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Abstract 

Insulin and glucagon control plasma macronutrient homeostasis through their signalling 

network composed of multiple feedback and crosstalk mechanisms. To understand how these 

interactions contribute to metabolic homeostasis and disease states, we analysed the steady 

state response of metabolic regulation (catabolic or anabolic) with respect to structural and 

input perturbations in the integrated signalling network, for varying levels of plasma glucose. 

Structural perturbations revealed: the positive feedback of AKT on IRS is responsible for the 

bistability in anabolic zone (glucose >5.5 mmol); the positive feedback of calcium on cAMP 

is responsible for ensuring ultrasensitive response in catabolic zone (glucose <4.5 mmol); the 

crosstalk between AKT and PDE3 is responsible for efficient catabolic response under low 

glucose condition; the crosstalk between DAG and PKC regulates the span of anabolic bistable 

region with respect to plasma glucose levels. The macronutrient perturbations revealed: 

varying plasma amino acids and fatty acids from normal to high levels gradually shifted the 

bistable response towards higher glucose range eventually making the response catabolic or 

unresponsive to increasing glucose levels. The analysis reveals that certain macronutrient 

composition may be more conducive to homeostasis than others. The network perturbations 

that may contribute to disease states such as diabetes, obesity and cancer are discussed.   
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Introduction 

Living systems deploy bio-molecular networks comprising of multiple feedback loops to 

facilitate an optimal response to an environmental stimulus. The network structure and its 

kinetics define steady state and dynamical properties of the output response1. One such 

property is homeostasis, wherein the levels of physiological variables are held in a narrow 

range despite any external perturbation to the system2. One of the optimal strategy to obtain 

homeostasis is to have bistable control in the regulatory circuit 3. Bistability is a property in 

which the threshold for activation and deactivation of the response differs (hysteresis) leading 

to two stable states for a given stimulus, depending upon the history of the stimulus 4. Several 

biological systems exhibit bistability such as cell cycle 5, MAPK cascade and JNK signalling 

6,7, immune response 8, insulin signalling pathway 9 and neurological states10. Bistable circuits 

are known to impart switch like response, robustness to noise, memory of the stimulus, and 

irreversibility in response11-13. Disturbances in the operation of bistable response is implicated 

in dysregulation of homeostasis and subsequent disease states such as diabetes, obesity and 

cancer 14,15. Bistability with respect to PKC response in insulin signalling network could 

explain selective hepatic insulin resistance 16. Bistability in AKT response with respect to 

insulin levels is also reported through simulations of insulin/AKT and MAPK/ERK signalling 

pathways14,17,18. Furthermore, for the physiological range of plasma glucose levels, the flux 

through glycolysis exhibits multiple steady state responses in HeLa cells 19 indicating the 

interplay between the regulatory feedback loops and their effector hormonal signals. It is 

known that these pathways are regulated by insulin and glucagon, motivating further analysis 

on underlying complexity of hormonal regulation of metabolism 20. Therefore, in this study we 

focus on analysing the effects of perturbations in the network structure and multiple-input 

stimulus on the response of insulin-glucagon signalling network and its relation to metabolic 

homeostasis and disease states. 
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While insulin is an anabolic hormone, glucagon is a catabolic hormone. Both modulate each 

other to maintain the level of key metabolites like glucose, fatty acids and amino acids in 

plasma 21,22 under different physiological conditions (resting, postprandial and exercise). These 

hormones act antagonistically towards each other at the stages of their secretion and signalling 

(See supplementary file Appendix I). Insulin not only stimulates glucose uptake and lipid 

synthesis but also inhibits lipolysis, proteolysis, glycogenolysis, gluconeogenesis and 

ketogenesis in tissues like liver, muscle & adipose23,24. Glucagon, on the other hand, mediates 

catabolic pathways and renders elevation in levels of plasma metabolites like fatty acid, glucose 

and amino acids in order to supply body's physiological needs 25 under relevant conditions.  

Further, plasma macronutrient are known to regulate the secretion and signalling of insulin and 

glucagon. Glucose is known to induce insulin secretion and inhibit glucagon secretion 26,27. 

Amino acids induce both insulin and glucagon secretion in a threshold dependent manner28,29. 

While amino acids activate insulin signalling through AKTp 30, it inhibits IRS through S6kp 

activation 31. Fatty acids can induce insulin secretion and inhibit insulin signalling at higher 

plasma levels32,33. These varied interaction of the macronutrients with the hormonal regulatory 

mechanisms results in a highly nonlinear regulatory response for different combinations of 

these macronutrients in the plasma. Therefore, it is interesting to study how the bistability in 

the insulin-glucagon network and resultant metabolic state varies with different macronutrient 

compositions. 

