMR.59 After low rank 
reconstruction by SVD (see below), the baseline was estimated by a modification of the Dietrich 
first derivative method to generate a binary mask of baseline points,60 followed by spline 
interpolation using the Whittaker smoother61 to generate a smooth baseline curve.62 The final 
correction adjusts for the limited number of points in the frequency dimension by continuation of 
the FID by linear prediction. The remaining 189 points of the FID after truncation in the first step 
were extrapolated to 1024 points using the “forward-backward” linear prediction method of Zhu 
and Bax.63 Fourier transforming the FID of the transients from each voxel individually generated 
the final spectrum. Phase estimation proved difficult for to the chemical shift imaging experiments 
and therefore the spectra for chemical shift imaging experiments are shown in magnitude mode.  

Low Rank Reconstruction: 

 For the two-dimensional signal matrices generated by non-localized pulse acquire 
experiments, the rank reduced signal was generated by truncating the SVD by setting the N-r 
diagonal values of the singular value matrix S to 0, where N is the number of rows in S and r is 
the predicted rank. The predicted rank was set to 5 unless otherwise specified, which is equal to 
the number of independent species in the hyperpolarized pyruvate experiment. Tensor 
decomposition was achieved through higher order orthogonal iteration64 in the Matlab NWay 
package65 using a rank of 8 in the temporal and spatial dimensions and 6 in each spatial 
dimension. 
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(E) 

 

 

Figure 1 (A and C) T2 weighted anatomical RARE images of (A) HS766t and (C) PDAC 

xenografts implanted on the left leg. Focal necrosis is evident in the HS766t tumor, but not in the 

MiaPaCa-2 one. (B and D) H&E staining of biopsies from (B) HS766t and (D) MiPaca-2 tumors. 

Cell rupture is present in the Hs766t biopsy. (E) Metabolite differences of MiaPaCa-2  and Hs766t 

PDAC leg xenografts as analyzed by CE/MS. White boxes indicate metabolites not detected. 

Grey boxes indicate a statistically insignificant difference between cell lines (two-sided t-test, 

corrected for multiple comparisons by the two-stage linear step-up procedure of Holm et al with a 

confidence level of 5%66, 67).  Blue and red boxes indicate statistically significant increases or 

decreases with respect to MiaPaCa-2. 
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Figure 2: Pyruvate metabolism is similar in Hs766T and MiaPaca2 Xenografts (A and B) 

Representative signal after injecting 300 µL of 98 mM hyperpolarized [1-13C]pyruvate into the 

tail vein of a mouse of a nude mouse with either a (A) Hs766T or (B) MiaPaCa2 leg xenograft. 

Signal loss is due to a combination of the loss of hyperpolarization and conversion of pyruvate 

to other metabolites. Corresponding kinetic traces of the pyruvate, lactate, alanine and 

bicarbonate signals metabolites for (C) Hs766T and (D) MiaPaCa2 xenografts. (E) Ratio of 

the integrated lactate and pyruvate for Hs766T (n=18) and MiaPaca2 (n=22) mice. The ratio 

is equal to the net lactate to pyruvate conversion rate in the absence of lactate efflux or back 

conversion. (F) Decay rate of the pyruvate signal, equivalent to the sum of the net lactate to 

pyruvate conversion rate and the effective relaxation rate (T1eff , assumed to be the same 

between cell lines). (G and H) Ratio of the integrated alanine (G) or bicarbonate (H) to 

pyruvate. No statistically significant difference between cell lines was detected for any 

measure (Mann-Whitney rank test). Error bars represent 95% confidence intervals. 
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Figure 3 Glucose Metabolism Differentiates Hs766T and MiaPaca2 Xenografts (A) 

Representative signal before and after rank reduction by SVD after injecting 300 µL of 98 

mM hyperpolarized [1-13C] glucose into the tail vein of a mouse of a nude mouse with a 

MiaPaCa-2 leg xenograft. The largest signal at 29 ppm is due to endogenous lipids, while 

glucose peaks can be seen in region from 60-100 ppm and lactate and alanine peaks can be 

detected at 23 ppm and 19 ppm, respectively. No hyperpolarization is used in this experiment; 

the time dependence of the signal is due to metabolic interconversion. (B) Representative 

kinetic traces for the glucose signal for Hs766T (n=10) and MiaPaCa-2 (n=11) xenografts. (C) 

Whether expressed as either a ratio or directly as rate obtained from curve-fitting (E) a 

statistically significant difference in the rate of glucose metabolism can be seen between the 

Hs766t or MiaPaCa-2 PANC subtypes (Mann Whitney rank test, p=0.03 and 0.02 

respectively). No statistically significant difference could be seen in the rate of glucose uptake 

(D) or lactate production (F). Error bars represent 95% confidence intervals. 
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Figure 4 CSI imaging of a Hs766t mouse leg xenograft after a 50 mg [U-13C] glucose injection in 

a volume of – microliters of PBS. An 8x8 image of the tumor bearing mouse leg was acquired by 

chemical shift imaging every 48 s for 60 min. The final image was zero-filled to 16x16. Each is 

voxel 0.15 cm x 0.15 cm x 1.6 cm in size. (A) The glucose region of the spectra at 12 min overlaid 

on the anatomical image. (B) Same image after tensor factorization. (C and D) Rate map of (C) 

glucose and (D) lactate metabolism calculated from the image series (E and F). Signal from the 

voxel indicated by the white dashed line (E) before and (F) after tensor factorization. (G) Contour 

maps created from the peak maximums of the glucose and lactate signals at the time points 

indicated. 
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Figure 5 Contour maps created from time averages of the peak maximums of the glucose and 

lactate signals for three representative MiaPaCa-2 (left) and Hs766t (right) tumors. 
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Supplementary Figures 

 

Figure S1 Protein expression levels from immunoblotting of tumor extracts of key proteins 

associated with metabolism. Su86.86 forms a distinct subtype with statistically significant 

differences of the glucose transporter 1 and the angiogenic factor CD31. Error bars represent 

standard deviation (n=4). 
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Figure S2 Metabolite differences from normal tissue compared to the MiaPaCa-2 PDAC leg 

xenografts as analyzed by CE/MS. White boxes indicate metabolites not detected. Grey boxes 

indicate a statistically insignificant difference between cell lines (two-sided t-test, corrected for 

multiple comparisons by the two-stage linear step-up procedure of Holm et al with a confidence 

level of 5%66, 67). Blue and red boxes indicate statistically significant increases or decreases with 

respect to normal tissue. 
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Figure S3 Metabolic differences within glycolysis between normal tissue and MiaPaCa-2 and 

Hs766t PDAC leg xenografts. Differences between normal tissue and cancerous can be seen 

throughout. Hs766t and MiaPaCa-2 diverge after the pentose phosphate shunt at glyceraldehyde-

3-phosphate. 
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