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Abstract 
Background: Researchers commonly use online tools such as ToppGene to conduct 

enrichment analyses on gene expression data. This process does not easily allow 

multiple gene data sets to be analyzed and compared at once. ToppGene requires 

the user to manually enter gene symbols or other gene identifiers into a text box and 

to manually sift through forms with many adjustable parameters in order to obtain 

a downloadable text file of results. This process makes the analysis of multiple sets 

of genes tedious, time-consuming, and error prone. To address this problem, we 

developed Malachite, a Python package that enables researchers to perform gene 

enrichment analyses on multiple gene lists and concatenate the resulting 

enrichment statistics. In this way, Malachite enables meta-enrichment analyses 

across multiple data sets. 

Results: To illustrate its use, we applied Malachite to three data sets from the Gene 

Expression Omnibus comparing gene expression in the large airways of smokers 

and non-smokers.  Biological processes enriched in all three data sets were related 

to xenobiotic stimulus; molecular functions typically involved nicotinamide adenine 

dinucleotide phosphate (NADP) activity. 

Conclusion: Malachite enables researchers to automate gene enrichment meta-

analyses using ToppGene. Malachite also enhances ToppGene’s gene set analysis of 

drug-gene relationships by further filtering for FDA approved drugs. 
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Background 
Early in the history of gene expression profiling with microarrays, researchers 

recognized that it was difficult to reproduce lists of differentially expressed or 

predictive genes across data sets [1-4]. A small part of the problem stemmed from 

technological differences between the microarray platforms used to perform the 

assays. However, other challenges were more fundamental and remain relevant 

today after replacing microarrays with RNA sequencing. Individual false positive 

genes, tumor heterogeneity, small sample sizes, and highly correlated genes all 

contribute to instability in lists of selected genes [5-7]. 
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Efforts to deal with these challenges evolved in two directions. Some researchers 

hypothesized that correlation could be explained because genes were active in the 

same pathway or as part of the same biological process, and incorporated the tools 

of gene set enrichment analysis [8-10] into their attempts to understand differential 

expression or develop predictive models [11-13]. Other researchers focused on 

increasing the effective sample size by applying meta-analysis to multiple related 

data sets [14-16]. More recently, several groups have combined meta-analysis with 

gene set enrichment analysis. As with traditional single-measure meta-analyses, 

these include methods that require all of the original data [17], methods that work 

with summary statistics [18, 19], and methods that work with p-values [20-22]. 

 

 
Figure 1: Malachite workflow. Step1: The user specifies the enrichment categories of 
interest and the type of gene identifier used, along with other parameters. Malachite 
combines these specifications with the gene lists and passes each list to ToppGene. 
The set of enriched items from each list are saved. Step 2: Malachite automatically 
performs meta-analysis, recording the number of lists in which each term is found to 
be significant. Step 3: If one of the chosen categories is “Drugs”, then Malachite 
automatically filters the list of enriched drugs against the database of FDA-approved 
drugs. 
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The need for biologists to perform their own meta-analyses of gene set enrichment 

has increased over time. For example, the Gene Expression Omnibus (GEO), which at 

this writing contains more than 100,000 data sets, introduced GEO2R in 2013 [23]. 

GEO2R allows users to perform differential expression analyses online, easily 

retrieving lists of genes with associated t-statistics and adjusted p-values. However, 

comparing the results of experiments can be difficult due to batch effects or 

differences between experimental platforms. Manually entering each resulting gene 

list into an online tool for gene set enrichment analysis can be both tedious and 

error-prone if researchers want to use consistent non-default parameters. There are 

many online tools to perform gene set enrichment analysis [24]. However, to the 

knowledge of the authors, there is no tool that enables users to select which 

category (for example, drugs, gene ontology (GO) terms, or cytogenetic bands) of 

enrichment analysis to perform uniformly over a group of distinct data sets, and 

concatenate the results for meta-analysis. This additional step would enable 

researchers to target their enrichment analyses to better suit their experimental 

needs. It would also streamline the process of performing enrichment analysis, since 

multiple data sets could be studied at the same time. 

 

In this note, we describe Malachite, a Python package that allows users to easily 

collect gene lists from multiple data sets, perform gene set enrichment analysis 

using a consistent set of parameters, and combine the resulting lists of gene set 

enrichment results across multiple enrichment categories (Figure 1). Malachite 

relies on ToppGene (https://ToppGene.cchmc.org/) for the gene set enrichment 

analysis of individual gene lists [8]. ToppFun, a component of ToppGene, performs 

functional enrichment analyses based on underlying transcriptome, ontology, 

phenotype, proteome, and pharmacome annotations. Using Malachite, researchers 

can select multiple lists of significant gene data, set the enrichment analysis 

parameters, and run each list through ToppGene. Malachite then concatenates the 

results in an automated fashion, allowing for further meta-analysis. Additional 

filtering by FDA drugs approved to treat cancer is performed if the user selected 

“drugs” as one of their enrichment categories. Thus, Malachite enhances ToppGene’s 

gene set analysis of drug-gene relationships by allowing users to focus on FDA-

approved cancer drugs. 