Several mathematical model of insulin signalling pathways have already been documented34-

36. Moreover, subsystem models of insulin receptor binding, receptor recycling & GLUT4 

translocation leading to glucose uptake is also included in the overall insulin signalling model 

37.  Mathematical models explaining signal transduction by G protein and downstream calcium 

signalling have been proposed in literature38-40. These models explain the dynamics of G-
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protein activation and receptor desensitisation based on ligand binding and subsequent events 

involving calcium and PLC41-43. Although several models differently look at insulin and 

glucagon signalling and its regulation of metabolism, there is scarcity of models that consider 

the mutually antagonistic effect of insulin and glucagon signalling and the effect of 

macronutrients on the interplay of these pathways. Therefore, we have developed and analyzed 

an integrated model of insulin-glucagon signalling to obtain insights on the metabolic response 

with respect to different levels of glucose, amino-acid and fatty acid in the plasma (see Figure 

1). In the current study, we analyse the effect of varying levels of plasma macronutrients and 

knock-out of feedback loops and crosstalk mechanisms on phosphorylation state elicited by the 

integrated network. We also report the bistable response in the network over certain range of 

physiological conditions and its disruption indicating disease state. 

 

Results 

The mathematical model for insulin-glucagon integrated network was simulated to obtain the 

steady state profiles of activated AKT, PKA and the phosphorylation state (Ps) for various 

levels of plasma glucose concentration. The steady state profiles were obtained for both 

switching ON (i.e., increasing glucose levels) and switching OFF (i.e., decreasing glucose 

levels). The phosphorylated AKT (AKTp) profile show a typical bi-stable response, with the 

activation of AKTp occurring at 1.6 fold of physiological glucose levels (5mM) and 

deactivation at about 1.2 fold (Figure 2 (i)). In contrast, the activation of PKA is monostable, 

with a highly sensitive response (Hill coefficient = 5.8, Figure 2(ii)).  

 

To characterise the metabolic state under different perturbations for varying glucose levels, Ps 

was determined and is shown in Figure 2 (iii). It demonstrates a bistable response, however 

only in the lower half of the phosphorylation state representing the anabolic zone due to AKT 
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phosphorylation. Under resting state, at a glucose concentration of 5 mM, phosphorylation state 

value is equal to 0.51 showing slightly catabolic conditions under fasting condition. Under 

conditions of increased glucose consumption (such as during physical activity, stress etc.) with 

decrease in levels of plasma glucose, the Ps value attains greater than 0.5 indicating a catabolic 

state without any bistability (also reflected by the absence of bistability in the PKA vs glucose 

response (Figure 2 (ii)). 

On increasing glucose concentration from the fasting state, the Ps transits through a mildly 

anabolic phase, with a dedicated fully operational anabolism occurring at higher glucose 

concentration (1.7 fold change). This implies that for glucose perturbation of less than 1.7 fold,   

Ps remains only mildly anabolic. On perturbing glucose levels greater than 1.7 fold, Ps is highly 

anabolic and remains in this state even after lowering of glucose up to 1.1 fold of the resting 

state. This indicates that the anabolic fluxes such as glycogenesis and lipogenesis, if increased 

beyond certain threshold, might get locked even after lowering the glucose concentration, due 

to the bistability in Ps with respect to glucose.  

 

It is interesting to note that a buffering zone exists for the anabolic response, while such a 

bistable response is absent in the catabolic zone. Glucose concentration lower than the 

physiological levels switches Ps value closer to one indicating mainly catabolism. Thus, the 

bistability offers a buffering zone between 1 to 1.7 fold change of glucose, in which both 

mainly anabolic and a balance between anabolic and catabolic process can be observed for a 

given glucose concentration, depending on the ON and OFF path. This indicates that for a 

given glucose concentration two distinct metabolic states can be achieved depending on the 

steady state points on the two different paths. 

 

In order to elaborate on the operating strengths of feedbacks and crosstalk conditions in 
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different steady states (shown by alphabets A-D in Figure 2(iii), we have shown feedback 

strengths operating in the network (see Figures S2 – S5). Under fasting conditions (represented 

by point A in Figure 2 (iii)), Figure S2 shows that the dominant feedback is PDE3 degradation 

of cAMP thereby inhibiting the catabolic module. Hence the positive feedbacks of Ca on DAG 

& cAMP along with cAMP on PKA are almost inactive. Further, anabolic module is also 

minimally active due to low levels of insulin secretion under these conditions leading to 

minimal activation of the positive feedback loop involving IRS-PI3K-AKT. When glucose 

levels increase to 1.5 folds (shown as point B in Figure 2 (iii)), insulin secretion goes up thereby 

activating the anabolic module (Figure S3). In this case, increased degradation of cAMP by 

AKT (via PDE3 crosstalk) leads to complete shut off of the catabolic regime. In insulin 

signalling module, AKT positive feedback on IRS increases slightly due to increased insulin 

secretion, but is not enough to make Ps heavily anabolic. Note that the feedbacks and crosstalk 

like DAG inhibiting IRS via PKC and amino acids inhibiting IRS via mTOR-S6K signalling 

are almost inactive under these conditions.  

