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Abstract

Background: Cancer is one of the most complex phenomena in biology and
medicine. Extensive attempts have been made to work around this complexity. In
this study, we try to take a selective approach; not modeling each particular facet
in detail but rather only the pertinent and essential parts of the tumor system are
simulated and followed by optimization, revealing specific traits. This leads us to
a pellucid personalized model which is noteworthy as it closely approximates
existing experimental results.

Method: For years, research has focused on modeling tumor growth but not
many studies have put forward a framework for the personalization of models. In
the present study, a hybrid modeling approach which consists of cellular
automata for discrete cell state representation and diffusion equations to
calculate distribution of relevant substances in the tumor micro-environment is
favored. Moreover, naive Bayesian decision making with weighted stochastic
equations and a Bayesian network to model the temporal order of mutations is
presented. The model is personalized according to the evidence using Markov
Chain Monte Carlo. Ultimately, this way of thinking about tumor modeling leads
us to a vascular multi-scale model of tumor growth.

Results: To validate the tumor model, a data set belonging to the A549 cell line
is used. The data represents the growth of a tumor for 30 days. We optimize the
coefficients of the stochastic decision making equations using first half of the
timeline. Then we predict next 15 days of growth without any other supervision.
Results are promising with their low error margin and simulated growth data is in
line with laboratory results.

Conclusion: There are many subsystems which have an effect in the growth of a
tumor. A detailed model which includes all of them is currently virtually
impossible to implement. We have therefore focused on a system that only
includes fundamental components in this study, and have evaluated its
predictions. We propose novel probability functions to obtain a personalized
model and estimate the individual importance (weights) of each with parameter
optimization. Our approach of using simulated annealing for parameter
estimation and the subsequent validation of the prediction with in-vitro tumor
growth data are, to our knowledge, unique in the literature.
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1 Background
Despite much progress in oncology, molecular biology, and related fields, cancer is

still a condition for which the prognosis is generally a shortened lifespan or lowered

quality of life, frequently dramatically so. The complex and individually particular
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behavior of cancer decreases success rates of cancer therapies. The usual steps of

cancer therapy are: deciding on tumor’s pathological type, staging the cancer using

clinical data and planning the therapy according to medical guidelines which are

informed by bulk statistics. In this routine, there is little room to calculate and

predict patient’s therapy response in a bespoke way.

Mathematical models that use patient specific data and up-to-date scientific evi-

dence has implications for the evidence based practice of personalized medicine. Use

of individually tuned mathematical models give clinicians the ability to compare al-

ternative therapy plans and predict outcomes. These models have an important role

in the early drug development and for development of therapy scheduling. However,

this search for personalized therapy has not yet met success. In the present study

we propose a hybrid tumor model for the Non-Small Cell Lung Cancer (NSCLC)

and a personalization framework.

Different approaches exist to develop tumor models. Continuous tumor models

simulate tumor growth with in a set of differential equations, making them good

options in modeling complex systems [1–6]. Simulating attributes of a tumor at tis-

sue scale is trivial with continuous models. However, it is a non-trivial challenge to

use them for simulating individual cell dynamics or discrete events in a cell or in the

cell’s microenvironment. Discrete models are a solution to this problem. Simulation

of the tumor system dynamics, which cannot be easily modeled by the continuous

approach can be possible with the discrete modeling techniques such as the orien-

tation mechanism of tumor according to nutrients [7], effects of the cell adhesion on

tumor growth as well as effects of the proteolytic enzymes [8], competition between

cell colonies [9], genetic parameters on the tumor movement [10]. Hence, it could be

concluded that, discrete models provide sufficient flexibility in modeling cell-state

scale tumor dynamics. Continuous and discrete modeling approaches could be thus

combined into hybrid models [11]. Most of the time a discrete model is created at

cell scale to simulate behavior of the cells and a continuous model is used at tissue

scale to simulate distribution of substances like oxygen or glucose in tumor micro

environment in hybrid modeling [9, 12].

