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SUMMARY 27 

The virome is one of the most variable components of the human gut microbiome. 28 

Within twin-pairs, viromes have been shown to be similar for infants but not for 29 

adults, indicating that as twins age and their environments and microbiomes diverge, 30 

so do their viromes. The degree to which the microbiome drives the virome’s vast 31 

diversity is unclear. Here, we examined the relationship between microbiome 32 

diversity and virome diversity in 21 adult monozygotic twin pairs selected for high or 33 

low microbiome concordance. Viromes derived from virus-like particles were unique 34 

to each subject, dominated by Caudovirales and Microviridae, and exhibited a small 35 

core that included crAssphage. Microbiome-discordant twins had more dissimilar 36 

viromes compared to microbiome-concordant twins, and the richer the microbiomes, 37 

the richer the viromes. These patterns were driven by the bacteriophages, not 38 

eukaryotic viruses. These observations support a strong role of the microbiome in 39 

patterning the virome.  40 
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INTRODUCTION 41 

The bulk of the human gut microbiome is composed of a vast diversity of 42 

bacterial cells, along with a minority of archaeal and eukaryotic cells. The cellular 43 

fraction of the microbiome forms a high density microbial ecosystem (1011 -1012 per 44 

gram of feces (Sender et al., 2016). All of these cells are accompanied by a virome 45 

estimated to be in about equal proportion (ranging between 109 to 1012 per gram of 46 

feces (Castro-Mejía et al., 2015; Hoyles et al., 2014; Ogilvie and Jones, 2017; Reyes 47 

et al., 2010). The viral fraction of the human gut microbiome is primarily composed of 48 

bacteriophages and prophages, and it also includes rarer eukaryotic viruses and 49 

endogenous retroviruses (Breitbart et al., 2003; Minot et al., 2011; Reyes et al., 50 

2010). Currently, the majority of phages have no matches in databases and their 51 

hosts remain to be elucidated. Matching phages to their hosts is challenging: for 52 

instance, the host of the most common human gut phage, crAssphage, has only 53 

recently been identified as Bacteroides spp. (Shkoporov et al., 2018; Yutin et al., 54 

2018). In addition to the identification of hosts, other questions remain as to the 55 

factors most important in shaping the virome, and how predictive the cellular fraction 56 

of the microbiome can be of the virome. 57 

The temporal population dynamics of phages and their hosts might be 58 

expected to be linked. Indeed, population oscillations of viruses and their bacterial 59 

hosts are described for aquatic systems, where they indicate that viruses play a key 60 

role in regulating bacterial populations (Suttle, 2007; Thingstad, 2000; Thingstad et 61 

al., 2014; Weitz and Dushoff, 2008). But such patterns of predator/prey dynamics are 62 

not typical for the human gut virome and microbiome (for clarity, from here on we 63 

use ‘microbiome’ to refer to cellular fraction of the microbiome, e.g., mostly bacterial 64 
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cells) (Minot et al., 2011; Reyes et al., 2013; Rodriguez-Brito et al., 2010; Rodriguez-65 

Valera et al., 2009). Nonetheless, the virome and microbiome do display some 66 

common patterns of diversity across hosts, such as high levels of interpersonal 67 

differences and relative stability over time (Reyes et al., 2010). The microbiome 68 

tends to be more similar for related individuals compared to unrelated individuals, 69 

possibly due to shared dietary habits, which drive similarity between microbiomes 70 

(Cotillard et al., 2013; David et al., 2014). In accord, diet has been associated with 71 

virome diversity, quite possibly through diet effects on the microbiome (Minot et al., 72 

2011). In infants, twin comparisons have revealed viromes to be more similar 73 

between co-twins than between unrelated individuals (Lim et al., 2015; Reyes et al., 74 

2015). This pattern was not observed in adult twins (Reyes et al., 2010) possibly due 75 

to divergence of their microbiomes (Reyes et al., 2010). The degree to which the 76 

microbiome itself drives patterns of virome diversity across hosts has been difficult to 77 

assess due to confounding factors such as host relatedness. 78 

Here, we focus on adult monozygotic (MZ) twin microbiomes to explore 79 

further the relationship between microbiome and virome diversity. By studying the 80 

viromes of MZ twin pairs, we control for host genetic relatedness. Although MZ twin 81 

pairs generally have more similar microbiomes compared to dizygotic (DZ) twin pairs 82 

or unrelated individuals, MZ twins nevertheless can display a large range of within-83 

twin-pair microbiome diversity (Goodrich et al., 2014). We previously generated fecal 84 

microbiome data for twin pairs from the TwinsUK cohort (Goodrich et al., 2014), and 85 

based on this information we selected twin pairs either highly concordant or highly 86 

discordant for their microbiomes. We generated viromes from virus-like particles 87 

(VLPs) obtained from the same samples from which the microbiomes were derived. 88 
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Results indicate that microbiome diversity and virome diversity measures are 89 

positively associated. 90 

 91 

RESULTS 92 

Selection of microbiome-concordant and discordant monozygotic twin 93 

pairs - We selected twin pairs with a similar body mass index (BMI), whose 94 

microbiomes were either concordant or discordant for microbiome between-sample 95 

diversity (β-diversity) based on previously obtained 16S rRNA gene data. The adult 96 

co-twins in this study did not share a household and we assume that other 97 

environmental variability was similar across twin pairs. We determined the degree of 98 

concordance or discordance between co-twins’ microbiomes based on three β-99 

diversity distance metrics: Bray-Curtis, weighted UniFrac and unweighted UniFrac 100 

(See Methods). As expected, the β-diversity measures were correlated (Pearson 101 

pairwise correlation coefficient > 0.4). Based on the distribution of pairwise distance 102 

measures, we selected 21 MZ twin pairs from the boundaries of all three distributions 103 

(Figure 1A), while maintaining a balanced distribution of age and BMI across the set 104 

(Table S1). Within the 21 selected twin pairs, the microbiomes of microbiome-105 

concordant co-twins were, as expected, more similar to each other than microbiomes 106 

of microbiome-discordant co-twins (p = 6.31x10-12). The microbiomes of the 107 

discordant co-twins differed compositionally at all taxonomic levels, particularly at the 108 

phylum level, with Firmicutes and Bacteroidetes, the two dominant phyla, 109 

contributing the most to the variation between co-twins (Figure 1B and 1C). 110 

Shotgun metagenomes of VLPs - We isolated virus-like particles (VLPs) 111 

from the same fecal samples that had been used for 16S rRNA gene diversity 112 
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profiling (See Methods). DNA extracted from VLPs was used in whole genome 113 

amplification followed by shotgun metagenome sequencing (See Methods). A first 114 

library (“large-insert-size library”) was selected with an average insert size of 500 bp 115 

(34,325,116 paired reads in total; 817,265 ± 249,550 paired reads per sample after 116 

quality control) and used for de novo assembly of viral contigs. Smaller fragments 117 

with an average insert size of 300bp were purified in a second library (“small-insert-118 

size library”) and sequenced. The resulting pair-end reads were merged into 119 

25,324,163 quality filtered longer reads to increase mapping accuracy (602,956 ± 120 

595,444 merged reads per sample) (See Methods) (Table S2). 121 

Identification of putative bacterial contaminants - Viromes prepared and 122 

sequenced from VLPs may be contaminated with bacterial DNA (Roux et al., 2013). 123 

However, given that phages are major agents of horizontal gene transfer and that 124 

temperate viruses often comprise up to 10% of bacterial genomes in a prophage 125 

state, removal of potential bacterial contamination risks also removing viral reads. To 126 

assess bacterial DNA contamination, we mapped virome reads against a set of 127 

8,163 fully assembled bacterial genomes. Our strategy consisted of evaluating the 128 

coverage along the length of each genome (in bins of 100Kb), and those genomes 129 

with a median coverage greater than 100 were considered contaminants. Reads 130 

mapping to short regions were considered to be prophages or horizontally 131 

transferred genes and retained (See Methods) (Figure 2A). Reads mapping to 132 

genomes determined to be potential contaminants were removed from further 133 

analyses. 134 

We identified 65 bacterial genomes as contributing to potential contaminant, 135 

with 1.006 ± 1.125% (average ± std) reads per sample mapping to those bacterial 136 
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genomes (Table S2). The majority (37/68) belonged to the Firmicutes phylum; at the 137 

species level, Bacteroides dorei, B. vulgatus, Ruminococcus bromii, 138 

Faecalibacterium prausnitzii, B. xylanisolvens, Odoribacter splanchnicus and B. 139 

caecimuris (in that order) were detectable in at least 50% of the samples (Table S2). 140 