 

On the other hand, under switching OFF conditions (shown as point C in Figure 2(iii)), the 

positive feedback of AKT on IRS increases along with the PKC and mTOR inhibitions of IRS 

(Figure S4). But the overall effect is dominated by the positive feedback loop between IRS-

PI3K-AKTp, thereby locking the state in highly anabolic region. Further, PDE3 degradation of 

cAMP is highly active causing the complete inactivation of glucagon signalling (just like the 

state B). Whereas under low glucose conditions (shown as point D in Figure 2(iii)), anabolic 

module becomes inactive due to low levels of insulin secretion from pancreas leading to 

reduced degradation of cAMP due to AKT via PDE3 creating a highly catabolic state (Figure 

S5). Further, increased PKA activates DAG which inhibits IRS through crosstalk with PKC 

leading to inactivation of anabolic signalling pathways. 
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Effect of varying plasma amino acid levels 

In order to assess the effect of macronutrients on Ps with respect to glucose, the level of fatty 

acids (FA) and amino acids (AA) in plasma were varied. When AA level was increased up to 

3 folds (while keeping FA constant at 1 fold), the span of bistable response increased in the 

anabolic region (Figure 3(i)). The Ps response now turns anabolic at glucose = 1.8 folds, (vis-

a-vis at glucose = 1.7 folds when AA = 1 fold) while switching ON and turned homeostatic 

(from anabolic) at glucose = 0.9 fold (vis-a-vis glucose = 1 fold when amino acid = 1 fold) 

while switching OFF. Corresponding network map (Figure S6, representing point E in Figure 

3(i)) shows high activation of insulin signalling module due to dominance of AKTp positive 

feedback on IRS under such conditions. It also leads to increased cAMP degradation by PDE3 

and thus supresses the effect of glucagon signalling module. This is why overall metabolic state 

is heavily anabolic in spite of glucagon signalling module also being activated due to increased 

glucagon secretion under high levels of AA. 

 

On further increasing AA to 5 folds, Ps response turns catabolic and monostable even at high 

glucose levels up to 2 folds. Ps remains above 0.9 in this case (Figure 3(ii)). Here active AKT 

levels are always low with sub-sensitive and higher levels of active PKA response with respect 

to glucose, resulting in a broad catabolic state. This indicates an abnormal physiological state 

wherein the anabolic pathways are not activated even at high levels of plasma glucose. 

Corresponding network map (Figure S7 representing point F in Figure 3(ii)) shows high levels 

of mTOR activation by AA ultimately leading to increased inhibition of IRS by S6K1p 44. This 

inactivation of insulin signalling leads to reduced inhibition of PDE3 by cAMP. Further, high 

AA levels also increase glucagon secretion from pancreas 45 creating  a highly catabolic state 

in the network. 
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Effect of varying plasma fatty acid levels 

Similarly, on increasing FA levels up to 3 folds, while keeping AA constant at 1fold, we again 

observe an increase in the span of bistable response (Figure 3(iii)). The response now turns 

anabolic at glucose = 1.8 folds (vis-a-vis at glucose = 1.7 folds when FA = 1 fold) while 

switching ON, and the response turns homeostatic (from anabolic) at glucose = 0.8 folds (vis-

a-vis at glucose = 1 fold when FA = 1 fold) while switching OFF. Corresponding flux map 

(Figure S8, representing point G in Figure 3(iii)) depicts high levels of IRS activation mainly 

due to the positive feedback of AKT which is keeping the overall metabolic state as anabolic 

in spite of inhibition by increased FA levels (via PKC). Moreover high levels of activation of 

PDE3 degradation of cAMP is also shutting off the catabolic signalling module under these 

conditions. 

On further increasing FA levels to 5 folds, Ps response becomes monostable and does not turn 

anabolic even at glucose levels up to 2 folds (Figure 3(iv)). Here AKTp levels are very low and 

PKA response is hyper sensitive and becomes close to zero as glucose levels go above 1 fold 

leading to overall homeostatic response at higher glucose levels in this case. Corresponding 

flux map (Figure S9, representing point H in Figure 3(iv)) shows that insulin signalling is 

inhibited by higher FA levels (via PKC activation) 46 even at high glucose levels. Moreover, 

glucagon signalling is inactivated due to inhibition of glucagon secretion by glucose and 

significant level of cAMP degradation by PDE3. 

