1 Antagonistic coevolution between multiple quantitative traits:

2 Matching dynamics can arise from difference interactions

- 3 Masato Yamamichi^{1,*}, Kelsey Lyberger², Swati Patel³
- 4
- 5 1) Department of General Systems Studies, University of Tokyo, Tokyo, Japan
- 6 2) Department of Evolution and Ecology, University of California, Davis, Davis, California
- 7 3) Department of Mathematics, Tulane University, New Orleans, Louisiana
- 8 *Corresponding author: c-yamamichi@mail.ecc.u-tokyo.ac.jp
- 9

10 Abstract

11 Coevolution is one of the major drivers of complex dynamics in population ecology. Historically, 12 antagonistic coevolution in victim-exploiter systems has been a topic of special interest, and 13 involves traits with various genetic architectures (e.g., the number of genes involved) and effects 14 on interactions. For example, exploiters may need to have traits that "match" those of victims for 15 successful exploitation (i.e., a matching interaction), or traits that exceed those of victims (i.e., a 16 difference interaction). Different models exist which are appropriate for different types of traits, 17 including Mendelian (discrete) and quantitative (continuous) traits. For models with multiple 18 Mendelian traits, recent studies have shown that antagonistic coevolutionary patterns that appear 19 as matching interactions can arise due to multiple difference interactions with costs of having 20 large trait values. Here we generalize their findings to quantitative traits and show, analogously, 21 that the multidimensional difference interactions with costs sometimes behave qualitatively the

- same as matching interactions. While previous studies in quantitative genetics have used thedichotomy between matching and difference frameworks to explore coevolutionary dynamics, we
- suggest that exploring multidimensional trait space is important to examine the generality of
- 25 results obtained from one-dimensional traits.
- 26
- 27 Keywords: bidirectional axis of vulnerability, fluctuating selection, gene-for-gene,
- 28 matching allele, unidirectional axis of vulnerability

29 INTRODUCTION

30	Theories developed from specific models are initially only as general as their underlying models,
31	until they are shown to hold in other modeling frameworks. Hence, it is critical to compare
32	results from a variety of modeling frameworks to test their generality. Antagonistic coevolution
33	in victim-exploiter systems (e.g., prey-predator or host-pathogen systems) has been intensively
34	studied theoretically (Abrams, 2000; Nuismer, 2017). It is thought to be a major driver for the
35	emergence and maintenance of biodiversity (Thompson, 2005) and feedbacks between interacting
36	species can create complex ecological (e.g., Cortez and Weitz, 2014) and evolutionary (e.g.,
37	Dercole et al., 2010) dynamics. Historically, various coevolution models with differing genetic
38	architectures (e.g., the number of genes involved) and interspecific interactions (e.g., a "matching"
39	vs. a "difference" interaction: see below) have been proposed and analyzed (Nuismer, 2017). To
40	account for genetic architecture, one approach is to consider coevolution with a few major genes
41	that interact and produce a discrete phenotype (Mendelian trait-based models, or hereafter
42	Mendelian models) (e.g., Mode, 1958; Seger, 1988). On the other hand, quantitative trait-based
43	models (hereafter quantitative models) assume the genetic architecture consists of many genes of
44	small effect and produce continuous phenotypes (e.g., Gavrilets, 1997; Saloniemi, 1993).

45	Here we highlight the connection between Mendelian and quantitative models of
46	victims and exploiters, and then clarify the relationships between existing modeling frameworks
47	for quantitative traits. We begin by reviewing the different modeling frameworks for Mendelian
48	traits. We then draw analogies between Mendelian and quantitative models (e.g., Boots et al.,
49	2014; Cortez and Weitz, 2014). The analogies suggest that the matching framework, in which
50	exploitation is more successful when traits "match" (i.e., a bidirectional axis of vulnerability
51	sensu Abrams 2000), can arise from the difference framework, in which exploitation is more
52	successful when traits differ (i.e., a unidirectional axis of vulnerability sensu Abrams 2000), in
53	multidimensional quantitative models with costs of having large trait values. Finally, as a proof
54	of concept, we give an example model of theoretical quantitative genetics where a
55	victim-exploiter coevolutionary dynamics arising from two pairs of difference traits can appear as
56	a matching interaction in a single pair of traits.
57	
58	BACKGROUND
59	Historically, in Mendelian models, two major interactions were often assumed and
60	contrasted: the matching allele (MA) framework, in which exploitation is successful when traits

61	match (e.g., Grosberg and Hart, 2000) (Figure 1a), and the gene-for-gene (GFG) framework, in
62	which a generalist exploiter can exploit a range of victim genotypes, but pays a cost for
63	generalism (Flor, 1956) (Figure 1c). Researchers have investigated the relative importance and
64	relationships of the two interactions (e.g., Agrawal and Lively, 2002; Frank, 1996; Parker, 1994).
65	Recently, Ashby and Boots (2017) found that, in multidimensional Mendelian (multilocus)
66	models, the GFG framework can behave effectively as the MA framework (Figure 2a).
67	To illustrate, consider a simple GFG model with haploid victims and exploiters with
68	two loci with two alleles each, labelled 1 and 0. The alleles 1 and 0 indicate the presence and
69	absence, respectively, of an exploitation or defense trait (Figure 2a). If both of the allelic values
70	of the exploiter are greater than or equal to those of the victim, maximum exploitation will occur
71	(black squares in Figure 2a). If the victim has exactly one allelic value greater than that of the
72	exploiter, so that the other allelic value of the victim is less than or equal to the corresponding
73	value of the exploiter, then exploitation will be partial (gray squares in Figure 2a). Finally, in the
74	case where both allelic values of the victim are strictly greater than that of the exploiter (which
75	only occurs when the victim has genotype 11 and the exploiter has 00), then the victim is
76	defended against exploitation (a white square in Figure 2a).