In this study, such a framework has been developed for personalized tumor model-

ing that includes tumor and tissue specific parameters gathered from the literature

for A549[13], which is a well known cell line derived of lung adenocarcinoma. Cellu-

lar automata are used for discrete cell state representation. Substance distribution

in the vascular tumor micro-environment is calculated by using partial differential

equations. Mutations of cells are modeled with a probabilistic network. A Naive

Bayes approach is chosen for the decision making module of each cell. Weighted

stochastic equations are created for modeling decisions of the tumor cells. Overall,

this approach enables us to create a model which can easily be personalized by

the optimization of individual parameters using simulated annealing. Results are

promising with their low error margin and the simulated growth data fits well to

xenograft model.

State of The Art

According to the best of our knowledge;

• Our model is the first such model able to accurately regress the personalized

growth of lung adenocarcinoma given data from the stages.
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• Our approach of personalization uses simulated annealing and its validation

with a xenograft model is novel.

• The model also incorporates a hierarchical Bayesian network of the tumor

which is created from A549 mutation data and uses this model to predict

the order of occurrence and timing of consecutive mutations during tumor

progression. Although there are a few models which use mutation data, our

model uses temporal and hierarchal order of specific cancer driver genes which

has, thus far, to out knowledge, has not been leveraged..

• We propose novel probability functions to obtain a personalized model and

estimate the importance (weight) of each with optimization.

2 Results

2.1 Consistency

A tumor model should be consistent with the basics of tumor biology. We first

test this consistency using experimental data. Studies show that tumor growth

accelerates under hypoxia [14–17]. Figure 1 shows our model is consistent with

literature for hypoxic growth dynamics. Pearson correlation coefficient calculated

between model and study for hypoxic and normoxic conditions. A strong correlation

for both hypoxic (r=0.992) and normoxic (r=0.991) conditions is observed on tumor

volume. Also as seen in Figure 2 in hypoxia which could be defined as 10% O2

of normoxia [18] apoptic region is considerably larger and tumor shows migrative

behavior which is also in line with experimental results [19, 20]. In the figure,
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Figure 1 a [14] reports tumor growth under hypoxic conditions (10% O2) b Our in-silico
experiment results

Figure 2 Tumor growth at time steps 5, 50 and 100 for hypoxia and normoxia. Time step t
equals to 22 hours.

Red cells have proliferative, green cells have quiescent, and white cells have migrative phenotypes while blue

represents non-viable cells, whether apoptotic or necrotic.
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Many studies have shown that glucose is an important factor in tumor growth.

This fact was shown not only in-vitro [21–24]; but also in-vivo experiments [25]. Our

model is in line with these studies as shown in Figure 3. Pearson correlation coeffi-

cient calculated between model and study for normal and low glucose conditions. A

strong correlation for both normal (r=0.998) and low glucose (r=0.898) conditions

is observed on tumor cell number. Limitation of growth under low glucose can also

be observed by comparing tumor morphology as seen in Figure 4.

Figure 3 a Previously reported[14] tumor growth under different glucose concentrations. b
Results of our in-silico results.

Figure 4 Tumor growth at time steps 5, 50 and 100 for normal (17 mM) and low (5 mM)
glucose levels. Time step t equals to 22 hours.

Chemotaxis is a fundamental mechanism that determines tumor morphology: de-

fined as motility of cells towards resources like oxygen and glucose. To ensure that

cells in our model simulate chemotactic behavior we created a set of capillaries as

shown in Figure 5. Subsequently, the growth of the simulated tumor was moni-

tored. It was observed that, in simulation, the tumor cells tended to the capillaries

as shown Figure 6 which is in line with in-vitro and in-vivo studies [26–29].

Tumor growth patterns fit a Gompertz curve, which is a sigmoid function [30–

35]. Our simulations are also validated by the observation that the tumor growth

process can be defined as a sigmoid curve that starts with a high exponential growth
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Figure 5 Distribution of capillaries along a diagonal line with diffusion of oxygen and glucose
shown.

Figure 6 Tumor growth at time steps 5, 50 and 100 on the same diagonal axis with capillaries.
Time step t equals to 22 hours.

rate but eventually levels-off with saturation (see Figure 7). Pearson correlation

coefficient calculated between model and study for long term tumor growth. A

strong correlation (r=0.8) for long term tumor growth is observed between tumor

cell number and maximum diameter of tumor.

Data from Figure 1 Figure 3 and Figure 7 were extracted using Web Plot Digitizer

[36] and used in calculation of the Pearson correlation coefficients.