If the most abundant bacterial species in the microbiome are the most likely sources 141 

of contamination, then the taxonomic composition of the bacterial contaminants 142 

should correlate with their corresponding bacterial abundances in the microbiome. 143 

However, we observed no significant correlation between the relative abundances of 144 

taxa represented in the contaminant DNA and in the microbiomes (Figure 2B).  145 

Functional profiles support viral enrichment in VLP purifications - To 146 

assess the functional content of the viromes, we annotated the “short-insert-size 147 

library” raw reads using the KEGG annotation of the Integrated Gene Catalog (IGC) 148 

(Li et al., 2014) (See Methods). In line with previous reports (Breitbart et al., 2008; 149 

Minot et al., 2011; Reyes et al., 2010), the majority of reads (85.43 ± 5.74%) from 150 

our VLP metagenomes mapped to genes with unknown function (Figure 3A).  151 

To further verify that sequences were derived from VLPs and not microbiomes 152 

generally, we conducted an internal check in which we generated and compared 153 

additional metagenomes from VLPs and bulk fecal DNA for an additional 4 154 

individuals (2 twin pairs; Figure 1A). As expected, the functional profiles of viromes 155 

and microbiome-metagenomes derived from the same samples were dissimilar. 156 

Virome reads that mapped to annotated genes were enriched in two categories: 157 

Genetic Information Process (48.87 ± 12.12%) and Nucleotide Metabolism (17.59 ± 158 

8.81%), compared to 24.31 ± 1.28% and 5.47 ± 0.4% for the microbiome-159 

metagenome, respectively (Figure 3B). Most of the other functional categories 160 
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present in the bacterial metagenomes were essentially absent from the viromes. 161 

Furthermore, the functional annotations of the viromes show greater between-162 

sample variability than the microbiomes and a lower intraclass correlation coefficient 163 

(Figure 3B). 164 

Viromes are unique to individuals - We assembled reads from the “large-165 

insert-size library” resulting in a total of 107,307 contigs ≥ 500 nt (max: 79,863 nt; 166 

mean 1,186nt ± 1,741; Figure S1). To assess the structure and composition of the 167 

viromes, a matrix of the recruitment of reads against dereplicated contigs were built 168 

(See Methods). The recruitment matrix included 14,584 contigs that were both long 169 

(> 1,300 nt) and well covered (> 5X); these are referred to as ‘virotypes’ (Figure S1). 170 

Analysis of the recruitment matrix showed that each individual harbored a unique set 171 

of virotypes: 3,415 virotypes (23.41% of total) were present in only one individual; 172 

413 virotypes (2.83%) were present in at least 50% of the individuals; only 18 173 

virotypes (0.1%) were present in all individuals.  174 

Twins with concordant microbiomes share virotypes - We checked for 175 

virotypes shared between twins and observed that co-twins did not share more 176 

virotypes than unrelated individuals (p = 0.074). We then assessed microbiome-177 

concordant and discordant twin pairs separately: twins with a discordant microbiome 178 

did not share more virotypes that unrelated individuals (p = 0.254), and twins with a 179 

concordant microbiome did share more virotypes than unrelated individuals (p = 180 

0.048). Furthermore, we also found that twins with a concordant microbiome shared 181 

more virotypes than twins with a discordant microbiome (p = 0.015; Figure S2).  182 
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Bacteriophage dominance of the gut virome - In order to characterize the 183 

taxonomic composition of the virome, we attempt to annotated all 66,446 184 

dereplicated and well covered contigs (Figure S1) using a voting system approach 185 

that exploited the information in both the assembled contigs and their encoding 186 

proteins (See Methods). In addition, we performed a custom annotation on two 187 

highly abundant gut-associated bacteriophage families: (i) the crAssphage (Dutilh et 188 

al. 2014; Yuting et al. 2018) and (ii) the Microviridae families (Székely and Breitbart 189 

2016). For this, we used profile Hidden Markov Models (HMMs) to search for 190 

crAssphage (dsDNA viruses) and Microviridae (ssDNA viruses) contigs (See 191 

Methods).  192 

Using HMMs allowed us to identify distant homologs, which we then 193 

incorporated into a phylogenetic tree with known reference sequences to confirm the 194 

annotation and better resolve the taxonomy. We annotated 108 contigs (19 195 

crAssphage, 90 Microviridae), validated the family assignment of 68 contigs, and 196 

assigned a subfamily to 97 contigs without previous subfamily assignment. For the 197 

Microviridae, only 11 contigs had a previous taxonomic assignment, all belonging to 198 

the Gokushovirinae: we confirmed these and 23 more as Gokushovirinae, 54 as 199 

Alpavirinae and 1 contig as Pichovirinae (Figure S3A). For the crAssphage, 11 200 

contigs were clustered with the original crAssphage, 3 contigs grouped with the 201 

reference Chlamydia phage, and 5 contig grouped with the reference IAS virus 202 

(Figure S3B).  203 

After collating the voting system annotation and the HMM annotation, a total 204 

of 12,751 contigs (29,62%) were taxonomically assigned (Figure S1). Viromes were 205 

dominated by bacteriophages with only 6.42% of contigs annotated as Eukaryotic 206 
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viruses. As expected, most of the contigs (96.98%) were dsDNA viruses, while only 207 

2.43% of contigs were annotated as ssDNA viruses. Caudovirales was the most 208 

abundant Order, with its three main families represented: Myoviridae (20.22 ± 209 

4.83%), Podoviridae (10.54 ± 3.27%), and Siphoviridae (35.25 ± 7.19%). The 210 

crAssphage family constituted on average 13.26% (± 12.24%) of the contigs, 211 

reaching a maximum contribution of 55.80% in one virome, and Microviridae 212 

represented 3.87 ± 2.57% of the viromes. Interestingly, we observed that 213 

Phycodnaviridae exceeded 1% of average abundance (1.77 ± 1.12%; Figure 4A) 214 

and that contigs related to any nucleocytoplasmic large DNA viruses (NCLDV) had a 215 

mean relative contribution of 3.99 ± 2.22%. The 18 contigs present in all samples 216 

included 10 annotated as crAssphage, 2 annotated as “unclassified Myoviridae”, 2 217 

“unclassified Caudovirales”, 1 classified as Microviridae, and 3 unclassified. Within a 218 

defined taxonomic profile for each sample, we looked for differences in composition 219 

between viromes at all taxonomic levels for concordant and discordant twin-pairs. 220 

There were no significant differences between groups for any taxa at the Order and 221 

Family levels, including crAssphage and Microviridae families (Figure 4B). 222 

We used CRISPR spacer mapping and the microbe-versus-phage (MVP) 223 

database (Gao et al., 2018) to predict hosts for virotypes and taxonomically 224 

characterized contigs (See Methods). As host annotation was directed to 225 

bacteriophages, we did not gain any information for contigs annotated as Eukaryotic 226 

viruses. These approaches allowed us to identify putative hosts for 910 contigs. 227 

Within these 910 contigs, only one was previously annotated as crAssphage, and ss 228 

expected, its host was inferred to be a member of Bacteroidetes. In total we 229 

identified 1,280 bacterial putative host strains, including 187 species from 87 genera 230 

over several phyla; most of them from Firmicutes (92), followed by Bacteroidetes 231 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 2, 2019. ; https://doi.org/10.1101/509273doi: bioRxiv preprint 

https://doi.org/10.1101/509273
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

11 

(41) and Proteobacteria (38). The median number of host for each contig was 1 232 

(IQR=1-2) while the median number of phages per host, at the strain level, was 2 233 

(IQR=1-3) (Figure S4). 234 

Virome diversity correlates with microbiome diversity - To assess the 235 

relationship between virome and microbiome diversity, we examined the within-236 

samples diversity (α-diversity) and β-diversity of the viromes using three different 237 

layers of information that we recovered from the sequence data: i) virotypes, iii) 238 

taxonomically annotated contigs, and iii) annotated genes from short reads (Figure 239 

S1).  240 

Alpha-diversity - α-diversities of the microbiome and the virome were 241 

positively correlated in two of the three layers of information used to test the 242 

correlation (virotypes and taxonomy annotated contigs but not genes; Figure 5A). 243 

We used annotated contigs to ask about the α-diversity within subgroups of viruses: 244 

(ssDNA eukaryotic, dsDNA eukaryotic, ssDNA bacteria and dsDNA bacteria). Our 245 

results show that the diversity of eukaryotic viruses does not correlate with the 246 

microbiome α-diversity. In contrast, bacteriophages and microbiome α-diversity were 247 

positively correlated, for both ssDNA or dsDNA bacterial viruses (Figure 5B).  248 