 

Knockout of positive feedback of AKT on IRS 

In order to evaluate the effect of feedbacks on the Ps response, the positive feedback from 

AKTp on IRS was negated. This resulted in a monostable response without the activation of 

anabolic response i.e., AKT was not activated (Figure 4(i)). Thus, the model suggests that this 

positive feedback is a dominant mechanism responsible for the anabolic bistable response. The 
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network diagram in the absence of this feedback with glucose levels = 1.5 folds (Figure S10, 

representing point I in Figure 4(i)), shows that insulin signalling module is less activated (AKT 

contribution to Ps = 0.12) as compared to the corresponding conditions in the presence of this 

feedback during switching OFF conditions (Figure S3, where AKT contribution to Ps is 0.89), 

when the metabolic state is heavily anabolic. Here glucagon signalling module is almost shut 

off mainly due to highly active PDE3 degradation of cAMP and glucose inhibition on glucagon 

signalling. Hence due to the absence of this feedback overall metabolic response remains only 

slightly anabolic even at high glucose levels. 

 

Knockout of calcium positive feedback on cAMP 

The positive feedback of calcium on cAMP was also negated to see the response in the 

catabolic module. It resulted in leftwards shift in the deactivation threshold of catabolic 

response with respect to glucose (Figure 4(ii)). This implies that it activates cAMP, PKA and 

DAG at subnormal glucose levels. Corresponding network diagram under these conditions 

(Figure S11, representing point J in Figure 4(ii)) shows how the cAMP activation of PKA and 

PKA contribution to the overall metabolic state is reduced as compared to the case when this 

positive feedback is present (Figure S5). Thus keeping the overall response as homeostatic 

even at subnormal glucose levels.  

When both the above mentioned positive feedbacks are simultaneously knocked out, 

monostable and catabolic response prevails at subnormal glucose levels and monostable and 

homeostatic response is observed at higher glucose levels (Figure not shown). This shows that 

the effect of both these feedbacks is mutually independent and can be observed in different 

range of glucose levels.  
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Knockout of crosstalk between AKT and PDE3  

Next, we knockout crosstalk between insulin and glucagon signalling pathways. Firstly, we 

delink the activation of PDE3 by AKT. This was done by setting the Hill function representing 

activation of PDE3 by AKTp equal to its maximum value of 1. This resulted in a suppressed 

levels of Ps state indicating reduced activity in the catabolic zone at glucose levels less than 1 

fold (Figure 4(iii)). This is mainly due to enhanced degradation of cAMP by PDE3 which 

results in lowered PKA response. Thus, the crosstalk helps in efficient catabolic response under 

low glucose conditions.  

 

Knockout of crosstalk between DAG and PKC 

Likewise, on eliminating the crosstalk from DAG to PKC by setting the corresponding Hill 

function at its maximum value of 1, response turns monostable and homeostatic even at higher 

glucose levels up to 3 folds (Figure 4(iv)). This implies that the activation of AKTp is reduced 

by inhibition of IRS by this crosstalk. At higher glucose concentration, when the glucagon 

signalling pathway is suppressed, the DAG mediated insulin signalling suppression essentially 

happens due to fatty acids47. Therefore, the span of bistability under normal macronutrient 

conditions (FA = AA = 1fold) is set by the FA activation of DAG.  

Overall, this shows that both the crosstalk from DAG to PKC and AKT to PDE3 are operational 

and relevant for normal catabolic to anabolic transitions. Further, the effect of simultaneous 

decoupling of both the crosstalk is algebraic summation of removal of crosstalk one at a time. 

This demonstrates that the effect of both the crosstalk on the integrated network response is 

independent of each other. 
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Discussion 

Structure and function underlying bistability in IG network 

The analysis of the network shows that mutually antagonistic modules of insulin & glucagon  

signalling increase the operational efficiencies of respective pathways for glucose as input 

stimulus 3. The analysis reveals that the robustness of a homeostatic regulatory circuit is 

obtained by a combination of positive and negative feedback in the system 48,49. While 

increasing the negative feedback reduces the effect of positive feedback thereby increasing the 

demand for a higher input stimulus; decreasing the negative feedback enhances the effect of 

positive feedback thereby inducing a bistable response in such a circuit 50. Therefore, the span 

of the bistable response is determined by the relative strengths of the positive and negative 

feedbacks in the network.  