Figure 7 Tumor growth function fits to a Gompertzian model. a Experimental results [37] for
long term tumor growth. b Results of simulation from our model

Mutations are the foundation for the genetic structure of tumors and these are

also what determined the individual differences in different cancers. In the past,
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some of mathematical tumor models have used this fact. Some models incorporate

the effects of mutation on only one locus [38–40] while some have grouped several

gene mutations according to their phenotypes [41–43]. Yet, according to the best

of our knowledge, none of them inspect the effects of multiple cancer driver genes

and their temporal order together, in a multiscale model. We use the results of a

temporally ordered inference model generated from a multi-patient study [44]. For

example, in the model, occurrence of KRAS mutation is a prerequisite for TP53

mutations and TP53 mutation is a prerequisite for the occurrence of CDK2NA

mutations. In our simulations, as well, we have observed that TP53 mutations only

occur after KRAS mutations and only in the cells which already have accumulated

KRAS mutations. Likewise, we were able to recreate other dependecies, e.g TP53

to CDK2NA. Figure 8 shows how mutations occur in a temporal and hierarchical

order, indicating that our modeling strategy is successful in simulating the actual

mutation timelines in tumor progression. Using this system, a multi-clonal tumor

model is created, allowing for the fact that different parts of a tumor may have

different progressions of mutation.

Figure 8 KRAS, TP53 and CDK2NA mutant cells at t=100.

2.2 Personalization: Estimating Parameters per Individual

Different approaches are found in the literature for the personalization of math-

ematical tumor models. For example, Prokopiou et. al. calculate the proliferation

saturation index by using ratio of tumor volume to the carrying capacity of tumors

[45]. On the other hand, Saribudak et. al. use gene expression values to personalize

their model [46], and Kogan used PSA levels to individualize their model [47].

In our model, we used a stochastic decision approach in cellular automata. The

decisions of each cell simulating automaton are based on the tumor microenviron-

ment, e.g. oxygen and glucose concentrations. Weights of these variables in terms of

their effect on a particular individual’s tumor are determined by using optimization.

We use simulated annealing as the optimization method.

The parameter ptimization results can be seen in Figure 9. Results were obtained

by optimizing parameters using the first 15 days of tumor growth data gathered

from the experimental results from a xenograft [48]. Afterwards, the simulation was

run with the optimized parameters. Predicted tumor growth after optimization is

also shown Figure 9. The model’s prediction closely mirrors the growth trend of the

xenograft.
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Figure 9 Results of a tumor growth experiment [48] and simulation results.

Materials and Methods

Details of the Tumor Model

We utilize the model proposed by Gerlee and Anderson [49] as a basis to our model.

The Figure 10 shows the components an comprehensive tumor model should have.

model.

Figure 10 Example for a General Tumor Model

Our model is specific to lung cancer adenocarcinoma. The fixed parameters used

in the model are gathered from in-vitro and in-vivo experiments from literature.

The modules implemented in this study are shown in Figure 11.
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Figure 11 Implemented Modules in Study

Cellular automata are used to make decisions based on substance distribution and

mutation effects, since rule based automata are well suited to simulating a system

which depends on many variables. Decisions for migration, proliferation, apoptosis

and substance consumption, are based on the state of each cellular automaton,

which use a stochastic decision making process.

Each module will be discussed in the subsequent sections. In terms of the soft-

ware infrastucture; Python [50] is used as the main platform for implementation

of model, FiPy [51] is used to solve PDEs and Cython [52] for increased efficiency

of simulation. Finally, PyGame [53] was used for implemeting the graphical user

interface and for visualization.

3 Model Parameters

Most of the physical parameters used in our simulator are specific to lung cancer

adenocarcinoma, while some are general parameters for tumors or tumor microen-

vironments. The A549 cell line was selected as a basis, since it represents a very

common lung tumor presentation. Table 1, below, shows the parameters, symbols,

and values used, with references.