 

Implementation 
Malachite is a Python package that is designed to automate and correlate multiple 

independent ToppGene enrichment analyses. First, the program invokes ToppFun, 

using Mechanize, a Python module used for web crawling. Malachite selects the type 

of gene identifier (Entrez ID or HGNC symbol) specified by the user and submits the 

form. Second, Malachite saves the unique session ID for the user using Beautiful 

Soup, a Python library for retrieving data from a web site. Third, Malachite, via 

Mechanize, opens the URL with the session ID and specifies which database 

categories (for example, “Disease” and/or “Drug”) the user would like to analyze. 

Fourth, Malachite causes ToppGene to run each analysis and downloads the 
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resulting text files of results. Finally, Malachite processes the multiple tab-

delineated results files by database category and combines the results. 

 
In addition, Malachite filters gene set enrichment analyses using drug databases. By 
comparing drugs to FDA lists (https://www.cancer.gov/about-cancer/treatment/drugs), 
Malachite can identify FDA approved cancer therapies. This important step helps filter 
down the list of potential drug targets, especially for applications such as drug 
repositioning [25]. This FDA filtering step aids in translating potential meta-analysis 
findings into actionable results. 

Results  
To illustrate Malachite, we applied it to three Gene Expression Omnibus (GEO) 

datasets (GSE5056, GSE5057 and GSE5059), each of which used a different 

generation of Affymetrix microarrays to test expression differences in epithelial 

samples obtained by bronchoscopy from the large airways of smokers and non-

smokers [26]. Gene lists were obtained using the GEO2R facility at the GEO web site; 

these gene lists, along with instructions for how to reproduce them, are contained in 

Additional File 1. The data sets were processed by Malachite for drugs, diseases, and 

gene ontology terms. Although 86 drugs or small molecules were enriched in all 

three data sets, none of them were FDA-approved for the treatment of cancer. No 

diseases were enriched in all three data sets. The GO terms for “Biological Process” 

and “Molecular Function” are listed in Table 1. The only Biological Process terms 

that were found in all three datasets were related to xenobiotic stimulus, 

representing the foreign nature of chemical damage from smoking. The Molecular 

Function terms show enrichment for nicotinamide adenine dinucleotide phosphate 

(NADP) activity.  This results shows that Malachite can perform enrichment meta-

analyses across datasets and recover the underlying biological content.  

 

Table 1: Gene Ontology terms enriched in all three data sets comparing smokers to 

non-smokers. 
Category Identifier Description 
Biological Process GO:0006805 xenobiotic metabolic process 
Biological Process GO:0009410 response to xenobiotic stimulus 
Biological Process GO:0071466 cellular response to xenobiotic stimulus 
Molecular Function GO:0004030 aldehyde dehydrogenase [NAD(P)+] activity 
Molecular Function GO:0019840 isoprenoid binding 
Molecular Function GO:0005501 retinoid binding 
Molecular Function GO:0001972 retinoic acid binding 
Molecular Function GO:0004028 3-chloroallyl aldehyde dehydrogenase activity 
Molecular Function GO:0004033 aldo-keto reductase (NADP) activity 
Molecular Function GO:0004030 alcohol dehydrogenase [NAD(P)+] activity 
Molecular Function GO:0016614 oxidoreductase activity, acting on ch-oh group of donors 
Molecular Function GO:0016616 oxidoreductase activity, acting on the ch-oh group of 

donors, NAD or NADP as acceptor 
Molecular Function GO:0016903 oxidoreductase activity, acting on the aldehyde or oxo 

group of donors 
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Molecular Function GO:0016620 oxidoreductase activity, acting on the aldehyde or oxo 

group of donors, NAD or NADP as acceptor 
 

Conclusion 
Currently, if researchers want to perform gene enrichment analysis on multiple 

gene lists using ToppGene, they must go through the manual process of selecting the 

many user specifications the site provides, as well as a painstaking process of 

combining the enrichment data for all sets of results. We developed Malachite to 

allow ToppGene users to input multiple lists of genes, set the enrichment analysis 

parameters, and run these sets through ToppGene to obtain results, which are 

stored in individual text files. Malachite then concatenates the results in an 

automated fashion, allowing for further meta-data analyses, with special attention 

paid to post-processing lists of associated drugs. 
 

Availability and Requirements 

Project name: Malachite 

Project homepage: at https://pypi.org/project/malachite 

Operating system(s): Platform independent 

Programming language: Python 

Other requirements: NA 

License: GNU 

 

List of abbreviations 

HGNC: HUGO Gene Nomenclature Committee 

GEO: Gene Expression Omnibus 
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Additional files 

Additional File 1: Supplementary material. This file contains detailed instructions on 

how to use Malachite (ZIP 2876 KB), structured as a mini-website. This compressed 

file includes: 

• Index.html (source readme.md): an overview of the process 

• UseGEO2R.html (source: UseGEO2R.md): instructions for using the 

UseGEo2R tool at the Gene Expression Omnibus. 

• PrepForMalachite.html (source: PrepForMalachite.ipynb): an example 

Jupyter notebook showing how to prepare input files. 

• RunMalachite.html (source: RunMalachite.ipynb): an example Jupyter 

notebook showing how to run Malachite. 

• Three input files obtained by using GEO2R (GSE5056_Smoking_Malachite.csv, 

GSE5057_Smoking_Malachite.csv, and GSE5059_Smoking_Malachite.csv) 

• Two auxiliary files to make the html files from their sources (Makefile.Win, 

dashed.css). 
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