The positive feedbacks of AKT on IRS and Ca on cAMP in the pathway ensure a 

proportionately higher output response even for a smaller value of the input stimulus from 

insulin and glucagon secreted from the pancreas. On the other hand, negative feedbacks like 

PDE3 induced cAMP degradation, PKC & S6K inhibition on IRS are essential to reduce the 

effect of the input stimulus on the output response and serves as the crosstalk point for 

antagonistic pathways. Further, the DAG & AKT crosstalk on PKC & PDE3, respectively 

ensure and magnify the antagonistic effects of these pathways on each other.  

 

Importance of feedback loops and its perturbation in disease state  

The positive feedback of AKTp on IRS and calcium on cAMP serves in attaining a bistable 

response in the regulatory elements of insulin and glucagon signalling pathways, respectively. 

The bistability helps in maintaining the output response in ON state even at the lower levels of 

input stimulus once activated. This facilitates to economise the requirements of the input 

stimulus by hormones (insulin and glucagon) rendering sustained output response for a short-
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lived input stimulus. This kind of design probes to explain the pulsatile nature of insulin 

secretion after the glucose stimulus, wherein an initial pulse in insulin secretion may prime the 

signalling response to a persistent activation due to underlying structure that produces 

bistability. Such an importance of pulsatile insulin secretion and the underlying bistability for 

efficient glucose homeostasis is also reported in the experimental observations 16. Disturbances 

in first-phase insulin pulse are reported in diabetic patients, implicating the inability to switch 

ON the insulin response leading to insulin resistance 51. Therefore, loss of the AKT positive 

feedback can make the system more prone to type II diabetes mellitus 17.  The model from Zhao 

et al. suggested that a typical protein kinase C undergoes a bistable switch-ON and switch-

OFF, under the non-linear control of insulin receptor substrate 2 (IRS2)  and its disturbances 

causing insulin resistance 16. Likewise, Ca-cAMP-PKA feedforward loop separately plays an 

important role in the catabolic space with additional bistability showing up when Ca+ positive 

feedback on cAMP is knocked off, indicating lack of catabolic efficiency. Such a state may 

render difficulty in calorie expenditure and energy availability under acute demand and may 

lead to hypoglycaemic conditions during physiological stress.  

 

Several cancer tumour cells exhibit constitutive activation of PI3K/AKT/mTOR pathway 52. 

The over expression of this pathway is essential for biosynthesis and provides a fitness 

advantage for the highly proliferating cells, a hallmark of cancer cells 53. It has been argued 

that the dysregulation in PI3K/AKT pathway operates between two extremes states leading to 

either diabetes or cancer, wherein the insulin activity is either reduced or increased, 

respectively 14. Therefore, as observed from our analysis, in the case of higher levels of plasma 

fatty acid (2-3 folds), the bistable response in phosphorylation state shows an anabolic response 

indicating higher insulin activity even at normal glucose levels (Figure 3 (iii)). Such a scenario 

is conducive to the proliferative state increasing the probability of cancerous phenotype, and 
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may also promote higher synthesis and storage of fuels in the form of adipose tissues, leading 

to obesity. Moreover, in case of a sensitive positive feedback of AKTp on IRS would result in 

the increased span of bistability (See Figure S12), rendering a person higher chances of 

becoming obese even after consuming lesser amount of calories due to sensitive and persistent 

anabolic response to glucose. Supporting these hypotheses, recently it has been shown that the 

suppression of IRS2/Akt signalling prevents hepatic steatosis, non-alcoholic fatty liver disease 

(NAFLD) and liver cancer 54 indicating the importance of balance in the anabolic and catabolic 

response. Hence, our analysis provides a plausible mechanism for the increased instances of 

cancer in obesity55. 

 

On the other hand, when selective dysfunction in either AKT positive feedback or decoupling 

of DAG-PKC crosstalk in a tissue like liver is considered, the system exhibits insulin resistance 

for increasing glucose levels (Figure 4(i) & 4(iv)). Under such a condition, due to lack of 

hepatic glucose absorption, plasma glucose levels may increase leading to hyperinsulinemia. 

The sustained increased insulin levels, then may affect the other tissues (such as adipose tissue 

and muscle with normal insulin sensitivity) to become more anabolic and sensitize AKT/PI3K 

pathway increasing the probability of cellular proliferation and tendency towards obesity56-58. 