Table 1 Parameters Used In Model
Parameter Symbol Value Specific to A549

Tumor Cell Doubling Time δt 22 h [54] Yes
Oxygen Background Concentration co 4.375× 10−1mM (calculated from [55]) Yes

Oxygen Diffusion Constant do 8.0× 10−9m−2sec−1 [56] No
Oxygen Uptake Rate uo 0.91× 10−15mol min−1 [55] Yes

Hypoxia Induced Apoptosis Threshold hoa 0.015× co [57] Yes
Hypoxia Induced Glycolysis Threshold (Upper Limit) hogu 0.05× co [57] Yes
Hypoxia Induced Glycolysis Threshold (Lower Limit) hogl 0.01× co [57] Yes

Hypoxia Induced Apoptosis Rate hoar %55 [57] Yes
Oxygen Threshold Proliferative to Quiescence opq 1 mmHg [58] No

Glucose Background Concentration cg 17 mM [56] No
Glucose Diffusion Constant dg 1.35± 0.13× 10−5cm2sec−1 [59] Yes

Glucose Aerobic Uptake Rate uga 4.1× 10−17molcell−1sec−1 [60] Yes
Glucose Anaerobic Uptake Rate ugan 6× 4.1× 10−17molcell−1sec−1 ( Calculated from [60] ) Yes

Hypoglycemia Induced Apoptosis Threshold hga 8 mM [61] No
Glucose Threshold Proliferative To Quiescence gpq 12 mM [61] No

Hydrogen Ion Diffusion Constant dh 1.4× 10−6cm2sec−1 [62] No
Hydrogen Ion Production Rate ph 1.5× 10−18molcell−1sec−1 [49] No

Background pH level cph 7.35 [63] Measured in Lung Tissue
H+ Background Concentration cp 1.11× 10−13molcm2 (Calculated from [63]) Measured in Lung Tissue

pH Induced Apoptosis Threshold pha 5.5 [64] No
Optimal pH for Tumor pho 6.8 [65] No
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4 Diffusion of Substances in the Tumor Microenvironment

Tumor growth consists of the consumption, growth, production, migration, apoptosis

and necrosis phases. Tumors need oxygen and glucose to grow and they also produce

waste. If a tumor can’t find enough oxygen it goes into hypoxia. If the tumor can’t

find enough nutrition (glucose), hypoglycemia starts. Producing waste (H+ ions) is

another function of cell metabolism but also helps tumor to create an advantageous

microenvironment for itself, as low pH is favored by most tumors, giving them a

competitive edge over normal cells.

Figure 12 An example of oxygen distribution in cell microenvironment. Transverse sections of
randomly placed capillaries are shown as red dots.

Substance diffusion into the tissue is modeled as:

∂m

∂t
= D52 m + mHscap − scell (1)

Equation 1 calculates the substance diffusion within the tissue boundaries. We

assume that there are capillaries spread in tissue which supply fixed substance

flow to the tissue and tumor cells which consume said substance. This equation

is valid for consumed substances such as oxygen and glucose in our model. Waste

substances such as H+ ions produced by tumor cells (and normal cells, alike) are,
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likewise, removed by capillaries. Accordingly, for waste, we modify our diffusion

model as shown below to simulate this phenomenon:

∂m

∂t
= D52 m−mHscap + scell (2)

In equations 1,2 scell stands for consumption or production of substance by tumor

cells and scap is the fixed term for the substance delivery or removal capacity of

capillaries. Finally, H is a very large number which is used to remove effects of

neighbors for the specific coordinate where the capillary exits. The particulars are

elaborated on in Appendix A.

Once, the conditions of tumors’ microenvironments are thus modeled, internal

dynamics of tumor cells can be explored.

5 Intracellular Model
Throughout their lifecycles, cells make several critical biochemical decisions. The

first among these is about proliferation. Tumor cells decide weather they will prolif-

erate, or not, based on genetic and microenvironment conditions. Another critical

decision is to trigger apoptosis, if necessary. Furthermore, tumor cells manage their

energy production strategy: When oxygen concentration is below a specific thresh-

old, they change their energy metabolism from aerobic to anaerobic.

During the simulation, at each time step, each simulated cell should decide what

its biochemical state is. The cell should decide on many dimensions; such as whether

it will die or not, how it will produce energy, its substance consumption budget.

Moreover, whether if any mutations will occur. This should be completed before

other decisions are given, since nearly all other subsystems are effected by genetic

variations.