77	When coevolutionary dynamics occurs between four genotypes with the alleles 1 and 0,
78	the type of interaction (indicated by a dashed white line in Figure 2a) effectively reduces to a MA
79	interaction: the exploiter genotype 01 (10) is more successful at exploiting its matching counter
80	victim genotype 01 (10) as in Figure 1a. Indeed, by investigating a multilocus GFG model,
81	Ashby and Boots (2017) found that, in the case where an intermediate number of alleles is
82	optimal, the victim/exploiter genotypes alternate between various subsets of defense/exploitation
83	alleles, but the total number of alleles stays constant. Hence, the multidimensional GFG
84	framework effectively behaves as the MA framework (Figure 2a).
85	As with Mendelian models, quantitative models have assumed an apparent dichotomy
85 86	As with Mendelian models, quantitative models have assumed an apparent dichotomy between two frameworks (Abrams, 2000; Abrams and Matsuda, 1997; Gilman et al., 2012;
86	between two frameworks (Abrams, 2000; Abrams and Matsuda, 1997; Gilman et al., 2012;
86 87	between two frameworks (Abrams, 2000; Abrams and Matsuda, 1997; Gilman et al., 2012; McPeek, 2017): the matching trait framework, in which exploitation is increasingly more
86 87 88	between two frameworks (Abrams, 2000; Abrams and Matsuda, 1997; Gilman et al., 2012; McPeek, 2017): the matching trait framework, in which exploitation is increasingly more successful with the extent that trait values of exploiters match those of victims (Figure 1b), and
86 87 88 89	between two frameworks (Abrams, 2000; Abrams and Matsuda, 1997; Gilman et al., 2012; McPeek, 2017): the matching trait framework, in which exploitation is increasingly more successful with the extent that trait values of exploiters match those of victims (Figure 1b), and the difference trait framework, in which exploitation is increasingly more successful with the

exploit a victim with body size or color within a certain range (Brown and Vincent, 1992;

))	exploit a victim with body size of color within a certain range (Brown and Vincent, 1992,
94	Calcagno et al., 2010; Dercole et al., 2010; Dieckmann et al., 1995; Fleischer et al., 2018;
95	Gavrilets, 1997; Khibnik and Kondrashov, 1997; Kopp and Gavrilets, 2006; Marrow et al., 1992;
96	Mougi, 2012; Nuismer et al., 2005; Yamamichi and Ellner, 2016). This has been observed in the
97	coevolution between the African tawny-flanked prinia and its brood parasite, the cuckoo finch:
98	the parasite varies its egg color to match that of the victim (Spottiswoode and Stevens, 2012). On
99	the other hand, the difference framework is analogous to the GFG model and is appropriate when
100	exploitation success is determined by speed vs. speed, strength vs. armor, or toxicity vs.

- 101 resistance (Cortez and Weitz, 2014; Frank, 1994; Mougi and Iwasa, 2010; Mougi and Iwasa,
- 102 2011; Northfield and Ives, 2013; Nuismer et al., 2007; Saloniemi, 1993; Sasaki and Godfray,
- 103 1999; Tien and Ellner, 2012; van Velzen and Gaedke, 2017; Yamamichi and Miner, 2015). For
- 104 example, garter snakes evolve stronger resistance to rough-skinned newt toxicity in areas where
- newts are more toxic (Brodie III and Brodie Jr, 1990).

- 106 In the matching framework, exploitation success is typically a unimodal function of the
- 107 trait difference, and is often modeled as a Gaussian: $\exp[-(x y)^2]$, where x and y are traits of
- 108 victims and exploiters, respectively (Figure 1b) (e.g., Gavrilets, 1997; Khibnik and Kondrashov,

109	1997; Mougi, 2012; Nuismer et al., 2005). On the other hand, in the difference framework,
110	exploitation success is often modeled as a sigmoidal function of the trait difference: $1/[1 + \exp(x)]$
111	(-y)] (Figure 1d) (e.g., Mougi and Iwasa, 2010; Nuismer et al., 2007; van Velzen and Gaedke,
112	2017). In this framework, it is always advantageous for both species to increase the trait values
113	for better exploitation/defense (McPeek, 2017). Empirical evidence suggests that there is an
114	energetic trade-off to exploitation and defense and hence, most models of difference traits assume
115	there is a cost associated with each trait, which prevents runaway evolution. For example, garter
116	snakes resistant to newt toxin have costs associated with slower sprinting speeds (Brodie III and
117	Brodie Jr, 1999), milkweed bugs' production of enzymes to break down milkweed toxins has
118	metabolic costs (Dalla and Dobler, 2016), and numerous plants produce defense chemicals with a
119	cost to plant growth (reviewed in Herms and Mattson, 1992).
120	Here, by drawing analogies between the Mendelian trait and quantitative trait
121	frameworks (Figure 1), we further extend the generalization of Ashby and Boots (2017) and
122	demonstrate that the difference framework can result in similar dynamics to the matching
123	framework in multidimensional quantitative models. The matching model is a continuous trait
124	analog to the MA model and the difference model is a continuous trait analog to the GFG model

125	(Figure 1). In a multilocus GFG model, under certain conditions the victim/exploiter genotypes
126	alternate between various subsets of defense/exploitation alleles, but the total number of alleles
127	stays constant, which is effectively what occurs under the MA framework (Ashby & Boots 2017).
128	This is analogous to a bivariate difference trait model, in which the victim/exploiter genotypes
129	alternate between having more investment in one defense/exploitation trait vs. another, which is
130	effectively what occurs under the matching framework. Instead of switching between the
131	extremes of a single matching trait, the species are switching between two difference-trait-based
132	strategies. We consider a victim-exploiter model in which each has two difference traits that
133	influence exploitation success. An empirical example that motivates our study is a stepwise
134	infection process (Hall et al., 2017), where host species prevent exploitation of parasites by
135	several difference traits. In the case where intermediate trait values are optimal due to the costs of
136	defense/offense, the victim/exploiter traits may switch between combinations where a trait is
137	large while the other trait is small, but the total costs stay constant. The resultant dynamics may
138	appear as the matching interaction, and this is the quantitative-model analog to the findings in
139	Ashby and Boots (2017) in Mendelian models.