Hence our analysis provides insights on possible mechanisms by which differential insulin 

resistance could be responsible for diabetes, obesity and cancer, simultaneously. Furthermore, 

our model predicts signalling abnormalities like progressive decrease in IRS and AKT activity 

along with increase in aPKC and mTOR activity with increase in body mass index (BMI) in 

human subjects (lean, obese & T2DM) and mouse, with diet induced obesity 59. These 

observations can easily be explained by our model where increase in FA and AA levels (in 

obese and T2DM) lead to respective increase in PKC, mTOR-S6K1p and subsequent inhibition 

of IRS and downstream kinases like AKTp.  
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Modulation of bistablity in metabolic state by macronutrients  

Analysis of steady state profiles of signalling proteins shows that insulin and glucagon 

signalling modules act antagonistically to balance, dominate or subdue each other to keep 

plasma glucose levels under homeostatic (balanced), mildly anabolic (post balanced diet 

conditions), highly anabolic (post high carbohydrate diet conditions) and highly catabolic 

(during exercise) states. The system keeps switching between these three steady state 

conditions as the level of macronutrients varies in the model. Our analysis shows that 

differences in the regulatory nature of macronutrients yield different patterns of metabolic 

responses for different combinations of these macronutrients in the plasma. For instance, at 

very high AA levels (>4 fold) response turns highly catabolic with fluxes in glucagon signalling 

module dominating over insulin signalling module fluxes. Such increased catabolic flux 

concomitant with higher amino acids may indicate increased ammonia production in liver. In 

such condition, patients may demonstrate impairments in urea synthesis that is proportional to 

the clinical severity of their liver disease 60. At very high levels of circulating AA, the catabolic 

signalling is dominant and tissues may not be able to build protein mass. One example of such 

catabolic disorder is muscle sarcopenia, reported in branched-chain amino acids (BCAA) 

supplementation studies61. Moreover, in case of moderately-high protein diet, it is well 

established that plasma glucose levels acutely reduce as compared to low protein diet 62, despite 

a dichotomous rise in circulating glucagon levels 63. Our integrated model effectively explains 

this phenomena as at moderately high AA levels, positive feedback of AKTp on IRS is 

dominant (Figure 3(i) and Figure S6) that not only would stimulate anabolic pathways like 

protein synthesis, but also suppresses glucagon signalling and subsequent catabolic pathways 

like gluconeogenesis with little effect on plasma glucose concentration under these conditions.  
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The effect of decreasing AA and FA as input to the system is minimal on the network fluxes, 

as it seems that plasma glucose levels have higher control on these hormones at basal levels. 

Whereas on moderately increasing fatty acid levels up to 3 folds, an anabolic action would 

increase lipogenesis at normal glucose levels and  an increase in gluconeogenesis at subnormal 

glucose levels during switching OFF conditions. On increasing FA levels further up to 4 folds, 

catabolic state is prevalent that could inhibit lipogenesis. At high AA levels up to 3 folds and 

subnormal to normal glucose levels catabolic state is predominate (mimicking the starvation 

condition and indicative of gluconeogenesis from AA)  whereas at higher glucose levels the 

response is anabolic conducive to protein synthesis under surplus AA levels 64. At higher fatty 

acid (4 folds onwards) and glucose levels (2 fold onwards), glucagon signalling module is shut 

OFF and insulin signalling module is not sufficiently activated to turn the system completely 

anabolic. These analysis shows that the efficiency of the insulin signalling pathway is high at 

the moderate levels of all these macronutrients, but it is reduced with further increasing amino 

acid and fatty acid levels in plasma. It was also noted that the defects in the glucagon signalling 

can also lead to a diabetic response despite healthy insulin signalling. Therefore, the 

homeostatic response is the result of these two competing pathways functioning through the 

regulatory network.  

 

The dietary effect on these pathways aid in modulating the strength of these feedbacks leading 

to alterations in the output response of the pathway. In case of high protein & fat diet, fatty 

acids and amino acids have inhibitory effect on the insulin signalling pathway by increasing 

the serine phosphorylation of IRS via the activation of PKC and S6K respectively 47,65 . This 

reduces the antagonistic effect of insulin on glucagon signalling pathway by further activation 

of cAMP and PKA. Since PKA is sensitive to suppression by insulin signalling and glucose, 

slightly lowering either of these can activate PKA to a higher value. Hence under higher fatty 
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& amino acid conditions the catabolic activation is prevalent, which may further lead to higher 

output and lower intake of glucose by tissues like liver and muscle leading to a diabetic state.   

Our analysis indicates that an optimal composition of macronutrient exists for which the 

metabolic response can be maximized as per the requirement of physiological conditions. 

 

Future direction 

Our model analysis would help in standardizing the dietary macronutrient composition under 

disease condition and also identifying the underlying mechanisms in certain metabolic 

diseases. Further, integration of this model with tissue metabolism models can help us identify 

strategies for disease mitigation using integrated model with metabolism. For example, 

exploring the potential strategies to counter obesity-linked disorders by reducing adipose tissue 

lipolysis to diminish the mobilisation of FAs and lower their plasma concentrations 66.  