After genetic changes occur, the cell starts to explore its environment to find if

there is any other cells in the neighborhood and detect amount of vital substances

to use them in decision making process. Then the cell decides, how it will produce

energy, by using aerobic or anaerobic energy metabolisms. Finally the cell decides

for its phenotype between, apoptosis, quiescence, proliferative or migrative states.

Decision process is based on probabilistic functions formed by us. Weights of the

variables are found using optimization which are explained in results section. Details

of functions used in subsystems are explained in the following subsections. Overview

of the model can be seen in Figure 13

5.1 Proliferation

Each simulated cell’s proliferation subsystem decides whether the cell is in a pro-

liferating state or not. When the cell is quiescent, if there is free space for growth,

if parameters such as nutrition and oxygen level are favorable, then cell has a good

chance of proliferating.

It is assumed that the maximum rate of proliferation will take place at opti-

mal conditions. When cell’s microenvironment is closer to optimal conditions the

proliferation probability increases; otherwise it decreases. Inputs used for the pro-

liferation decision are oxygen concentration, glucose concentration and pH. Genetic
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Figure 13 Overview of The Model

effects are also used in the probability distribution function. The equation 3 is used

to decide the proliferation state of the cell:

Pr(Pg, Ph, Pd) =

wpo × po + wpg × pg + wph × ph + pd, if Cell’s Metabolism is Aerobic

wpg × pg + wh × wph + pd, if Cell’s Metabolism is Anaerobic

(3)

In equation 3, Pr represents the weighted proliferation probability, Po is the prob-

ability coefficient for oxygen. Po is calculated based on oxygen concentration at the

coordinates of cell which represented with mo and given by:

Po =
mo − hoa
co − hoa

(4)

In equation 4, hoa is hypoxia induced apoptosis threshold which is the minimum

oxygen concentration for proliferation and co is background oxygen concentration

which is the maximum oxygen concentration for cell’s microenvironment as given
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in Table 1. Probability coefficient for glucose Pg, represents glucose concentration

at the coordinates of the cell:

Pg =
mg − hga
cg − hga

(5)

Calculation of the probability coefficient for pH, represented by Ph, is more com-

plex than Po and Pg, because for for oxygen and glucose higher concentration corre-

lates with higher probability for proliferation, but for pH, the cell needs an optimal

pH level to have the highest chance of proliferation. Thus, Ph is calculated as a

piecewise function:

Ph =


mph−minph

pho−minph
, if mph < pho

|mg−maxph|
|pho−maxph| , if mph > pho

1, if mg = pho

(6)

where minph , maxph are minimum and maximum values of pH that a tumor cell

can live under; pho is the optimal pH level for proliferation as given in table 1 and

mph is pH level at the coordinates of cell.

Finally, Pd represents effects of the cell’s accumulation of mutations on the pro-

liferation probability and will be explained in subsection 5.8.

5.2 Invasion

When a cell decides on proliferation or migration, the next question is about finding

the most convenient place to do so. The invasion system models this decisison

based on microenvironment conditions. The invasion system uses oxygen, glucose

and H+ concentration as input parameters. When scanning neighbour cells with

traditional methods for invasion, a strange effect is occurs, as mentioned by Gerlee

and Anderson [49]. The tumor tends to grow in a tree-like way, sprouting branches.

Although we could not explain this effect, we overcome this issue by scanning cells

orthogonally and diagonally at consequtive time steps, in interleaved fashion, as

explained in Gerlee and Anderson.

To find optimal invasion coordinates, the cell prefers the direction where oxygen

and glucose concentration is maximum. For H+ concentration the cell should look

for optimal pH level or nearest level to optimal, given as pho in table 1. The invasion

propensity score sinv can then be calculated as:

sinv =

wmo ×mo + wmg ×mg + wmh ×mh, if Cell’s Metabolism is Aerobic

wmg ×mg + wmh ×mh, if Cell’s Metabolism is Anaerobic

(7)

An error margin (einv) should be determined which simulates the transient insen-

sitivity of cells to proliferative oppurttunities. When maximum sinv is determined,

each cell’s sinv is compared to the maximum sinv. If the difference between them
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is not more than einv then this cell is a candidate for invasion. After all candidates

are determined, one candidate is selected randomly and a new tumor cell appears

at coordinates of the chosen cell.