141 AN EXAMPLE

142	We develop a two-dimensional quantitative model with difference interactions (Figure
143	2b) to demonstrate that matching dynamics can emerge from a multidimensional difference
144	framework (see Appendix S1 and Supplementary Mathematica file, Supporting Information, for
145	details). We consider a quantitative genetic model (Iwasa et al., 1991; Lande, 1976) in continuous
146	time (i.e., Malthusian fitness) (Abrams et al., 1993). We assume that victims and exploiters each
147	have two quantitative traits. We let x_i be the value of victim trait $i (= 1, 2)$ and assume greater
148	values allow for defense against trait i of the exploiter. We let y_i be the value of exploiter trait i
149	and assume greater values allow for more exploitation. Each trait is associated with a cost that
150	decreases individual fitness with greater trait values. The difference between the exploiter trait
151	and the corresponding victim trait, $y_i - x_i$, affects exploitation success (Figure 2b), which is
152	expressed by a sigmoid function (Figure 1d). We assume that fitness of victims and exploiters are,
153	respectively,

155

$$m_{x} = r(x_{1}, x_{2}) - a_{0} \prod_{i=1}^{2} \frac{1}{1 + \exp[-\theta_{i}(y_{i} - x_{i})]},$$

$$m_{y} = c(y_{1}, y_{2}) a_{0} \prod_{i=1}^{2} \frac{1}{1 + \exp[-\theta_{i}(y_{i} - x_{i})]},$$
(1)

157	where a_0 is the effects of successful exploitation on fitness (e.g., maximum attacking rate), and θ_i
158	(i = 1, 2) determine the sensitivity of exploitation success to the trait difference. In our model, the
159	product $\prod_{i=1}^{2} \frac{1}{\left\{1 + \exp\left[-\theta_{i}\left(y_{i} - x_{i}\right)\right]\right\}}$ means that victims need to overcome their exploiters at
160	only one trait for escaping from exploitation, whereas exploiters must overcome the two defense
161	traits for successful exploitation (Gilman et al. 2012). This sequential interaction is also found in
162	many host-parasite systems (Hall et al. 2017).
163	Here <i>r</i> and <i>c</i> represent costs of defense and exploitation for victims and exploiters,
164	respectively (e.g., prey growth and predator conversion efficiency are decreasing functions of
165	defense and offense, respectively: see Appendix S1, Supporting Information), and they are
166	linearly decreasing functions of the sum of the two traits values (i.e., lower values of r and c
167	represent higher costs). The costs can prevent escalation toward positive infinite values in the two
168	traits. However, the two-dimensional difference model with costs behaves like a one-dimensional
169	matching model, in which runaway evolution occurs toward a positive infinite value in one trait
170	and a negative infinite value in the other trait (Appendices S2, S3, Figures S1, S2, Supporting
171	Information). To prevent this, we add stabilizing selection to the victim cost function as in

Gavrilets (1997). This can occur in quantitative models but not in Mendelian models because it is
customary to assume unbounded trait values in quantitative models, which permits the existence
of runaway escalation, whereas Mendelian traits are typically modeled as taking values in finite
sets. We employ the following functions:

176

177

$$r = r_0 \left(1 - \sum_{i=1}^{2} \rho_{xi} x_i \right) \exp \left[-\sum_{i=1}^{2} s_i \left(x_i - x_{i0} \right)^2 \right],$$

$$c = c_0 \left(1 - \sum_{i=1}^{2} \rho_{yi} y_i \right),$$
(2)

178

179 where r_0 and c_0 are basic parameter values (e.g., for prey growth rate and predator conversion 180 efficiency) and ρ_{ii} (*i* = *x*, *y*, *j* = 1, 2) determine the slope of the functions. Stabilizing selection 181 drives victim evolution toward $(x_1, x_2) = (x_{10}, x_{20})$, where s_i (i = 1, 2) determines the strength of 182 stabilizing selection (Figure S3, Supporting Information). Note that adding stabilizing selection 183 to the exploiter function instead of the victim function results in victim's escape from 184 exploitation. We can add stabilizing selection to the exploiter function in addition to the victim 185 function, but here we keep the model as simple as possible. 186 Then coevolutionary dynamics are described by four ordinary differential equations,

187

188

$$\frac{d}{dt}\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} v_{x11} & v_{x12} \\ v_{x12} & v_{x22} \end{pmatrix} \begin{pmatrix} \frac{\partial m_x}{\partial x_1} \\ \frac{\partial m_x}{\partial x_2} \end{pmatrix},$$

$$\frac{d}{dt}\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} v_{y11} & v_{y12} \\ v_{y12} & v_{y22} \end{pmatrix} \begin{pmatrix} \frac{\partial m_y}{\partial y_1} \\ \frac{\partial m_y}{\partial y_2} \end{pmatrix},$$
(3)

189

190 where v_{iji} (i = x, y, j = 1, 2) represents additive genetic variance, v_{i12} (i = x, y) represents 191 covariance, and partial derivatives represent fitness gradients (Abrams et al., 1993). For simplicity, we assume that the traits evolve independently (genetic covariance, v_{i12} , is zero). For 192 193 example, this is likely in hosts that defend against parasites by a cellular immune response and a 194 behavioral response, but further work is needed to explore the effects of trait correlations. Also, 195 our trait symmetry assumptions (i.e., the additive genetic variances are the same, $v_{i11} = v_{i22}$, and 196 the two traits affect exploitation success and fitness costs in the same way, $\theta_1 = \theta_2$, $\rho_{x1} = \rho_{x2}$, $\rho_{y1} =$ ρ_{y2} , and $s_1 = s_2$) should be carefully examined in future studies as this assumption may not hold 197 198 for most traits (Figure S4, Supporting Information), and it may result in, for example, time-scale 199 separation in evolutionary dynamics of the two traits.