Beta-diversity - We observed that concordant twins had lower virome β-249 

diversity compared to discordant twins using Hellinger distances (Figure 6); the 250 

mean binary Jaccard distance and Bray-Curtis dissimilarity of viromes also showed 251 

the same trend (Figure S5A and S5B). Similar to what we observed with α-diversity, 252 

regardless of the layer of information used, the mean Hellinger distance of viromes 253 

within MZ twin pairs with concordant microbiomes was significantly lower than that of 254 

MZ twin pairs with discordant microbiomes (p < 0.04, Mann-Whitney's U test) 255 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 2, 2019. ; https://doi.org/10.1101/509273doi: bioRxiv preprint 

https://doi.org/10.1101/509273
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

12 

(Figure 6). Furthermore, a similar significant positive correlation was observed 256 

between microbiome and virome β-diversity when using the annotated contigs. This 257 

relationship was driven by the bacteriophages (p = 0.009, Mann-Whitney's U test), 258 

but not the eukaryotic viruses (p = 0.243, Mann-Whitney's U test). 259 

Finally, we compared the virome and microbiome pairwise distances among 260 

related (co-twins) and unrelated individuals. The pairwise distance matrices showed 261 

a positive correlation between virome and microbiome β-diversity measures not only 262 

within twin pairs (Pearson correlation coefficient > 0.50) but also generally across all 263 

individuals (Pearson correlation coefficient > 0.25; p < 0.003, Mantel test; Figure 264 

S5C). These results show that regardless of genetic relatedness between hosts, 265 

individuals with more similar microbiomes harbour more similar viromes.  266 

 267 

DISCUSSION 268 

Co-twins, like other siblings, generally have more similar gut microbiomes 269 

within their twinships compared to unrelated individuals (Lee et al., 2011; Palmer et 270 

al., 2007; Tims et al., 2013; Turnbaugh et al., 2009; Yatsunenko et al., 2012). 271 

Moreover, MZ twins have overall more similar microbiomes than DZ twins, although 272 

at a whole-microbiome level this effect is small and primarily driven by a small set of 273 

heritable microbiota (Goodrich et al., 2014, 2016). Within a population of MZ twin 274 

pairs, however, the range of within-twin pair differences in the microbiomes can be 275 

as great as for DZ twins (Goodrich et al., 2014). We took advantage of the large 276 

spread in β-diversity for MZ co-twins to select co-twins that were either highly 277 

concordant or discordant for their gut microbiomes. Our analysis of their viromes 278 

showed that despite the high variation in the gut viromes between individuals, and 279 
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regardless of host relatedness, the more dissimilar their microbiomes, the more 280 

dissimilar their viromes. This pattern was driven by the bacteriophage component of 281 

the virome. 282 

Here, by choosing MZ twins from a distribution of divergence in the 283 

microbiome, we removed host genetic relatedness as a variable. Previous studies of 284 

the viromes and microbiomes of infant twin pairs showed that the microbiomes and 285 

viromes of co-twins were more similar than those of unrelated individuals, suggested 286 

shared host genotype and/or environment were key (Lim et al., 2015; Reyes et al., 287 

2015). In contrast, an early study of the virome of adult twins showed that adult co-288 

twins did not have more similar viromes than unrelated individuals (Reyes et al., 289 

2010); however, in light of the current study’s results, this was likely a power issue. 290 

Indeed, in our dataset we observed that regardless of whether twins were 291 

concordant or discordant for their microbiomes, co-twins had more similar viromes 292 

(virotypes and taxonomy) than unrelated individuals. 293 

The previously reported greater virome similarity in young compared to adult 294 

twins has been related to the fact that infants have a greater shared environment 295 

compared to adult twins (Lim et al., 2015), particularly in terms of their diet. Minot et 296 

al., have also shown that individuals on the same diet have more similar gut viromes 297 

than individuals on dissimilar diets (Minot et al., 2011). It is well established that diet 298 

is a strong driver of daily microbiome fluctuation (Claesson et al., 2012; David et al., 299 

2014; De Filippo et al., 2010; Wu et al., 2011), so the effect of diet on the virome is 300 

likely mediated by the microbiome. However, we did not control for diet, so it is 301 

possible that the microbiome discordance that we observe was caused by co-twins 302 

eating differently around the time of sampling. Regardless of what underlies the 303 
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variance in microbiome concordance, it is strongly associated with virome 304 

concordance. 305 

The relationship between virome richness and microbiome richness had not 306 

previously been directly addressed in adults. We observed that the α-diversity of the 307 

microbiome and the virome were positively correlated using two of the three layers of 308 

information describing virome diversity. Specifically, this pattern was observed for 309 

virotypes and taxonomy but not for genes. However, since virome genes were 310 

observed to be enriched in only two categories, Genetic Information Processing and 311 

Nucleotide Metabolism, we would not expect differences in diversity of virome genes 312 

between subjects. The taxonomic annotation layer showed that the bacteriophage 313 

component of the virome, not the eukaryotic viruses, was driving this α-diversity 314 

correlation pattern.  315 

The positive relationship between virome and microbiome α-diversity 316 

suggests that a greater availability of hosts drives a greater availability of viruses. 317 

These observations are in accordance with “(Minot et al., 2013; Reyes et al., 2010), 318 

which posits that in a (Minot et al., 2013; Reyes et al., 2010) (Knowles et al., 2016). 319 

Indeed, longitudinal studies of the human gut virome have reported genes 320 

associated with lysogeny, low mutation rate over time in temperate-like contigs, and 321 

long-term stability of the virome, suggesting preference for a lysogenic cycle (Minot 322 

et al., 2013; Reyes et al., 2010). Nevertheless, phage predation has been 323 

acknowledged as an important factor for the maintenance of highly diverse and 324 

efficient ecosystems (Rodriguez-Valera et al., 2009) and may play a role in the 325 

maintenance of diversity in a rapidly changing ecosystem as the human gut (David et 326 

al., 2014). Short scale time-series analyses of virome-microbiome interactions, along 327 
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with a better understanding of the lysogenic-lytic switch in viral reproduction, would 328 

help to interpret the observed patterns in the human gut virome. 329 

The composition of the viromes described here was similar to what has been 330 

previously reported for adult fecal viromes (Minot et al., 2011, 2013; Reyes et al., 331 

2010) but stands in contrast to what has been observed in babies (Lim et al., 2015). 332 

From the annotated fraction of the virome, the order Caudovirales and its families 333 

Siphoviridae, Myoviridae, and Podoviridae, along with crAssphage, were the 334 

dominant phages in all samples. Manrique et al. have summarized the phage 335 

colonization of the infant gut as follows: the eukaryotic viruses first dominate the 336 

newborn gut, followed by the Caudovirales, and by 2.5 years of age the Microviridae 337 

start to dominate (Manrique et al., 2017). We did observe abundant Microviridae in 338 

our sample set, but the Caudovirales were the dominant group. Age was not related 339 

to patterns of diversity in the set of adult subjects studied here. 340 

Despite the high diversity and uniqueness of each virome described here, we 341 

nonetheless recovered a core virome among the subjects: 18 contigs were present 342 

in all samples. More than half of these contigs were annotated as crAssphage, 343 

consistent with recent reports that this phage is widespread (Dutilh et al., 2014; 344 

Manrique et al., 2016; Yarygin et al., 2017). Other shared virotypes in our dataset 345 

were classified as Myoviridae and Microviridae. We also recovered contigs mapping 346 

to representative families of the nucleocytoplasmic large DNA viruses (NCLDV), 347 

Phycodnaviridae and Mimiviridae. These types of viruses are increasingly reported 348 

as members of the human gut virome (Colson et al., 2013; Halary et al., 2016). A 349 

core set of bacteriophages consisting of nine representatives, including crAssphage, 350 

has previously been reported for the human gut (Manrique et al., 2016). Widely 351 
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shared virotypes may indicate the wide sharing of specific hosts between individuals, 352 

or that these viruses have a broad host range within the human microbiome. 353 

Our use of the HMMs to annotate viral contigs allowed a deep exploration into 354 

the taxonomic content of the virome. We annotated a diversity of contigs beyond 355 

what was revealed from comparisons to public databases, and also confirmed those 356 

annotations. Because each type of virus (e.g., family) requires its own HMM, we 357 

applied this method to a few key groups. When applied to the crAssphage, the HMM 358 

retrieved contigs that grouped only with sequences derived from fecal viromes and 359 

not with sequences from other environments (e.g., terrestrial or marine). This 360 

suggests that although crAssphage is a diverse group of bacteriophages, its diversity 361 

in the human gut is restricted to sequences related to the reference crAssphage 362 

genome (Dutilh et al., 2014), the IAS virus reference (Shkoporov et al., 2018), or 363 