Moreover, it would be interesting to analyse the integration of multiple bistable loops arising 

at metabolic 19  and signalling levels that provide highly versatile metabolic regulatory 

landscape for energetics adaptation under different combinations of plasma macronutrient 

concentrations and its disturbances in disease states.  

 

Method 

Mathematical model development 

The current model integrates previously validated mechanistic models of signalling pathways 

relating to insulin 17,67, GPCR 40, Ca-DAG 39, cAMP-PKA 68 with empirical models of insulin 

and glucagon secretion 64,69 to generate an integrated model with 36 state variables. The 

integrated model contains several feedbacks and crosstalk accounting for the antagonistic 

nature of insulin and glucagon signalling. The ODEs have been formulated based on kinetic 

rate law and mass balance of signalling proteins. Hormone secretion kinetics has been 
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quantified by accounting for the effects of plasma macronutrient levels (Supplementary 

material –Appendix II). Dynamic solution of these ODEs are obtained using ODE15s solver in 

MATLAB. The steady state profiles for signalling components are obtained and analysed for 

corresponding levels of glucose, fatty acids and amino acids in plasma.  

 

There are three modules in the integrated insulin-glucagon signalling network (Figure 1) that 

represent both the hormones and the macronutrients (glucose, amino acids and fatty acids) in 

blood. Plasma concentrations of macronutrients and hormones act as input to the insulin and 

glucagon signalling pathways. The governing equations capturing the interplay between these 

pathways are given in Appendix II (supplementary material). Hill functions are used to capture 

important feedbacks and crosstalk in the network. Positive feedbacks of AKT on IRS, Ca on 

cAMP, cAMP on PKA along with negative feedbacks of S6K1p & PKC on IRS are the 

significant ones. Moreover, PKA degradation of PDE3 and PDE3 degradation of cAMP form 

a double negative feedback loop on the glucagon signalling module. Mutually antagonistic 

actions of both the signalling modules is modelled by the two crosstalk. Firstly, DAG activates 

PKC that inhibits IRS and secondly AKT activates PDE3 which promotes cAMP degradation 

and reduces the levels of PKA in the network  70. The model was qualitatively validated by 

matching the output simulation of the existing model with the simulations of the source models 

and the data from literature (see Figure S1).  

 

Phosphorylation state 

The outputs of signalling pathways characterising insulin and glucagon signalling modules are 

phosphorylated AKT and activated PKA, respectively. The activated levels of AKT and PKA 

indicate the anabolic and catabolic state of a cell. In order to obtain the overall metabolic state 

of a cell, we quantify phosphorylation state metric ‘Ps’ as a function of activated AKT and 
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PKA levels 71 as follows:  

                              𝑃𝑠   =   0.5 ∗ (1 + (
𝑃𝐾𝐴

ℎ𝑃𝐾𝐴  + 𝑃𝐾𝐴
 −  

𝐴𝐾𝑇𝑝

ℎ𝐴𝐾𝑇 + 𝐴𝐾𝑇𝑝
))                           (1) 

where, hpka and hakt  are the half saturation thresholds for the signalling parameters. Figure 2(iii) 

shows the phosphorylation state with respect to the varying glucose input to the system. Ps 

below 0.45 depicts the anabolic zone, Ps within 0.45 to 0.55 depicts the homeostatic zone and 

above 0.55 depicts the catabolic zone.  

In order to visualise the relative operational strengths of the feedbacks and crosstalk under 

various physiological conditions, the absolute values of the corresponding Hill functions were 

plotted in the network diagrams as reported in the supplementary information (Figure S2 – 

S11).   
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Figures 

 

 

Figure 1. Integrated insulin-glucagon signalling network. Bold lines represent positive 

feedbacks (), negative feedbacks (—|) and crosstalks (---›) in the network. There are three 

modules in the network, namely - insulin signalling, glucagon signalling and blood. Glucose, 

amino acids & fatty acids are the input macronutrients present in plasma. Based on the amount 

of these macronutrients in different physiological situations, pancreas secrete different amounts 

insulin and glucagon in plasma. These hormones then trigger corresponding signalling 

pathways in tissues like liver, fat and muscle. Insulin and glucagon signalling modules act 

antagonistically to each other with the help of crosstalk (AKTp activating PDE3 which 

promotes cAMP degradation in glucagon signalling; and DAG activates PKC which inhibits 

IRS in insulin signalling) and feedbacks. When insulin signalling fluxes are greater than 

glucagon signalling fluxes, net metabolic state is anabolic; and when glucagon signalling fluxes 

are greater than insulin signalling fluxes, net metabolic state is catabolic.  
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Figure 2. The steady state response for AKTp, PKA and Ps (Phosphorylation state) with 

varying levels of glucose in plasma. (i) AKTp vs Glucose response is bistable and 

ultrasensitive. Response increases suddenly at glucose = 1.6 folds while switching ON 

(increasing levels of glucose, denoted by the arrow pointed upwards) and decreases to almost 

zero level at glucose = 1fold while switching OFF (decreasing levels of glucose, denoted by 

the arrow pointing downwards). (ii) PKA vs Glucose response is monostable and ultrasensitive. 