200	By numerically solving the model, we find that the two-dimensional difference model
201	can behave as a one-dimensional matching model. First, when there is no stabilizing selection in
202	the victim cost ($s_i = 0$) and the exploiter genetic variance is small enough ($v_{xii} >> v_{yii}$, $i = 1, 2$),
203	coevolutionary dynamics shows runaway escalation toward extreme trait values, and the
204	coevolutionary outcome depends on initial conditions (Figure S2, Supporting Information).
205	Second, when there is stabilizing selection ($s_i > 0$) and the exploiter genetic variance is large
206	enough (e.g., $v_{xii} < v_{yii}$), the system is attracted to a stable equilibrium (the blue and red points in
207	Figures 3a, 3b), and there is disruptive selection for victim traits (i.e., fitness minimum: vectors
208	representing fitness gradients in Figure 3a are distracted from the equilibrium) and stabilizing
209	selection for exploiter traits (i.e., fitness maximum: vectors in Figure 3b are attracted to the
210	equilibrium), which is consistent with the matching interaction (Appendix S2, Supporting
211	Information) (Abrams and Matsuda, 1997; Gavrilets, 1997). Third, when there is stabilizing
212	selection ($s_i > 0$) and the exploiter genetic variance is small enough ($v_{xii} >> v_{yii}$), the equilibrium
213	is not stable (Appendix S3, Figure S3, Supporting Information) and the trait dynamics fluctuate
214	(Figure 3c) but are constrained to regions in which the total investments are nearly constant
215	(Figure 3d) and the two traits for each species show antiphase cycles (Figures 3c, 3e, 3f). These

216	simulation results demonstrate that the matching dynamics can arise from the difference
217	interaction, generalizing Ashby and Boots (2017)'s idea from Mendelian models to quantitative
218	models.
219	
220	DISCUSSION
221	Victim-exploiter interactions are among the most fundamental type of ecological
222	interactions. In addition to their importance in ecological communities, these interactions are
223	widely recognized for playing an important role in ecological dynamics (e.g., extinction and
224	predator-prey cycles: Cortez and Weitz (2014); Northfield and Ives (2013)) and evolutionary
225	dynamics (e.g., sex, recombination, and epistasis: Otto and Lenormand (2002)), because each
226	species needs to continue to adapt to new selection pressures by the other species. Due to its
227	importance, many modeling frameworks have been proposed to investigate the dynamics of
228	coevolution between a victim and its exploiter, capturing various aspects of the traits
229	involved (Nuismer, 2017).
230	In this work, we highlight the relationship between two modeling frameworks of
231	quantitative traits in victim-exploiter coevolution. In particular, a multidimensional difference

232	trait framework, in which each trait confers an advantage in the victim-exploiter interaction but is
233	associated with some cost (Figures 1d, 2b) can generate dynamics like a matching trait
234	framework, in which traits between a victim and exploiter must "match" in some sense for
235	successful interactions (Figure 1b). Our investigation extends our knowledge of the
236	coevolutionary process by demonstrating how effectively matching dynamics can be generated
237	from difference traits with costs in a special case of multivariate coevolution as a proof of
238	concept (rather than a thorough investigation of the dynamics: Figure 3).
239	For some traits, the distinction between matching traits and difference traits is clear.
240	For both victims and exploiters, being stronger and faster are always more advantageous (but
241	may have an associated cost or energetic limitation) and hence, are difference traits. However, in
242	other cases, it is not so obvious. For example, body size of both victims and exploiters can be a
243	difference trait, in which bigger is better for exploitation/defense (e.g., gape-limited predation), or
244	a matching trait, in which exploiters must be within a certain size range depending on victims'
245	size for successful exploitation. Besides classifying difference vs. matching traits, a second
246	empirical difficulty arises when not all traits are simultaneously measured. Our simulations
247	suggest that, even when the body size is a difference trait, it may behave as a matching trait

248	because of another potentially unmeasured difference trait such as toxicity/resistance. This
249	correlated coevolution between the two traits can occur even without genetic covariance, as long
250	as the body size and toxicity/resistance affect exploitation success and the costs of being big
251	affect fitness together with the costs of the toxicity/resistance.
252	Previous work has suggested that matching traits are more likely to lead to
253	coevolutionary cycling of traits than difference interactions (Abrams, 2000; McPeek, 2017). In
254	comparing quantitative models with a one-dimensional trait, for example, McPeek (2017) found
255	cycles are observed in a smaller area of parameter space with difference traits compared to
256	matching traits. Furthermore, the underlying mechanism of cycles differs in the two frameworks.
257	In the matching framework, cycles consist of the exploiter tracking victim traits and the victim
258	escaping from exploiter traits (i.e., fluctuating selection between equally specific
259	defense/exploitation traits). In the difference framework, cycles consist of the victim and
260	exploiter investing more energy in their traits for better defense/exploitation, and then
261	abandoning their defense/exploitation because at some point they are too costly to maintain (i.e.,
262	fluctuating selection between strong and weak defense/exploitation traits). Even when empirical
263	researchers are focusing on a single trait with the difference interaction, the system may have