5.3 Migration

Cell migration is an important factor in the morphology of the tumor. Tumor cells

may decide to migrate if conditions are not suitable to survive or proliferate. In the

migration subsystem of our model, each simulated tumor cell decides whether to

manifest a migrative phenotype or not. Then, it finds a suitable place for invasion by

using invasion subsystem and finally it invades the location directly or by using the

cell movement subsystem. The migration subsystem decides to manifest the most

likely phenotype with a naive Bayes approach similar to the proliferation subsystem.

There are three types of environmental parameters that force a cell to migrate. The

first one is the oxygen level. When oxygen level decreases below hoa then the cell’s

possibility of choosing a migrative phenotype is calculated with equation 8

Phom =
hom −mo

hom
∗ 100 (8)

where Phom stands for hypoxia based migration probability in percent, hom is hy-

poxia induced migration threshold which is determined based on simulation results

as 5 x hogl (see table 1) and mo is oxygen concentration at the cell’s coordinates. In

a similar way migration probability based on glucose level can be calculated with

9:

Phgm =
hgm −mg

hgm
∗ 100 (9)

where Phgm stands for hypoglicemia based migration probability in percent, hgm

is hypoglicemia induced migration threshold which is determined based on simula-

tion results as 5 x hga (see table 1) and mg is glucose concentration at the cell’s

coordinates.

5.4 Apoptosis

Beyond natural apoptosis, three cases are considered for apoptosis in our model:

Hypoxia, hypoglycemia and extremely low pH level can cause apoptosis.

When the oxygen level decreases below %1.5, hypoxia starts until oxygen runs

out (%0). It has been shown that %55 of NSCLC Adenocarcinoma (A549) cells die

when oxygen level reaches %0. Also, it is known that natural apoptosis rate is %10

for A549 cells [57].

Since 55−10
1.5−0 = 3 for each %0.1 change at oxygen level, apoptosis survival proba-

bility increases %3. Based on this assumption, hypoxia based apoptosis probability

can be calculated as:

Pha(Mo, Pda) =
(1.5−mpo)

0.1 × 3 + 10

100
− pda (10)
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where oxygen concentration at the coordinates of the cell are represented with mpo

and probability of as genetic effects decreases apoptosis chance and is represented

by pda.

Cells can live without oxygen but not without glucose. Hypoglycemia induced

apoptosis probability (Pha) can be calculated when mg < hga as follows:

Pha(Mg, Pda) =
mg

hga
− pda (11)

The last factor which causes apoptosis is pH level. An acidic microenvironment

is favorable for the tumor because cancerous cells are more resistant to acidic en-

vironment than parenchyma. But, when pH level decreases to severly low levels all

kinds of cells starts to die. When this effect is modeled, pH level at the coordinates

of the cell is represented by mh and minph stands for the minimum pH level of cell

microenvironment. Thus, we can calculate Pha (apoptosis probability based on pH)

as:

Pha(Mh, Pda) =
mh −minph
pha −minph

− pda (12)

Apoptosis probability is calculated using oxygen, glucose and pH level. However,

even as the cell decides to start apoptosis it will wait for a period. This delay act as

a low-pass filter and prevents the cell from being affected by noise and momentary

oscillations of microenvironment signals. There are more complicated methods that

can be found in literature to model delayed systems [66].

5.5 Energy Metabolism

Tumor cells can produce energy by using two different metabolisms; aerobic and

anaerobic. In aerobic metabolism, oxygen and glucose are used to produce energy:

C6H12O6 + 6O2 ⇒ 6CO2 + 6H2 + 38ATP (13)

In the anaerobic metabolism, only glucose is used to produce energy:

C6H12O6 ⇒ 2ATP + 2H+ (14)

In our model, the energy metabolism shift is only based on oxygen concentration;

genetic effects are ignored for the sake of simplicity.