Chlamydia bacteriophage (Yutin et al., 2018). We also applied HHM to the family 364 

Microviridae, which are single strand DNA bacteriophages. We were able to confirm 365 

the presence of diverse members of Gokushovirinae and Alpavirinae subfamilies. 366 

Although there is evidence that described Alpavirinae genomes constitute a third 367 

group of the Microviridae family (Krupovic and Forterre 2011; Roux et al. 2012), they 368 

correspond to prophages, which makes it difficult to integrate them into the taxonomy 369 

of the International Committee on Taxonomy of Viruses (ICTV), thus, no contigs 370 

were annotated as Alpavirinae prior to application of the HMM profiles.  371 

For each taxonomic group of viruses, there is a corresponding set of bacterial 372 

hosts. From the 16S rRNA gene diversity data we used to select the twin pairs, it is 373 

clear which bacteria phyla contribute the most to the differences in the microbiomes 374 

of concordant and discordant twins. But unlike for bacteria, we were not able to 375 
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discern such clear patterns by order or family in the virome. Indeed, most of the 376 

bacteriophage diversity is grouped in just one order, Caudovirales, and its three 377 

families Myoviridae, Podoviridae and Siphoviridae. Representatives of these families 378 

can infect unrelated hosts (Barylski et al., 2017). As such, we wouldn’t necessarily 379 

expect specific orders or families of viruses to show the patterns observed in the 380 

bacterial phyla.  381 

Finally, we noted an interesting pattern of complete bacterial genome 382 

coverage for select bacteria in the genomes. As these putative contaminants were 383 

not the most abundant members of the microbiome, they are unlikely to represent 384 

random contamination of bulk DNA. Why certain bacterial genomes showed such 385 

high coverage is unclear. One possibility is that we are observing the host species 386 

range of transposable phages. Phages such as the Mu phage randomly integrate 387 

into the host genome (Taylor, 1963), amplify by successive rounds of replicative 388 

transposition, and then can package any section of their host’s genome (Hulo et al., 389 

2011; Toussaint and Rice, 2017). Intriguingly, several of the contaminants detected 390 

here (e.g., B. vulgatus, B. dorei, F. prausnitzii and B. thetaiotaomicron) have also 391 

been reported as contaminants in other human gut virome studies (Minot et al., 392 

2011; Roux et al., 2013), which could indicate host-specificity of Mu phages. 393 

Alternative explanations include vesicle production, gene transfer agents and/or 394 

generalized transduction processes (Biller et al., 2014; McDaniel et al., 2010; Minot 395 

et al., 2011). Further comparisons of whole bacterial genomes recovered in diverse 396 

virome datasets may help shed light on their source, particularly if the same bacterial 397 

species are recovered across multiple studies. 398 
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Prospectus – Our results show that gut microbiome richness and diversity 399 

correlate to  virome richness and diversity, and vice-versa. The mechanics 400 

underlying this association remain to be resolved for the human gut. That the two are 401 

coupled may be useful to take into consideration when designing future studies of 402 

the virome and factors affecting. Baseline microbiome diversity may be important to 403 

balance between groups, for instance, prior to assessing the diversity of the virome.  404 

 405 

METHODS 406 

Selection of concordant and discordant monozygotic twin pairs - From 407 

16S rRNA gene diversity previously measured for 354 monozygotic twin pairs whose 408 

fecal samples were received between January 28th 2013 and July 14th 2014 409 

(Goodrich et al., 2014), we selected 11 concordant and 13 discordant MZ co-twins 410 

based on three microbiota β-diversity distances within twin pairs: unweighted 411 

UniFrac, weighted UniFrac (Lozupone et al., 2007) and Bray-Curtis (Bray and Curtis, 412 

1957). The twins pairs in the the concordant and the discordant groups were 413 

selected to be balanced between those two groups for age, BMI, and BMI difference 414 

within a twin pair (TableS1). Twins within the concordant group ranged in age from 415 

23 to 77 years old and included 5 men and 4 women, while those in the discordant 416 

group ranged in age from 29 to 81 years old with 5 men and 7 women. 417 

Isolation of virus-like particles (VLPs) from human fecal samples - VLP 418 

isolation procedures were based on the protocol described by (Gudenkauf et al., 419 

2014) and Minot et al. (Minot et al., 2013). For VLP isolation, ~0.5 g of fecal sample 420 

was resuspended by vortexing for 5-10 minutes in 15 ml PBS, previously filtered 421 

through 0.02 µm filter (Whatman). The homogenates were centrifuged for 30 min at 422 
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4,500 xg, and the supernatant was filtered through 0.22 µm polyethersulfone (PES) 423 

Express Plus Millipore Stericup (150 ml) to remove cell debris and bacterial-sized 424 

particles. The filtrate was then concentrated on a Millipore Amicon Ultra-15 425 

Centrifugal Filter Unit 100K to ~1 ml. The concentrate was transferred to 5 Prime 426 

Phase Lock Gel and incubated with 200 µl chloroform for 10 min at room 427 

temperature. After being centrifuged for 1 min at 15,000 xg, the aqueous layer was 428 

transferred to a new microcentrifuge tube, and was treated with Invitrogen TURBO 429 

DNase (14 U), Promega RNase One (20 U) and 1 µl Benzonase Nuclease (E1014 430 

Sigma Benzonase® Nuclease) at 37 ℃ for 3 hr (Gudenkauf and Hewson, 2016; 431 

Reyes et al., 2012). After incubation, 0.04 volumes 0.5 M EDTA was added to each 432 

sample. The sample was then stored at -80 ℃ before further processing. 433 

Viral DNA shotgun sequencing - The viral DNA was extracted with 434 

PureLink® Viral RNA/DNA Mini Kit from Invitrogen™. Each viral DNA sample was 435 

then amplified using GenomePlex® Complete Whole Genome Amplification (WGA2) 436 

Kit from Sigma-Aldrich (Gudenkauf and Hewson, 2016). Two blank controls were 437 

included in this step, but very low yield precluded library construction. The amplified 438 

product was then fragmented with Covaris S2 Adaptive Focused Acoustic Disruptor 439 

with the parameters set as follows: the duty cycle set at 10%, cycle per burst 200, 440 

intensity 4 and duration 60 seconds. Each viral sequencing library was prepared 441 

following Illumina TruSeq DNA Preparation Protocol with one unique barcode per 442 

sample. All barcoded libraries were pooled together. Half of the pool was size 443 

selected by BluePippin (Sage Science, Beverly, MA, USA) to enrich fragments with 444 

longer inserts (425 bp to 875 bp including the adapters). Both pools, the “large-445 

insert-size library” and the “short-insert-size library”, were sequenced in independent 446 
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lanes on an Illumina HiSeq 2500 instrument, operating in Rapid Run Mode with 250 447 

bp paired-end chemistry at the Cornell Genomics facility. 448 

Whole fecal metagenome shotgun sequencing - The genomic DNA was 449 

isolated from an aliquot of ~100 mg from each sample using the PowerSoil® - htp 450 

DNA isolation kit (MoBio Laboratories Ltd, Carlsbad, CA). Each sequencing library 451 

was then prepared following Illumina TruSeq DNA Preparation Protocol with 500 ng 452 

DNA using the gel-free method, 14 cycles of PCR, and with one unique barcode per 453 

sample. Sequencing was performed on an Illumina HiSeq 2500 instrument in Rapid 454 

Run mode with 2x150 bp paired-end chemistry at the Cornell Biotechnology 455 

Resource Center Genomics Facility. 456 

Assessment of Bacterial Contamination - A set of 8,163 finished bacterial 457 

genomes was retrieved from the NCBI FTP on 21 February 2017. Reads per sample 458 

were mapped against this bacterial genomes dataset using Bowtie2 v.2.2.8  459 

(Langmead and Salzberg, 2012) with the following parameters: --local --maxins 800 -460 

k=3. Genome coverage per base was calculated considering only reads with a 461 

mapping quality above 20 using view and depth Samtools commands v.1.5 (Li et al., 462 