264	another difference trait that can affect exploitation success. In such a case, coevolutionary
265	dynamics can be driven by the matching-like interaction, which may cause cyclic dynamics more
266	easily (McPeek, 2017).
267	In spite of recent interest in coevolution in multidimensional trait space (e.g., Débarre
268	et al., 2014; Doebeli and Ispolatov, 2017; Gilman et al., 2012), the relation of the matching and
269	difference frameworks has not been well recognized. For example, in their study on evolutionary
270	escape, Gilman et al. (2012) contrasted coevolutionary dynamics with matching and difference
271	interactions in multidimensional trait space but did not find a significant difference between them
272	(see Figure 1 of Gilman et al. (2012)). Our generalization offers a potential explanation for this
273	previous work, as coevolutionary dynamics with matching interactions can arise from difference
274	interactions in multidimensional quantitative models.
275	This work was inspired by the recent work of Ashby and Boots (2017), who showed an
276	analogous relationship for two Mendelian trait models of coevolution. Here, we draw out the
277	parallels between two Mendelian (single-locus) trait frameworks and two quantitative trait
278	frameworks. Namely, we highlight that the matching allele (MA) framework is a Mendelian
279	analog of the matching framework, and the gene-for-gene (GFG) framework is a Mendelian

280	analog of the difference framework (Figure 1). While these frameworks are valuable, many traits
281	important to victim-exploiter interactions may actually lie somewhere in the middle of these two
282	extremes; they may be determined by many (but not infinite number of) loci. It is still not well
283	understood how coevolutionary dynamics differ between when traits are governed by a single
284	locus, multi-locus (with linkage disequilibrium and epistasis), and effectively infinite loci (as
285	assumed in classical quantitative genetics). While there have been a handful of papers to
286	investigate this question in specific scenarios, further investigation is need for a general
287	understanding.
288	
288 289	Acknowledgements
	ACKNOWLEDGEMENTS We thank two anonymous reviewers, P. A. Abrams, M. H. Cortez, B. Ashby, and M. Boots for
289	
289 290	We thank two anonymous reviewers, P. A. Abrams, M. H. Cortez, B. Ashby, and M. Boots for
289 290 291	We thank two anonymous reviewers, P. A. Abrams, M. H. Cortez, B. Ashby, and M. Boots for helpful comments. M.Y. was supported by the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research (KAKENHI) 15H02642, 16K18618, 16H04846, 18H02509, and 19K16223, and by John Mung Program and Hakubi Center for Advanced Research of Kyoto
289 290 291 292 293 294	We thank two anonymous reviewers, P. A. Abrams, M. H. Cortez, B. Ashby, and M. Boots for helpful comments. M.Y. was supported by the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research (KAKENHI) 15H02642, 16K18618, 16H04846, 18H02509, and 19K16223, and by John Mung Program and Hakubi Center for Advanced Research of Kyoto University. K.L. was supported by National Science Foundation (NSF) Grant DMS-1313418 to S.
289 290 291 292 293 294 295	We thank two anonymous reviewers, P. A. Abrams, M. H. Cortez, B. Ashby, and M. Boots for helpful comments. M.Y. was supported by the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research (KAKENHI) 15H02642, 16K18618, 16H04846, 18H02509, and 19K16223, and by John Mung Program and Hakubi Center for Advanced Research of Kyoto University. K.L. was supported by National Science Foundation (NSF) Grant DMS-1313418 to S. J. Schreiber at the University of California, Davis. S.P. was supported by the Austrian Science
289 290 291 292 293 294	We thank two anonymous reviewers, P. A. Abrams, M. H. Cortez, B. Ashby, and M. Boots for helpful comments. M.Y. was supported by the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research (KAKENHI) 15H02642, 16K18618, 16H04846, 18H02509, and 19K16223, and by John Mung Program and Hakubi Center for Advanced Research of Kyoto University. K.L. was supported by National Science Foundation (NSF) Grant DMS-1313418 to S.
289 290 291 292 293 294 295	We thank two anonymous reviewers, P. A. Abrams, M. H. Cortez, B. Ashby, and M. Boots for helpful comments. M.Y. was supported by the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research (KAKENHI) 15H02642, 16K18618, 16H04846, 18H02509, and 19K16223, and by John Mung Program and Hakubi Center for Advanced Research of Kyoto University. K.L. was supported by National Science Foundation (NSF) Grant DMS-1313418 to S. J. Schreiber at the University of California, Davis. S.P. was supported by the Austrian Science
289 290 291 292 293 294 295 296	We thank two anonymous reviewers, P. A. Abrams, M. H. Cortez, B. Ashby, and M. Boots for helpful comments. M.Y. was supported by the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research (KAKENHI) 15H02642, 16K18618, 16H04846, 18H02509, and 19K16223, and by John Mung Program and Hakubi Center for Advanced Research of Kyoto University. K.L. was supported by National Science Foundation (NSF) Grant DMS-1313418 to S. J. Schreiber at the University of California, Davis. S.P. was supported by the Austrian Science
289 290 291 292 293 294 295 296 297	We thank two anonymous reviewers, P. A. Abrams, M. H. Cortez, B. Ashby, and M. Boots for helpful comments. M.Y. was supported by the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research (KAKENHI) 15H02642, 16K18618, 16H04846, 18H02509, and 19K16223, and by John Mung Program and Hakubi Center for Advanced Research of Kyoto University. K.L. was supported by National Science Foundation (NSF) Grant DMS-1313418 to S. J. Schreiber at the University of California, Davis. S.P. was supported by the Austrian Science Fund (FWF) Grant P25188-N25 to R. Bürger at the University of Vienna.
289 290 291 292 293 294 295 296 297 298	We thank two anonymous reviewers, P. A. Abrams, M. H. Cortez, B. Ashby, and M. Boots for helpful comments. M.Y. was supported by the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research (KAKENHI) 15H02642, 16K18618, 16H04846, 18H02509, and 19K16223, and by John Mung Program and Hakubi Center for Advanced Research of Kyoto University. K.L. was supported by National Science Foundation (NSF) Grant DMS-1313418 to S. J. Schreiber at the University of California, Davis. S.P. was supported by the Austrian Science Fund (FWF) Grant P25188-N25 to R. Bürger at the University of Vienna.