Metabolism shift starts at %5 oxygen concentration with %20 probability and

reaches %100 probability at %1 oxygen concentration [57]. If the concentration

is over %5 then cell always chooses aerobic metabolism. Oxygen concentration at

coordinates of cell as percentage (mpo) is obtained from:

mpo = mo/C0 (15)
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and the probability of a cell’s metabolism change from aerobic to anaerobic is

calculated by:

Pe =


m−1

po

100 , if 0.01 ≤ mpo ≤ 0.05

1, if mpo < 0.01
(16)

There is also a delay introduced before the decision for a metabolism shift, with

the same rationale as for the delay for the apoptosis decision, explained above.

5.6 Oxygen - Glucose Consumption and Acid Production

Tumor cells have a baseline oxygen consumption rate, represented by uo as seen

in Table 1, but this rate changes based on cellular conditions. For example a cell

will not use oxygen when under anaerobic metabolism. Also, the cell’s state will

effect oxygen consumption. We assume that the cell consumes %50 more oxygen in

proliferative state than in the quiescent state.

Glucose consumption (ug) is a calculated in a similar way. Glucose consumption

in aerobic and anaerobic states are calculated based on the stochiometry of the

respective metabolisms. Proliferative cells are assumed to use %50 more glucose,

similar to oxygen.

Acid production is observed in the anaerobic metabolism, due to glycolysis. Hy-

dronium production rate (ph) is taken from literature [49]. At proliferative state,

hydronium production is assumed to increase by %50, since glucose consumption

increases with same ratio.

5.7 Cell Stress and Movement

Physical simulations on tumors shows us that there is a proliferative belt on tumor

mass. This belt is caused due to various reasons, e.g. cell-cell adhesion and cell-ECM

adhesion [4]. In our model, instead of treating each physical effect one by one in

detail, we use a stress score variable.

The stress score for each cell is calculated proportional to the cell’s distance from

tumor’s edge. Pressure on cells located in deeper parts of tumor will be higher than

cells which are located at the edge of the tumor because of cell-cell adhesion and

cell-ECM adhesion. Edge cells’ tendency of migration is thus higher than deep cells.

5.8 Genetic Effects on Tumor

When modeling cancer, simulating genetic effects, taking in to account all variations

is intractable. Since the aim of this study is only creating a simple proof of concept

model, just a few important mutations of A549 are included, based on literature

[44].

Our model uses an inheritance mechanism. When a simulated cell proliferates, it

copies the DNA of its ancestor, so mutations are transferred between generations. As

a first step, relationship between mutations determined. After this step, probabilities

of mutations calculated. Finally, effects of the mutations are added to the model.

In the model, only two types of mutation effects are considered: mutations’ effects

on probabilities of proliferation and apoptosis.
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For both, if any mutation occurs in a cell, each driver mutation provides only a

small selective growth advantage to the cell, on the order of a 0.4% increase in the

difference between cell birth and cell death [67]. Since only 5%-10% of these are

driver mutations, we calculate each driver will have an effect of 8%. Thus, if any

mutation occurs in a cell, it is assumed that proliferation probability increases 8% or

apoptosis probability decreases 8% based on mutation type. These relationships and

effects are shown in Table 2 with minimum and maximum probabilities of observing

said mutations in the population.

Table 2 Mutations of A549 Used In Model

Mutation Minimum Probability Maximum Probability Ancestors Effect Type
EGFR [68] 10 35 None Proliferation
KRAS [69] 33 - None Proliferation

NTRK3 [70] 3 - None Proliferation
TP53 [70] 30 50 KRAS Apoptosis
ATM [70] 10 20 KRAS Proliferation

STK11 [70] 18 - TP53, NTRK3 Apoptosis
CDK2NA [70] 5 - TP53 Apoptosis

The model for the mutations is based on a Bayesian network. At each time step,

a simulated cell triggers its own mutation system. For each mutation, preconditions

are checked. For example for A549, EGFR mutation almost never occurs in tumors

with KRAS mutation or TP53 mutation occurs if KRAS gene has a mutation. For

the sake of the simplicity we assume that these mutations are all pathogenic.

After ancestors of the mutation are validated, a mutation probability is deter-

mined for each viable mutation. Finally, if a mutation occurs, effects of said muta-

tions, whether on proliferation or apoptosis, are applied to the cell in quesiton, and

will affect its future decision equations.