2009). Next, genome coverage was averaged for 100Kbp bins. We observed that 463 

evenly covered genomes had a median bin coverage of at least 100; those genomes 464 

with a median bin coverage greater than 100 were considered as contaminants. The 465 

reads mapping to those genomes were removed. Bacterial genomes can have one 466 

or more prophage(s) in their genomes (Munson-McGee et al., 2018) bursting events 467 

of those prophages can occur, generating several VLPs. As a conservative measure 468 

to avoid the loss of reads originating from prophages and not the bacterial genome 469 

per se, bins with a coverage over three standard deviations of the bacterial mean 470 
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coverage were also identified and catalogued as prophages-like regions. Reads 471 

mapping to potential contaminant genomes were tagged as “contaminants” and 472 

removed from further analysis while reads mapping to high coverage bins were 473 

tagged as “possible prophages”. 474 

A matrix of the abundance of each potential contaminant per sample was built 475 

using an in-house Python script and normalized by RPKM. In parallel, from Goodrich 476 

et al. data (Goodrich et al., 2014), the relative abundance of each OTU was 477 

recovered and summarized at the species level using summarize_taxa.py qiime 478 

script. The Spearman rank order correlation between relative abundances of 479 

contaminants and their corresponding 16S rRNAs data was calculated for species in 480 

both sets. 481 

Functional profiles - The joined and trimmed reads from the “short-insert-482 

size library” were mapped onto Integrated Gene Catalogs (IGC), an integrated 483 

catalog of reference genes in the human gut microbiome (Li et al., 2014) by BLASTX 484 

using DIAMOND v.0.7.5 (Buchfink et al., 2015) with maximum e-value cutoff 0.001, 485 

and maximum number of target sequences to report set to 25. 486 

After the mapping onto IGC, an abundance matrix was generated using an in-487 

house Python script. The matrix was then annotated according to the KEGG 488 

annotation of each gene provided by IGC. The annotated abundance matrix was 489 

rarefied (subsampling without replacement) to 2,000,000 read hits per sample. The 490 

KEGG functional profile was then generated using QIIME 1.9 (Quantitative Insights 491 

Into Microbial Ecology) (Caporaso et al., 2010) using the command 492 

summarize_taxa_through_plots.py. The Intraclass Correlation Coefficient of the 493 

functional profiles for each group (additional microbiomes, additional viromes, 494 
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viromes of concordant-microbiome samples and viromes of discordant-microbiome 495 

samples) was calculated using the Psych R package. 496 

De-novo assembly - Reads from the “large-insert-size library” that remain 497 

paired (forward and reverse) after the trimming step were assembled using 498 

Integrated metagenomic assembly pipeline for short reads (InteMAP) (Lai et al., 499 

2015) with insert size 325 bp ± 100 bp. Each sample was assembled separately. 500 

After the first run of assembly, all clean reads were mapped to the assembled 501 

contigs using Bowtie2 v.2.2.8 (Langmead and Salzberg, 2012) with the following 502 

parameter: --local --maxins 800. The pairs of reads that aligned concordantly at least 503 

once were then submitted for the second run of assemble by InteMAP. Contigs 504 

larger than 500 bp from all samples were pooled together and compared all vs all, 505 

using an in-house Perl script, on the comparison file it was possible to identify 506 

potential circular genomes, and dereplicate contigs that were contained in over 90% 507 

of their length within another contig.  508 

In order to build an abundance matrix, the recruitment of reads to the 509 

dereplicated metagenomic assemblies was used implementing a filter of coverage 510 

and length as recommended in Roux et al. (Roux et al., 2017). With this in mind, 511 

reads (not tagged as contaminants in the previous step) were mapped to 512 

dereplicated contigs using Rsubread v.1.28.0 (Liao et al., 2013). Mapping outputs 513 

were parsed using an in-house Python script into an abundance matrix that was 514 

normalized by reads per kilobase of contig length per million sequenced reads per 515 

sample (RPKM) and transformed to Log10(x+1), being x the normalized abundance. 516 

Contigs with a normalized coverage bellow 5x were excluded. Finally, to virotypes, a 517 

filter on contig length was applied. A length threshold was chosen as the elbow of 518 
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the decay curve generated when plotting the number of contigs as a function of 519 

length, which occurred at a length of 1,300 bp. 520 

HMM annotation - Independent HMM profiles were built to identify crAss-like 521 

contigs and Microviridae contigs. To build the HMM-crAsslike profile, sequences for 522 

the Major Capsid Protein (MCP) of the proposed crAss-like family (Yutin et al., 2018) 523 

were retrieved from ftp.ncbi.nih.gov/pub/yutinn/crassphage_2017/. Multiple 524 

sequence alignments (MSA) were done using MUSCLE v.3.8.31(Edgar, 2004) and 525 

inspected using UGENE v.1.31.0 (Okonechnikov et al., 2012); positions with more 526 

than 30% of gaps were removed. Finally, the HMM-crAsslike profile was built using 527 

hmmbuild from the HMMER package v.3.1b2 (http://hmmer.org/) (Eddy, 1998). For 528 

the Microviridae case, all HMM-profiles for the viral protein 1 (VP1) developed by 529 

Alves et al. (Alves et al., 2016) were adopted. 530 

Predicted proteins of the assembled contigs were queried for matching the 531 

HMM-profiles using hmmsearch (Eddy, 1998). Matching proteins with an e-value 532 

below 1x10-5 were considered as true homologs but only proteins between the size 533 

rank of the reference proteins (crAsslike MCP: 450-510 residues; Microviridae: 450-534 

800 residues), a coverage of at least 50% and a percentage of identity of at least 535 

40% to at least one reference sequence were used for further analysis. Coverage 536 

and identity percentage were determined making a BLASTp of the true homologues 537 

against the reference sequences.  538 

True homologues passing the filters mentioned above were used in 539 

phylogenetic analysis. Reference and homologous sequences were aligned using 540 

MUSCLE v.3.8.31 and sites with at least 30% of gaps were removed using UGENE 541 

v.1.31.0. A maximum-likelihood (ML) phylogenetic analysis was done using RAxML 542 
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v.8.2.4 (Stamatakis, 2014), the best evolutive model was obtained with prottest 543 

v.3.4.2 (Darriba et al., 2011) and support for nodes in the ML trees were obtained by 544 

bootstrap with 100 pseudoreplicates. 545 

Taxonomic profiles - To infer the taxonomic affiliation of the assembled 546 

VLPs, genes were predicted from all assembled contigs larger than 500 bp using 547 

GeneMarkS v.4.32 (Besemer et al., 2001). The amino acid sequence of the 548 

predicted genes was then used in a BLASTp search against the NR NCBI viral 549 

database using DIAMOND v.0.7.5 (Buchfink et al., 2015) with maximum e-value 550 

cutoff 0.001 and maximum number of target sequences to report set to 25. Using the 551 

BLASTp results, the taxonomy of each gene was assigned by the lowest-common- 552 

ancestor algorithm in MEtaGenome ANalyzer (MEGAN5) v.5.11.3 (Huson et al., 553 

2011) with the following parameters: Min Support: 1, Min Score: 40.0, Max Expected: 554 

0.01, Top Percent: 10.0, Min-Complexity filter: 0.44. Independently, the taxonomy 555 

annotation of each contig was obtained using CENTRIFUGE v.1.0.4 (Kim et al., 556 

2016) against the NT NCBI viral genomes database. The final taxonomic annotation 557 

of each contig was then assigned using a voting system where the taxonomic 558 

annotation of each protein and the CENTRIFUGE annotation of the contig were 559 

considered as votes. With all the possible votes for a contig, an N-ary tree was build 560 

and the weight of each node was the number of votes including that node. The 561 

taxonomic annotation of a contig will be the result of traverse the tree passing 562 

through the heaviest nodes with one consideration: if all children nodes of a node 563 

have the same weight the traversing must be stopped. The taxonomic profile was 564 

considered as a subset of the recruitment matrix containing all contigs annotated 565 

either by the voting system or annotated through the HMM profiles (see above). 566 
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Prediction of phage-host interaction - Clustered Regularly Interspaced 567 

Short Palindromic Repeats (CRISPRs) were identified using the PilerCR program 568 

v.1.06 (Edgar, 2007) from the same set of 8,163 bacterial used to asses the bacterial 569 

contamination. Spacers within the expected size of 20 bp and 72 bp (Horvath and 570 

Barrangou, 2010) were used as queries against virotypes and taxonomically 571 

annotated contigs using BLASTn (v.2.6.0+) with short query parameters (Camacho 572 

et al., 2009). Matches covering at least 90% of the spacer and with an e-value < 573 