302	consequence of predator-prey coevolution. Evolutionary Ecology 11: 1-20. DOI
303	10.1023/a:1018445517101.
304	Abrams, P. A., Matsuda, H. & Harada, Y. (1993) Evolutionarily unstable fitness maxima and
305	stable fitness minima of continuous traits. Evolutionary Ecology 7: 465-487. DOI
306	10.1007/BF01237642.
307	Agrawal, A. & Lively, C. M. (2002) Infection genetics: gene-for-gene versus matching-alleles
308	models and all points in between. Evolutionary Ecology Research 4: 79-90.
309	Ashby, B. & Boots, M. (2017) Multi-mode fluctuating selection in host-parasite coevolution.
310	Ecology Letters 20: 357-365. DOI 10.1111/ele.12734.
311	Boots, M., White, A., Best, A. & Bowers, R. (2014) How specificity and epidemiology drive the
312	coevolution of static trait diversity in hosts and parasites. Evolution 68: 1594-1606. DOI
313	10.1111/evo.12393.
314	Brodie III, E. D. & Brodie Jr, E. D. (1990) Tetrodotoxin resistance in garter snakes: an
315	evolutionary response of predators to dangerous prey. Evolution 44: 651-659. DOI
316	10.1111/j.1558-5646.1990.tb05945.x.
317	Brodie III, E. D. & Brodie Jr, E. D. (1999) Costs of exploiting poisonous prey: evolutionary
318	trade-offs in a predator-prey arms race. Evolution 53: 626-631. DOI
319	10.1111/j.1558-5646.1999.tb03798.x.
320	Brown, J. S. & Vincent, T. L. (1992) Organization of predator-prey communities as an
321	evolutionary game. Evolution 46: 1269-1283. DOI 10.2307/2409936.
322	Calcagno, V., Dubosclard, M. & de Mazancourt, C. (2010) Rapid exploiter-victim coevolution:
323	The race is not always to the swift. The American Naturalist 176: 198-211. DOI
324	10.1086/653665.
325	Cortez, M. H. & Weitz, J. S. (2014) Coevolution can reverse predator-prey cycles. Proceedings
326	of the National Academy of Sciences of the United States of America 111: 7486-7491.
327	DOI 10.1073/pnas.1317693111.
328	Dalla, S. & Dobler, S. (2016) Gene duplications circumvent trade-offs in enzyme function: Insect
329	adaptation to toxic host plants. Evolution 70: 2767-2777. DOI 10.1111/evo.13077.
330	Débarre, F., Nuismer, S. L. & Doebeli, M. (2014) Multidimensional (co)evolutionary stability.
331	The American Naturalist 184: 158-171. DOI 10.1086/677137.
332	Dercole, F., Ferriere, R. & Rinaldi, S. (2010) Chaotic Red Queen coevolution in three-species
333	food chains. Proceedings of the Royal Society B: Biological Sciences 277: 2321-2330.

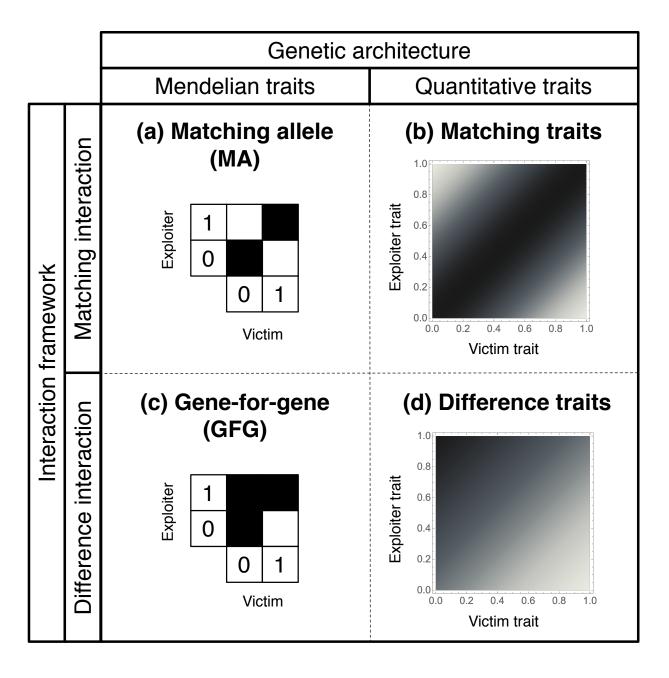
- DOI 10.1098/rspb.2010.0209.
- Dieckmann, U., Marrow, P. & Law, R. (1995) Evolutionary cycling in predator-prey interactions:
 population dynamics and the Red Queen. Journal of Theoretical Biology 176: 91-102.
 DOI 10.1006/jtbi.1995.0179.
- Doebeli, M. & Ispolatov, I. (2017) Diversity and coevolutionary dynamics in high-dimensional
 phenotype spaces. The American Naturalist 189: 105-120. DOI 10.1086/689891.
- Fleischer, S. R., terHorst, C. P. & Li, J. (2018) Pick your trade-offs wisely: Predator-prey eco-evo
 dynamics are qualitatively different under different trade-offs. Journal of Theoretical
 Biology 456: 201-212. DOI 10.1016/j.jtbi.2018.08.013.
- Flor, H. H. (1956) The complementary genic systems in flax and flax rust. Advances in genetics
 8: 29-54. DOI 10.1016/S0065-2660(08)60498-8.
- Frank, S. A. (1994) Coevolutionary genetics of hosts and parasites with quantitative inheritance.
 Evolutionary Ecology 8: 74-94. DOI 10.1007/BF01237668.
- Frank, S. A. (1996) Problems inferring the specificity of plant-pathogen genetics. Evolutionary
 Ecology 10: 323-325. DOI 10.1007/BF01237689.
- Gavrilets, S. (1997) Coevolutionary chase in exploiter-victim systems with polygenic characters.
 Journal of Theoretical Biology 186: 527-534. DOI 10.1006/jtbi.1997.0426.
- Gilman, R. T., Nuismer, S. L. & Jhwueng, D.-C. (2012) Coevolution in multidimensional trait
 space favours escape from parasites and pathogens. Nature 483: 328-330. DOI
 10.1038/nature10853.
- Grosberg, R. K. & Hart, M. W. (2000) Mate selection and the evolution of highly polymorphic
 self/nonself recognition genes. Science 289: 2111-2114. DOI
- 356 10.1126/science.289.5487.2111.
- Hall, M. D., Bento, G. & Ebert, D. (2017) The evolutionary consequences of stepwise infection
 processes. Trends in Ecology & Evolution 32: 612-623. DOI 10.1016/j.tree.2017.05.009.
- Herms, D. A. & Mattson, W. J. (1992) The dilemma of plants: to grow or defend. The Quarterly
 Review of Biology 67: 283-335. DOI 10.1086/417659.
- Iwasa, Y., Pomiankowski, A. & Nee, S. (1991) The evolution of costly mate preferences II. The
 'handicap' principle. Evolution 45: 1431-1442. DOI 10.2307/2409890.
- 363 Khibnik, A. I. & Kondrashov, A. S. (1997) Three mechanisms of Red Queen dynamics.
- 364 Proceedings of the Royal Society B: Biological Sciences 264: 1049-1056. DOI
- 365 10.1098/rspb.1997.0145.