6 Conclusion and Future Work
Literature includes many studies on personalized medicine, but most of these are

results of bulk biostatistics and bioinformatics analyses. Tumor models on the other

hand, have potential in providing mechanistic and simulated personalized predici-

tons. In this study, we demonstrate a tumor model based on empricial observations

and biochemical properties from previous litarture that is amenable to tuning and

extension, and able to provide personalized predictions.

To the best of our knowledge, our model is the first one that can predict personal-

ized growth patterns of lung adenocarcinoma and validate it with xenograft model

data. A hierarchical Bayesian network modeling the genotypes of tumor subpopu-

lations was also created to predict ordering and timing of mutations during tumor

progression.

We validated our model’s behavior with experimental data from literature. We

observed that both under hypoxia and hypoglicemia our model’s growth pattern

is in line with experimental results. Furthermore, our model shows the expected

Gompertzian curve in chemotactic behaviour and in general growth pattern. Our

personalization strategy is also promising. We have shown that if a model consis-

tent with tumor biology can be developed, it can be personalized using a simple

parameter optimization method like simulated annealing.
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In the future we will extend our model by simulating effects of the immune system

and integrate chemotherapy, radiotherapy and immunotherapy results to our model

towards developing a clinical decision support tool.

Appendix A

m(~c, t) means concentration of substance at coordinates ~c at time t. D is diffusion constant of substance. Since our

model is 2D,

~c = (x, y) (17)

we could know concentration of substance at specified coordinates at time t. To solve equation it could also be

written as below:

∂m(~c, t)

∂t
= D

(
∂2m

∂x2
+
∂2m

∂y2

)
(18)

A detailed explanation for this equation could be found in literature [71]. Physical respresentation of diffusion

phenomenon which is respresented as equation 18 could be seen in figure:

Figure 14 Diffusion as a Physical Phenomenon

After the basic equation of diffusion is formed, only a source term is needed which represents consumption or

production of the substance for a coordinate at a specific time [71]:

s(~c, t) = s(x, y, t) (19)

Oxygen and glucose which are consumed by cells are subtracted from equation 18:

∂m(~c, t)

∂t
= D

(
∂2m

∂x2
+
∂2m

∂y2

)
− s(~c, t) (20)
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and source term for hydrogen ions (H+) which are produced at the end of glycolysis is added:

∂m(~c, t)

∂t
= D

(
∂2m

∂x2
+
∂2m

∂y2

)
+ s(~c, t) (21)

Now effects of capillaries should be added to equation. We accomplish this by using a implicit source term which is

a product of a fixed value with diffusion term (m). We also multiply it with a huge value (H) to winnow effects of

neighbors out. We write the final equation for consumed substances as:

∂m

∂t
= D52

m+mHscap − scell (22)

for produced substances it will be:

∂m

∂t
= D52

m−mHscap + scell (23)

Finally, initial and boundary conditions for equations 20 - 21 will be determined [72]. We assume that boundaries of

grid with L× L size, concentration equals to 0. Initial conditions could be defined as

m(x, y, 0) = f(x, y), ∀(x, y) ∈ R,

R = [0, L]× [0, L] (24)

with Dirichlet boundary conditions

m(x, 0, t) = m(x, L, t) = 0, 0 ≤ x ≤ L, ∀t ≥ 0

m(0, y, t) = m(L, y, t) = 0, 0 ≤ y ≤ L, ∀t ≥ 0 (25)

6.1 Non-dimensionalization

Non-dimensionalization can be done with dividing each term of an homogeneous equation to parameters which have

same units [73]. In this study, diffusion constants and consumption/production rates were non-dimensionalized with

the following equations:

d
∗
=

3600× δt × d
a

(26)

r
∗
=

3600× δt × r × n
cb

(27)

These are generalized form of non-dimensionalization equations. In equation 26, d∗ is non-dimensional diffusion

constant. Tumor cell doubling time (δt) multiplied by 3600 to convert hour to second. Original diffusion constant is

represented with d. Area (a) is total area (in cm2) of the grid. In equation 27, r∗ represents non-dimensional

consumption/production rate. Original rate is represented by r. Maximum number of tumor cells (which equals to

number of grid’s cells) is represented by n. Finally background concentrations are represented by cb. Using these

equations 26 - 27, uo, uga, ugan,ph, do , dg , dh were non-dimensionalized.
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