0.001 were considered to be CRISPR spacer-virus associations. Additionally, 574 

virotypes and taxonomically annotated contigs were mapped against the 575 

representatives genomes of the viral clusters in the MVP database (Gao et al., 2018) 576 

using LAST-959 (Kiełbasa et al., 2011). As viral clusters in MVP comprise 577 

sequences that have at least 95% identity along at least 80% of their lengths, only 578 

matches that fulfill those constraints were kept. The host(s) of a contig was 579 

determined from its matching viral cluster. 580 

 Diversity indexes - The Shannon diversity index within-samples (α-diversity) 581 

and the Hellinger distance within co-twins (β-diversity) were calculated using 582 

diversity and vegdist functions of Vegan R package for all three abundance matrices 583 

generated (function, taxonomy and read recruitment matrices). Correlations between 584 

virome α-diversity and microbiome α-diversity were measured using the Pearson 585 

correlation coefficient. Correlations between viromes β-diversity and the 586 

microbiomes β-diversity was computed with a the Mantel test using the Pearson 587 

correlation coefficient. Additionally, the β-diversity between concordant MZ co-twins 588 

was compared to the β-diversity between discordant MZ co-twins; p values were 589 

calculated using Mann-Whitney U test. 590 
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DATA AND SOFTWARE AVAILABILITY 591 

Jupyter notebooks and scripts describing the data analysis process are 592 

available on GitHub at https://github.com/leylabmpi/TwinsUK_virome 593 

The sequence data have been deposited in the European Nucleotide Archive under 594 

the study accession number PRJEB29491.  595 
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FIGURE TITLES AND LEGENDS 823 

Figure 1. Microbiome discordance in twin pairs. (A) The β-diversity 824 

measures of the microbiotas of 354 monozygotic twin pairs from a previous study 825 

(Goodrich et al., 2014) are shown. Each dot represents the β-diversity of a pair of 826 

twins, measured by the weighted UniFrac (x-axis), unweighted UniFrac (z-axis), and 827 

Bray-Curtis (y-axis) β-diversity metrics. The three β-diversity metrics are in general 828 

correlated (Pearson pairwise correlation coefficient > 0.4). The plane is the least 829 

squared fitted plane Bray-Curtis ~ Weighted UniFrac + Unweighted UniFrac. A 830 

subset of twin pairs with concordant microbiotas (blue) and discordant microbiotas 831 

(orange) were chosen from the two edges. Black dots indicate the samples used for 832 

virome and whole fecal metagenome comparison. (B) Comparison of the taxonomic 833 

profiles (relative abundance) at the Phylum level for the 21 MZ twin pairs concordant 834 

(1-9) or discordant (10-21) for their microbiotas. (C) Differences in the relative 835 

abundances for the major phyla for concordant (blue points, n=9) and discordant 836 

(orange points, n=12) twin pairs. Mann-Whitney's U test. *** p < 0.0005, * p = 0.055 837 

 838 

Figure 2. Bacterial contamination in VLP preparations. (A) Heatmap of 839 

VLP reads from sample 4A mapping to bacterial genomes before and after the 840 

removal of reads determined as contaminants. Genomes are sorted by length and 841 

split in bins of 100,000 bp. Bacterial genomes with a median coverage greater than 842 

100 were considered as contaminants. (B) Cladogram based on the NCBI taxonomy 843 

of the 65 genomes identified as contaminants across all VLP extractions. (Right) 844 

Spearman rank correlation coefficient (rho) between the abundance of the bacterial 845 

genomes in the VLP extractions and 16S rRNA gene profile from the microbiome. 846 

(Left) Total abundance of each bacterial genome added across all individuals. 847 
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 848 

Figure 3. Comparison of the gene content of whole fecal metagenomes 849 

and viromes. Relative abundance of KEGG categories in whole fecal metagenomes 850 

and viromes. (A) The relative abundance of KEGG categories in whole fecal 851 

metagenomes and viromes, including all hits to IGC genes, regardless of the 852 

annotation. (B) Heatmap of the relative abundance of the second level of KEGG 853 

categories in whole fecal metagenomes and viromes, excluding the IGC genes with 854 

unknown annotation. A.V.: Additional viromes; A.M.: Additional microbiomes (whole 855 

genome extractions). Intra-class coefficient (ICC) for A.M. = 0.99; ICC for A.V. = 856 

0.85; ICC concordant-microbiome co-twins = 0.69; ICC discordant-microbiome co-857 

twins = 0.68. 858 

 859 

Figure 4. Virome composition. Comparison of the taxonomic profiles at the 860 

Family level for the 21 MZ twin pairs concordant (1-9) or discordant (10-21) for their 861 

viromes. (A) The viral family composition of the MZ twins. (B) Differences of the 862 

relative abundances of each family for concordant (blue points, n=9) and discordant 863 

(orange points, n=12) twin pairs.  864 

 865 

Figure 5. Bacteriophages diversity correlates with microbiome diversity 866 

but eukaryotic viruses diversity do not. (A) Correlation of Shannon α-diversity of 867 

viromes to Shannon α-diversity of microbiomes (n=42). i) Virotypes: Pearson 868 

correlation coefficient = 0.406, m = 0.3, p = 0.007, R2 = 0.165; ii) Taxonomy: 869 

Pearson correlation coefficient = 0.389, m = 0.25, p = 0.010, R2 = 0.151; iii) Genes: 870 

Pearson correlation coefficient = 0.105, m = 0.11, p = 0.506, R2 = 0.011 (B) 871 

Correlation of the Shannon α-diversity of the virome, calculated from contigs 872 
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annotated as ssDNA eukaryotic viruses, ssDNA phages, dsDNA eukaryotic viruses, 873 

and dsDNA phages, to Shannon α-diversity of the microbiome (n=42). ssDNA 874 

eukaryotic viruses: Pearson correlation coefficient = 0.027, m = 0.034, p = 0.863, 875 

R2 = 0.000751; ssDNA bacteriophages: Pearson correlation coefficient = 0.394, m 876 

= 0.35, p = 0.009, R2 = 0.155; dsDNA eukaryotic viruses: Pearson correlation 877 

coefficient = 0.143, m = 0.15, p = 0.368, R2 = 0.020; dsDNA bacteriophages: 878 

Pearson correlation coefficient = 0.400, m = 0.25, p = 0.008, R2 = 0.16.  879 

 880 

Figure 6. Virome Beta-diversity patterns mirror microbiome Beta-881 

diversity. Box plots show the distribution of Hellinger distances for microbiomes and 882 

viromes, according to the three different layers of information recovered (virotypes, 883 

function, and taxonomy), for concordant co-twins (blue, n=9), discordant co-twins 884 

(orange, n=12), unrelated samples within the concordant co-twins (blue edges, 885 

n=144), and unrelated samples within the discordant co-twins (orange edges, 886 

n=264). Significant differences between means (Mann-Whitney's U test, p < 0.020) 887 

are denoted with different letters. 888 

 889 

SUPPLEMENTAL INFORMATION LEGENDS 890 

Figure S1. Schematic representation summarizing the procedures applied to 891 

(left) the “large-insert-size library” and (right) the “short-insert-size library” to obtain 892 

three different layers of information used to analyze the virome diversity of the 893 

microbiome-concordant and microbiome-discordant co-twins.  894 

 895 

Figure S2. Box plots showing the distribution of the number of shared 896 

virotypes between different groups made from the 21 MZ co-twins. (Up left) All co-897 
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twins vs unrelated individuals. (Up right) Microbiome-discordant co-twins vs 898 

unrelated individuals in the same group. (Down left) Microbiome-concordant co-twins 899 

vs unrelated individuals in the same group. (Down right) Microbiome-concordant co-900 

twins vs microbiome-discordant co-twins. Mann-Whitney's U test. * p < 0.05; n.s: not 901 

significant difference. 902 

 903 

Figure S3. Maximum likelihood phylogenetic analysis of (A) the VP1 protein 904 

of Microviridae phages and (B) the MCP protein of crAssphage found in the 42 MZ 905 

viromes. Reference sequences are in purple, outgroup sequences are in red while 906 

the different MCP or VP1 proteins found in this work are labeled in black. Circles in 907 

the nodes indicates bootstrap values above 70%.  908 

 909 

Figure S4. Cladogram based on the NCBI taxonomy showing the bacteria 910 

identified as hosts. The cladogram is summarized by genus, and clades are colored 911 

by Phylum. Blue: Firmicutes; Red: Actinobacteria; Yellow: Tenericutes; Green: 912 