366	Kopp, M. & Gavrilets, S. (2006) Multilocus genetics and the coevolution of quantitative traits.
367	Evolution 60: 1321-1336. DOI 10.1111/j.0014-3820.2006.tb01212.x.
368	Lande, R. (1976) Natural selection and random genetic drift in phenotypic evolution. Evolution
369	30: 314-334. DOI 10.2307/2407703.
370	Marrow, P., Law, R. & Cannings, C. (1992) The coevolution of predator-prey interactions: ESSs
371	and Red Queen dynamics. Proceedings of the Royal Society B: Biological Sciences 250:
372	133-141. DOI 10.1098/rspb.1992.0141.
373	McPeek, M. A. (2017) Evolutionary Community Ecology. Princeton University Press, Princeton,
374	NJ.
375	Mode, C. J. (1958) A mathematical model for the co-evolution of obligate parasites and their
376	hosts. Evolution 12: 158-165. DOI 10.2307/2406026.
377	Mougi, A. (2012) Predator-prey coevolution driven by size selective predation can cause
378	anti-synchronized and cryptic population dynamics. Theoretical Population Biology 81:
379	113-118. DOI 10.1016/j.tpb.2011.12.005.
380	Mougi, A. & Iwasa, Y. (2010) Evolution towards oscillation or stability in a predator-prey system.
381	Proceedings of the Royal Society B: Biological Sciences 277: 3163-3171. DOI
382	10.1098/rspb.2010.0691.
383	Mougi, A. & Iwasa, Y. (2011) Unique coevolutionary dynamics in a predator-prey system.
384	Journal of Theoretical Biology 277: 83-89. DOI 10.1016/j.jtbi.2011.02.015.
385	Northfield, T. D. & Ives, A. R. (2013) Coevolution and the effects of climate change on
386	interacting species. Plos Biology 11: e1001685. DOI 10.1371/journal.pbio.1001685.
387	Nuismer, S. L. (2017) Introduction to Coevolutionary Theory. W. H. Freeman, New York, NY.
388	Nuismer, S. L., Doebeli, M. & Browning, D. (2005) The coevolutionary dynamics of antagonistic
389	interactions mediated by quantitative traits with evolving variances. Evolution 59:
390	2073-2082. DOI 10.1111/j.0014-3820.2005.tb00918.x.
391	Nuismer, S. L., Ridenhour, B. J. & Oswald, B. P. (2007) Antagonistic coevolution mediated by
392	phenotypic differences between quantitative traits. Evolution 61: 1823-1834. DOI
393	10.1111/j.1558-5646.2007.00158.x.
394	Otto, S. P. & Lenormand, T. (2002) Resolving the paradox of sex and recombination. Nature
395	Reviews Genetics 3: 252-261. DOI 10.1038/nrg761.
396	Parker, M. A. (1994) Pathogens and sex in plants. Evolutionary Ecology 8: 560-584. DOI
397	10.1007/BF01238258.

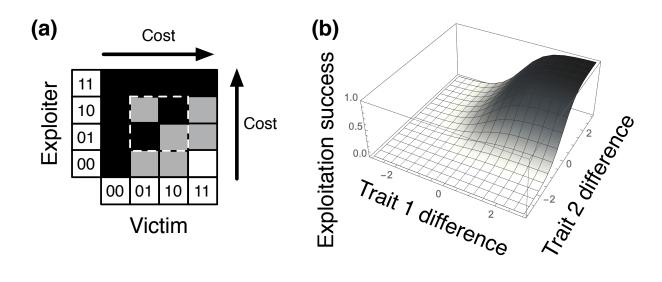
- Saloniemi, I. (1993) A coevolutionary predator-prey model with quantitative characters. The
 American Naturalist 141: 880-896. DOI 10.1086/285514.
- Sasaki, A. & Godfray, H. C. J. (1999) A model for the coevolution of resistance and virulence in
 coupled host-parasitoid interactions. Proceedings of the Royal Society B: Biological
 Sciences 266: 455-463. DOI 10.1098/rspb.1999.0659.
- 402 Sciences 200. 455-405. DOI 10.1098/15p0.1999.0059.
- Seger, J. (1988) Dynamics of some simple host-parasite models with more than two genotypes in
 each species. Philosophical Transactions of the Royal Society B: Biological Sciences 319:
 541-555. DOI 10.1098/rstb.1988.0064.
- Spottiswoode, C. N. & Stevens, M. (2012) Host-parasite arms races and rapid changes in bird egg
 appearance. The American Naturalist 179: 633-648. DOI 10.1086/665031.
- 408 Thompson, J. N. (2005) The Geographic Mosaic of Coevolution. The University of Chicago
 409 Press, Chicago, IL.
- Tien, R. J. & Ellner, S. P. (2012) Variable cost of prey defense and coevolution in predator-prey
 systems. Ecological Monographs 82: 491-504. DOI 10.1890/11-2168.1.
- 412 van Velzen, E. & Gaedke, U. (2017) Disentangling eco-evolutionary dynamics of predator-prey
 413 coevolution: the case of antiphase cycles. Scientific reports 7: 17125. DOI
 414 10.1038/s41598-017-17019-4.
- 415 Yamamichi, M. & Ellner, S. P. (2016) Antagonistic coevolution between quantitative and
- 416 Mendelian traits. Proceedings of the Royal Society B: Biological Sciences 283: 20152926.
- 417 DOI 10.1098/rspb.2015.2926.
- 418 Yamamichi, M. & Miner, B. E. (2015) Indirect evolutionary rescue: prey adapts, predator avoids
 419 extinction. Evolutionary Applications 8: 787-795. DOI 10.1111/eva.12295.