PKA level drops sharply to almost zero for glucose levels beyond 1fold. There no difference 

in switching ON and switching OFF paths. (iii) Ps vs Glucose response. Here bistability in 

AKTp response is getting translated in Ps (a combination of AKTp and PKA response, see 

equation 1) response. Ps levels are greater than 0.51 for glucose levels less than 1fold, tending 

towards catabolic response. Ps levels remain in the homeostatic range for glucose ranging 

between 1 to 1.6 folds and then turn anabolic beyond glucose levels of 1.7 folds (while 

switching ON). While switching OFF, Ps levels remain anabolic up to 1.1 folds and then turn 

homeostatic and catabolic at lesser levels of glucose. Note that Ps levels greater than 0.55 

indicates catabolic response, between 0.44 and 0.55 indicates homeostatic response and less 

than 0.45 indicates anabolic response. Points A, B, C & D denote different steady state 

conditions. A – Glucose, Ps = 0.51 (homeostasis). B - Glucose = 1.5 folds (switching ON), Ps 

= 0.4 (mildly anabolic). C – Glucose = 1.5 folds (switching OFF), Ps = 0.05 (highly anabolic). 

D – Glucose = 0.8 fold, Ps = 0.86 (highly catabolic). 
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Figure 3. Effect of changing macronutrients on bistability. Dashed graphs show normal 

responses whereas solid graphs show responses at higher levels of macronutrients (amino acid 

and fatty acid) levels in plasma. (i) AA = 3 folds. Here bistability span is increasing in the 

anabolic zone with response turning anabolic at 1.8 folds (compared to 1.7 folds for AA = 1 

fold) while switching ON, and response turning catabolic from anabolic at 0.9 fold (compared 

to 1 fold for AA = 1 fold, where Ps turns homeostatic from anabolic) while switching OFF. At 

point ‘E’ glucose = 1 fold, Ps = 0.15 and corresponding anabolic conditions are depicted in 

Figure S5.  (ii) AA = 5 folds. Here response remains catabolic even at glucose levels up to 2 

folds. At point ‘F’ glucose = 1.5 folds with Ps = 0.86, corresponding network diagram is shown 

in Figure S6. (iii) FA = 3 folds. Here again the span of bistable response is increasing in the 

anabolic space with Ps value turning anabolic at 1.8 folds (as compared to 1.7 folds for FA = 1 

fold) while switching ON, and response turning catabolic from anabolic at glucose = 0.8 fold 

(as compared to glucose = 1 fold for FA = 1 fold, where Ps turns homeostatic from anabolic) 

while switching OFF. At point ‘G’, glucose = 1 fold and Ps = 0.08; corresponding network 

diagram is shown in Figure S7. (iv) FA = 5 folds. Here response remains monostable and non-

anabolic even at high glucose levels up to 2 folds. Ps turns homeostatic (from catabolic) at 

subnormal glucose levels of 0.9 fold (as compared with normal glucose levels = 1 fold for FA 

= 1fold). At point ‘H’, glucose = 1.5 folds, Ps = 0.39; corresponding network representing 

mildly anabolic conditions are shown in Figure S8.   
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Figure 4. Effect of feedback and crosstalk perturbation in the network. (i) Knock out AKTp 

positive feedback on IRS. The response remains non-anabolic and monostable for glucose 

levels up to 2 folds. At point ‘I’ glucose = 1.5 folds and Ps = 0.44; corresponding network 

diagram is shown in Figure S9.  (ii) Knock out of Calcium positive feedback on cAMP. 

Catabolic response is weakening slightly at subnormal glucose levels such that it becomes 

homeostatic at glucose = 0.9 fold (at ‘J’ where Ps = 0.48; corresponding network diagram is 

shown in Figure S10). (C) Decoupling of AKTp crosstalk PDE3. This leads to inactivation of 

glucagon signalling module at subnormal glucose levels. (D) Decoupling of DAG crosstalk 

with PKC. This leads to inhibition of insulin signalling module at high glucose levels up to 2 

folds. This shows that the effects of both crosstalk are mutually independent, with AKTp 

crosstalk PDE3 playing role at subnormal glucose levels and DAG crosstalk PKC playing role 

at high glucose levels. 
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