Proteobacteria; Purple: Bacteroidetes; Light green: Fusobacteria; Magenta: 913 

Verrucomicrobia; Light blue: Euryarchaeota. Red bars indicate the number of 914 

species in each genus, and green bars show the dereplicated number of contigs 915 

associated to each genus (i.e. if a contig was found associated to two species in that 916 

genus, it is only shown one time).  917 

 918 

Figure S5. Box plots showing the distribution of (A) the Jaccard distances 919 

and (B) Bray-Curtis distances for microbiomes and viromes, according to the three 920 

different layers of information recovered (virotypes, function and taxonomy). 921 

Significant differences between means (Mann-Whitney's U test) are denoted with 922 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 2, 2019. ; https://doi.org/10.1101/509273doi: bioRxiv preprint 

https://doi.org/10.1101/509273
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

37 

different letters. Groups and n values as in Figure 6. (C) Correlation between virome 923 

β-diversity and microbiome β-diversity (n=840). i) Virotypes: Pearson correlation 924 

coefficient among all individuals = 0.382 (p = 0.0005, Mantel test), m = 0.167, p = 0, 925 

R2 = 0.157; Pearson correlation coefficient among co-twins = 0.522, m = 0.188, p = 926 

0.015, R2 = 0.1508 ; ii) Taxonomy annotated contigs: Pearson correlation 927 

coefficient among all individuals = 0.266 (p = 0.003, Mantel test), m = 0.140, p = 0, 928 

R2 = 0.0796; Pearson correlation coefficient among co-twins = 0.512, m = 0.186, p = 929 

0.017, R2 = 0.224; iii) Genes: Pearson correlation coefficient among all individuals = 930 

0.344 (p = 0.0009, Mantel test), m = 0.162, p = 0, R2 = 0.123; Pearson correlation 931 

coefficient among co-twins = 0.53, m = 0.182, p = 0.012, R2 = 0.248. Lines describe 932 

linear regressions of pairwise distances among all individuals. Triangles indicate 933 

concordant-microbiome co-twins and squares indicate discordant-microbiome co-934 

twins. 935 

 936 

Table S1. Additional information pertaining to the 21 selected MZ twin pairs 937 

(metadata), and counts of viromes reads and contigs per sample. 938 

 939 

Table S2. Median bin coverage of bacterial genomes by VLP reads per 940 

sample. 941 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 2, 2019. ; https://doi.org/10.1101/509273doi: bioRxiv preprint 

https://doi.org/10.1101/509273
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.40.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.40
0.45

0.50
0.55

0.60
0.65

0.70
0.75

Unweighted UniFracBr
ay

-C
ur

tis

A

concordant Weighted UnirFrac

discordant

Figure 1.

Re
la

tiv
e 

Ab
un

da
nc

e

0.00

0.20

0.40

0.60

1.00

0.80

Concordant Discordant

Firmicutes

Bacteroidetes

Proteobacteria

Tenericutes

Verrucomicrobia

Actinobacteria

Other

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21B
Phylum

0.00

0.10

0.20

0.30

0.50

0.40

0.00

0.05

0.10

0.15

0.25

0.20

D
iff

er
en

ce
 w

ith
in

 tw
in

 p
ai

rs

Firmicutes
Bacteroidetes

Proteobacteria

Tenericutes

Verrucomicrobia

Actinobacteria

D
iff

er
en

ce
 w

ith
in

 tw
in

 p
ai

rs
*** *** * Concordant

Discordant

C

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 2, 2019. ; https://doi.org/10.1101/509273doi: bioRxiv preprint 

https://doi.org/10.1101/509273
http://creativecommons.org/licenses/by-nc-nd/4.0/


Bi
n

0
1

2
3

4
5

Bi
n 

C
ov

er
ag

e
Lo

g 10
(M

ed
ia

n 
C

ov
er

ag
e)

Bacterial Genomes

1
2

3
4

0
A.

10
0

40
80

60
20

Figure 2.

Bi
n

0
1

2
3

4
5

Bi
n 

C
ov

er
ag

e

Bacterial Genomes

Lo
g 10

(M
ed

ia
n 

C
ov

er
ag

e)
1

2
3

4
0

10
0

40
80

60
20

3.
5

3 2.
5

2 1.
5

1 0.
5

0 -0
.6

-0
.3

0.
6

0.
3

0

Enterobacter kobei

Roseburia hominis

Acidaminococcus intestini
Pelosinus fermentans

Ruminococcus sp.

Eubacterium eligens

Coprococcus catus

Ruminococcus obeum CAG 39

Lysinibacillus sphaericus

Bacteroides xylanisolvens

Bacteroides helcogenes

Bacteroides caecimuris

Acinetobacter johnsonii

Alistipes shahii

Bifidobacterium adolescentis

Candidatus Saccharibacteria

Enterococcus gallinarum

Paenibacillus glucanolyticus

Methylophilus sp.

Bacteroides salanitronis

Acinetobacter lwoffii

Enterobacter cloacae subsp. cloacae

Ruminococcus bromii

Clostridioides difficile

Odoribacter splanchnicus

Roseburia intestinalis

Bacteroides cellulosilyticus

Bacteroides ovatus

Faecalibacterium prausnitzii

Enterobacter sp.

Enterobacter asburiae

Haemophilus parainfluenzae

Bifidobacterium catenulatum

Eubacterium rectale

Rahnella sp.

Bacteroides dorei

Enterococcus faecalis

Flavonifractor plautii

Bacteroides vulgatus

Acinetobacter sp.

Streptococcus salivarius

Alistipes finegoldii

Clostridium perfringens

Parvimonas micra

Pseudomonas sp.

Veillonella parvula

Eubacterium siraeum

Anaerostipes hadrus

Ruminococcus bicirculans

Bifidobacterium longum

Bacteroides thetaiotaomicron

Streptococcus thermophilus

Bacteroides fragilis

Bifidobacterium kashiwanohense

Lactobacillus oris

Parabacteroides distasonis

Rahnella aquatilis

Candidatus Melainabacteria

Clostridium sphenoides

Akkermansia muciniphila

Leuconostoc mesenteroides

Lactobacillus fermentum

Ruminococcus torques

Cupriavidus gilardii

Enterococcus casseliflavus

Phyla

Bacteroidetes

Proteobacteria

Actinobacteria

Firmicutes

Verrucomicrobia

Cyanobacteria

Log10(Sum of Abundances) rho

B.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 2, 2019. ; https://doi.org/10.1101/509273doi: bioRxiv preprint 

https://doi.org/10.1101/509273
http://creativecommons.org/licenses/by-nc-nd/4.0/


cellular processes
cellular processes and signaling
environmental information processing
genetic information processing
human diseases
metabolism
organismal systems
poorly characterized
unknown

R
el

at
iv

e 
Ab

un
da

nc
e

0.00

0.25

0.50

0.75

1.00

Concordant Discordant

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
A

0.75

22 23 22 23

A.V. A.M.

Figure 3.

Concordant Discordant A.V. A.M. KEGG pathway

0.
00

0.
06

0.
12

0.
18

0.
24

0.
30B

2 5

22 22

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 2, 2019. ; https://doi.org/10.1101/509273doi: bioRxiv preprint 

https://doi.org/10.1101/509273
http://creativecommons.org/licenses/by-nc-nd/4.0/


R
el

at
iv

e 
Ab

un
da

nc
e

0.00

0.25

0.50

0.75

1.00

Concordant Discordant

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
A

Siphovirdae

Myoviridae

Podoviridae

Phycodnaviridae

crAssphage

Microviridae

Unclassified Caudovirales

Family

Unknown

Underrepresented

Figure 4.

0.00

0.05

0.10

0.15

0.25

0.20

D
iff

er
en

ce
 w

ith
in

 tw
in

 p
ai

rs

0.35

0.30

Siphoviridae
Myoviridae

Podoviridae
Phycodnaviridae

crAssPhage
Microviridae

Unclassified Caudovirales

B

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 2, 2019. ; https://doi.org/10.1101/509273doi: bioRxiv preprint 

https://doi.org/10.1101/509273
http://creativecommons.org/licenses/by-nc-nd/4.0/


�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

5

6

7

8

9 10 11

Virotypes Taxonomy Genes

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

9

10

11

5 6 7 8

Al
ph

a 
D

iv
er

si
ty

 (V
iro

m
e)

�

�

�

�

�

�

�
�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

15

16

17

18

5 6 7 8

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

9.0

9.5

10.0

10.5

5 6 7 8
Alpha Diversity (Microbiome) 

A

Figure 5.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

� �

�

�

0

1

2

3

4

5 6 7 8

Alpha Diversity (Microbiome) 

Al
ph

a 
D

iv
er

si
ty

 (V
iro

m
e)

Eukaryotic host

ss
D

N
A 

Vi
ru

se
s

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

3

4

5

6

5 6 7 8

Bacterial host

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

4

5

6

7

5 6 7 8

ds
D

N
A 

vi
ru

se
s

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

9.0

9.5

10.0

10.5

5 6 7 8

B

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 2, 2019. ; https://doi.org/10.1101/509273doi: bioRxiv preprint 

https://doi.org/10.1101/509273
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.8

0.9

1

1.1

1.2

1.3

1.4

H
el

lin
ge

r

Virotypes Function TaxonomyBacteria 16S

a
a

a

a

a

b b b
b

b b

b

 b
c c

c

MICROBIOME VIROME

Figure 6.