421 FIGURE LEGENDS

422	FIGURE 1. Interaction frameworks and genetic architectures in coevolution models. (a)
423	Matching allele (MA) is a matching interaction in Mendelian traits. Victims and exploiters are
424	haploid and their genotypes are represented by 1 and 0 at a particular locus. Dark shading
425	indicates greater exploitation success. (b) The matching interaction is a MA interaction in
426	quantitative traits. Exploitation success is maximized when the trait difference is zero. (c)
427	Gene-for-gene (GFG) is a difference interaction in Mendelian traits. Here 1 and 0 indicate the
428	presence and absence, respectively, of defense/exploitation alleles. (d) The difference interaction
429	is a GFG interaction in quantitative traits. Exploitation success is increased by larger exploiter
430	trait values and by smaller victim trait values.
431	
432	FIGURE 2. (a) An example of exploitation matrix in a Mendelian GFG model with two loci
433	(Ashby and Boots, 2017). The region surrounded by a dashed white line shows that the MA
434	interaction arises from the GFG framework. Victims and exploiters are haploid and their
435	genotypes are represented by 1 and 0 at a locus, and they indicate the presence and absence,
436	respectively, of defense/exploitation alleles. Darker shading indicates greater exploitation success


437 and arrows indicate greater costs. (b) Exploitation success as a function of both trait differences 438 between exploiters and victims $(y_i - x_i)$ in a quantitative difference model with two traits 439 (Equation 1).

440


441 FIGURE 3. Coevolutionary dynamics of two quantitative traits with difference interactions. (a, 442 b) Fitness landscapes of victims (a) and exploiters (b) when the exploiter genetic variance is large 443 enough and the system converges to a stable equilibrium. (a) A contour plot of fitness (m_r) and a 444 vector field of fitness gradients for the victim traits when the exploiter traits are at the equilibrium 445 trait value (the red point in b). (b) A contour plot of fitness (m_v) and a vector field of fitness 446 gradients for the exploiter traits when the victim traits are at the equilibrium trait value (the blue point in a). Parameter values are $\rho_{xi} = 0.07$, $\rho_{vi} = 2$, $x_{10} = x_{20} = 0.2$, $a_0 = r_0 = c_0 = \theta_i = v_{jii} = 1$, $s_i = 1$ 447 0.01, and $v_{i12} = 0$ (i = 1, 2, j = x, y). (c-f) Coevolutionary cycles when the victim genetic variance 448 is much larger than exploiter genetic variance ($v_{xii} \gg v_{vii}$). (c) Numerical solutions of the four 449 450 traits. (d) Numerical solutions of the functions (Equation 2) representing costs of 451 defense/exploitation (note that lower values indicate higher costs). (e, f) Coevolutionary cycles of victims (e) and exploiters (f). Parameter values are the same as (a) and (b) except for $v_{xii} = 1$ and 452

 $v_{yii} = 0.01$ (i = 1, 2). Note that *c* is negative in gray regions in (b) and (f).

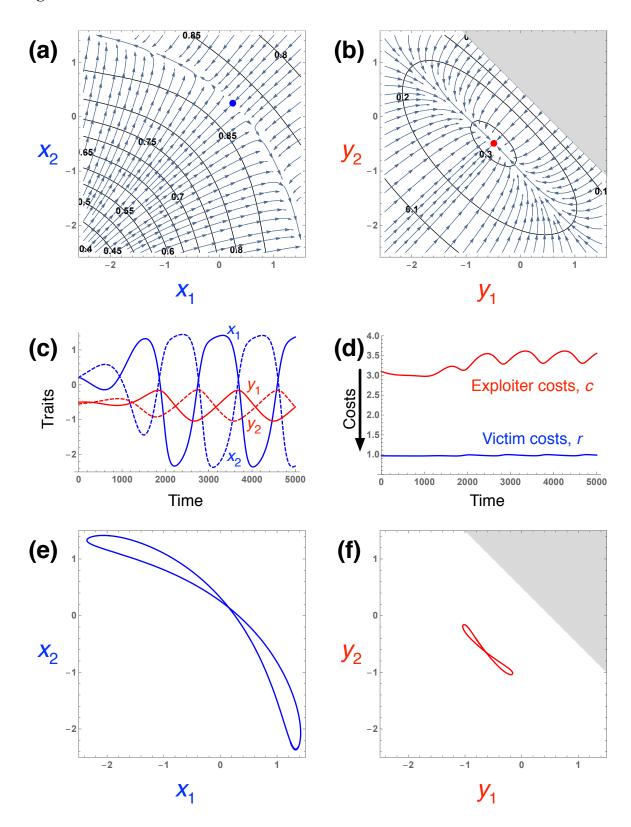

Figure 1.

Figure 2.

Figure 3.