Concordant
Twins

Discordant
Twins

Unrelated 
concordant group

Unrelated 
discordant group

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 2, 2019. ; https://doi.org/10.1101/509273doi: bioRxiv preprint 

https://doi.org/10.1101/509273
http://creativecommons.org/licenses/by-nc-nd/4.0/


Long-insert paired-end reads Short-insert paired-end reads

Assembly

Dereplication

Map clean reads to 
contigs

Coverage filter

72,609 clean contigs

66,446 contigs

12,751 contigs

Taxonomic 
annotation

Length 
filter

42
 s

am
pl

es

42
  s

am
pl

es

14,584 virotypes

42
  s

am
pl

es

3,015,330 genes

42
 s

am
pl

es
42

 s
am

pl
es

107,307 contigs > 500 bp

Merge paired-end reads

25,324,163 merged reads

Map to ICG and KEGG 
annotation

76,609 dereplicated contigs

Contigs with 
taxonomic
 annotationVirotypes 6,258

Layer I:
Virotypes

Layer II:
Taxonomically

 annotated contigs
Layer III:

Annotated genes

Figure S1.
.CC-BY-NC-ND 4.0 International licensea

certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 
The copyright holder for this preprint (which was notthis version posted January 2, 2019. ; https://doi.org/10.1101/509273doi: bioRxiv preprint 

https://doi.org/10.1101/509273
http://creativecommons.org/licenses/by-nc-nd/4.0/


Co-twins
n = 21

Unrelated individuals
n = 840

200

400

600

800

1000

1200

1400

N
um

ab
er

 o
f s

ha
re

d 
vi

ro
ty

pe
s

n.s.

Figure S2.

Microbiome-Discordant
co-twins
n = 12

Unrelated individuals
n = 264

200

400

600

800

1000

N
um

ab
er

 o
f s

ha
re

d 
vi

ro
ty

pe
s

n.s.

Microbiome-Concordant
co-twins

n = 9

Unrelated individuals
n = 144

400

600

800

1000

1200

1400

N
um

ab
er

 o
f s

ha
re

d 
vi

ro
ty

pe
s

*

Microbiome-Concordant
co-twins

n = 9

Microbiome-Discordant
co-twins
n = 12

200

400

600

800

1000

1200

*

N
um

ab
er

 o
f s

ha
re

d 
vi

ro
ty

pe
s

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 2, 2019. ; https://doi.org/10.1101/509273doi: bioRxiv preprint 

https://doi.org/10.1101/509273
http://creativecommons.org/licenses/by-nc-nd/4.0/


Tree scale: 1

B

crAssphage
Chlamydia group
IAS virus group
crAssphage group
outgroup
Known representants
Viromes MCP

Microviridae subfamilies
Pichovirinae
Alpavirinae
Gokushovirinae
Outgroup
Known representants
Viromes VP1

Tree scale: 1

A

Figure S3.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 2, 2019. ; https://doi.org/10.1101/509273doi: bioRxiv preprint 

https://doi.org/10.1101/509273
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S4. 
 

 

Sphingobacterium
Fr

an
ci

se
lla

Erysipelotrichaceae bacterium I46

Haf
ni

a

Enterobacter

B
ut

yr
ic

ic
oc

cu
s

M
et

hy
lo

ba
ci

llu
s

Coprococcus

Paenibacillus

Erysipelatoclostridium

Erysipelotrichaceae bacterium 5_2_54FAA

Phascolarctobacterium

Mycoplasma

Klebsiella

Firmicutes bacterium CAG:110

Lachnospiraceae bacterium 7_1_58FAA

Paraprevotella

Clo
st

rid
ia

le
s 

ba
ct

er
iu

m
 1

_7
_4

7F
AA OenococcusC

lostridioides

Cronobacter

Blautia

C
am

py
lo

ba
ct

er

[Eubacterium] rectale ATCC 33656

Faecalib
acteriu

m

Lachnospiraceae bacterium 3_1_46FAA

Peptoniphilus

Dorea

Kosakonia

Pan
to

ea

Therm
acetogenium

Parabacteroides

Megasphaera

C
lo

st
rid

iu
m

Lactococcus
Streptococcus

Ruminiclostrid
ium

Su
lfu

ro
sp

iri
llu

m

Kluyvera

O
scillibacter

Alistipes
Roseburia

[B
ac

te
ro

id
es

] p
ec

tin
op

hi
lu

s 
AT

CC
 4

32
43

Stomatobaculum

Firmicutes bacterium CAG:145

B
ur

kh
ol

de
ria

le
s 

ba
ct

er
iu

m
 Y

L4
5

O
doribacter

Dick
ey

a

Bib
er

st
ein

ia

Aga
th

ob
ac

ulu
m

Citro
bacter

N
ei

ss
er

ia

Akkermansia
In

te
st

in
im

on
as

Parageobacillus

Leptotrichia

Eubacterium

Holdemania

Chlorobium

Lachnospiraceae bacterium 3_1_57FAA_CT1

Ruminococcaceae bacterium D16

Psychroflexus

M
ucilaginibacter

Bifidobacterium

Veillonella

Kyrpidia

Niabella

Fl
av

on
ifr

ac
to

r

C
aldicellulosiruptor

Paludibacter

Az
ot

ob
ac

te
r

bu
ty

ra
te

-p
ro

du
cin

g 
ba

ct
er

iu
m

 S
S3/4

Methanobrevibacter

Lachnoclostridium

Ruminoco
cc

us

O
xa

lo
ba

ct
er

Butyrivibrio

Prevotella

Lactobacillus

Th
er

m
in

co
la

Barnesiella

[Eubacterium] rectale DSM 17629

Al
te

ro
m

on
as

Subdolig
ranulum

B
acteroides

Escherichia

Enterococcus

Porphyrom
onas

Enterobacteriaceae bacterium 9_2_54FAA

Shigella

D
es

ul
fo

to
m

ac
ul

um

Cl
os

tri
di

al
es

 b
ac

te
riu

m
 V

E2
02

-1
8

Salmonella

H
un

ga
te

lla

20
0

17
5

15
0

12
5

10
0

75

50

25

10

24

21

18

15

12 9

6

3
1 0

Number of species

Number of contigs

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 2, 2019. ; https://doi.org/10.1101/509273doi: bioRxiv preprint 

https://doi.org/10.1101/509273
http://creativecommons.org/licenses/by-nc-nd/4.0/


Taxonomy

1.0

1.1

1.2

1.3

1.4

0.8 1.0 1.2

Genes

1.0

1.1

1.2

1.3

1.4

0.8 1.0 1.2

Virotypes

1.1

1.2

1.3

1.4

0.8 1.0 1.2

Be
ta

 D
iv

er
si

ty
 (V

iro
m

e)
 

Beta Diversity (Microbiome)

C

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Br
ay

-C
ur

tis

Virotypes Function TaxonomyBacteria 16S
MICROBIOME VIROME

a
a

a

a

a

b b b
b

b bb

 b
c cc Concordant

Twins

Discordant
Twins

Unrelated concordant 
group

Unrelated discordant 
group

B

Concordant
Twins

Discordant
Twins

Unrelated concordant 
group

Unrelated discordant 
group

Virotypes Function TaxonomyBacteria 16S
MICROBIOME VIROME

a

a

a

a

a

b b

b
b

b b

b

 b

c c

c

0.7

0.75

0.8

0.85

0.9

0.95

1

Ja
cc

ar
d

A

Figure S5.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 2, 2019. ; https://doi.org/10.1101/509273doi: bioRxiv preprint 

https://doi.org/10.1101/509273
http://creativecommons.org/licenses/by-nc-nd/4.0/

