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ABSTRACT 19 

In light of the marked differences in the intrinsic biological underpinnings and prognostic 20 

outcomes among different subtypes, Consensus Molecular Subtype (CMS) classification 21 

provides a new taxonomy of colorectal cancer (CRC) solely based on transcriptomics data 22 

and has been accepted as a standard rule for CRC stratification. Even though CMS was built 23 

on highly cancer relevant features, it suffers from limitations in capturing the promiscuous 24 

mechanisms in a clinical setting. There are at least two facts about using transcriptomic data for 25 

prognosis prediction: the engagement of genes or pathways that execute the clinical response 26 

pathway are highly dynamic and interactive with others; and a predefined patient stratification 27 

not only largely decrease the statistical analysis power, but also excludes the fact that clusters of 28 

patients that confer similar clinical outcomes may or may not overlap with a pre-defined 29 

subgrouping. To enable a flexible and prospective stratified exploration, we here present a 30 

novel computational framework based on bi-clustering aiming to identify gene regulatory 31 

mechanisms associated with various biological, clinical and drug-resistance features, with full 32 

recognition of the transiency of transcriptional regulation and complicacies of patients’ 33 

subgrouping with regards to different biological and clinical settings. Our analysis on multiple 34 

large scale CRC transcriptomics data sets using a bi-clustering based formulation suggests 35 

that the detected local low rank modules can not only generate new biological understanding 36 

coherent to CMS stratification, but also identify predictive markers for prognosis that are 37 

general to CRC or CMS dependent, as well as novel alternative drug resistance mechanisms. 38 

Our key results include: (1) a comprehensive annotation of the local low rank module 39 

landscape of CRC; (2) a mechanistic relationship between different clinical subtypes and 40 

outcomes, as well as their characteristic biological underpinnings, visible through a novel 41 

consensus map; and (3) a few (novel) resistance mechanisms of Oxaliplatin, 5-Fluorouracil, 42 

and the FOLFOX therapy are revealed, some of which are validated on independent datasets. 43 

 44 
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INTRODUCTION 45 

Colorectal cancer is the fourth most frequent cancer in the United States, which accounts for 46 

more than 8% of adult cancer incidence and 8% cancer deaths in 2018 (1). Epidemiology data 47 

suggests the average five-year survival rate of CRC is 64.9%, while more than 80% of 48 

patients die from the disease in five years in the case of metastasis (2, 3). Amongst all, 49 

intra-tumor heterogeneity could account for a significant part of poor treatment response. 50 

CRC is one of the cancer types with most clearly delineated heterogeneity, a few molecular 51 

subtyping methods have been developed, with the goal that it will facilitate the translation of 52 

molecular subtypes into the clinic (4-12). Among these, the Consensus Molecular Subtype 53 

(CMS) classification has been accepted as a standard practice for colorectal cancer (CRC) 54 

stratification (4, 5). CMS classification was derived from a cohort of 18 independent gene 55 

expression data sets with 4,151 samples of CRC, and it has stratified more than 85% of these 56 

CRC samples into four classes with distinct molecular features and prognoses (4). However, 57 

to the best of our knowledge, it remains largely undiscovered regarding the CMS class 58 

specific prognosis and predictive gene markers and relevant biological underpinnings, and 59 

further class based targeted interventions (4). A major challenge for identification of disease 60 

subtype specific biomarkers is that the statistical power will be largely reduced once the 61 

analysis is restricted to a pre-defined stratification. This preprocessing is only meaningful 62 

when the stratification perfectly aligns with the diversity among samples in response to the 63 

prospective clinical outcome. Otherwise, the pre-stratification would severely limit our power 64 

in identifying novel alternative mechanisms underlying the clinical outcomes. These largely 65 

undermine the practicality of the CMS classification, and limited its capacity for clinical 66 

translation. 67 

 68 

It is imperative to develop a framework that enables us to study the possible alternative 69 

regulatory mechanisms in cancer in recognition of the patients’ heterogeneity. We utilized a 70 

non-parametric approach to identify gene expression modules pertinent to sub-populations, 71 

namely, bi-clustering. Bi-clustering analysis is a technique to identify gene co-expression 72 

structures specific to certain and sometimes to-be-identified subsets of samples (13, 14). The 73 

algorithm outputs data blocks, each containing subset of samples and features in a sub-matrix 74 

format, called bi-clusters (BC). We have recently released a new bi-clustering R package 75 

QUBIC-R, which enables identification of bi-clusters (BCs) in whole-genome level 76 

transcriptomics data set and has been shown to have competitive performance compared with 77 

others (15-17). We investigated the identified BCs from a large collection of gene expression 78 

data of CRC to: (1) identify potential gene modules specific to a subset of CRC samples; (2) 79 

provide a mechanistic interpretation of the CRC subtypes, in retrospective of CMS in 80 

particular; and (3) identify prognosis markers and alterative drug resistance mechanisms 81 

specific to different disease subtypes. Under the bi-clustering framework, where there is no 82 

need of pre-defined stratification, we have the power to analyze the data as an intact entity. 83 

Each BC potentially contains signature and coherent gene modules existent in a subgroup of 84 

patients, that reflects the heterogeneous gene expression patterns between samples within and 85 

out of the BC. The gene subsets may enrich certain biological pathways that could lead to 86 

substantially deeper biological understanding for molecular stratification of CRC. More 87 

importantly, any existing sub-grouping methods, such as CMS, could be studied and 88 
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integrated with the produced BCs retrospectively. 89 

 90 

Thus, we believe our computational framework based on bi-clustering provides a powerful 91 

tool for systematic interrogation of the disease in different clinical settings without 92 

compromising the analysis power. The analysis fully recognizes the large heterogeneity 93 

within CRC patients, some of which may be strongly associated with existing CRC 94 

sub-classes defined by various clinical and genomic features, while the rest will provide novel 95 

alternative ways for us to better understand the disease. Our key results include: (1) a 96 

comprehensive annotation of the local low rank module landscape of CRC; (2) a novel 97 

consensus map demonstrates that CMS IV seem to resemble a mixture of CMS I-III with high 98 

stromal infiltration, while CMS I-III also show characteristics of other classes; (3) disease 99 

progression free survival of CRC are largely determined by micro-environmental alterations 100 

while the overall survival is more associated with the level of stromal infiltration in a CMS 101 

dependent manner; and (4) a few (novel) resistance mechanisms of Oxaliplatin, 102 

5-Fluorouracil, and the FOLFOX therapy are revealed, some of which are validated on 103 

independent datasets. 104 

 105 

RESULTS 106 

In this study, we conducted a bi-clustering analysis in multiple large CRC data sets aiming to: 107 

(1) generate a comprehensive annotation for the landscape of coherent co-expression modules 108 

specific to different subsets of samples; (2) identify CMS class dependent BCs and annotate 109 

biological mechanisms of the BCs and CMS class, (3) identify prognosis predictive BC that 110 

are CMS class dependent/independent; (4) identify alternative drug resistance mechanisms. 111 

By applying our in-house algorithm QUBIC-R on eight colon cancer transcriptomics data sets 112 

with 1,440 samples, we have identified ~4,000 significant BCs on average in each data set 113 

(Table 1). Each of the BC is further annotated by its statistical significance, the pathways 114 

enriched by its genes, and the associations of its samples with CMS class, clinical features, 115 

and patients’ survival.  116 

 117 

Analysis Pipeline and Statistical Consideration 118 

Figure 1A shows the analysis pipeline of this study. Gene expression profile of each data set is 119 

first discretized to a binary matrix in preparation for the bi-clustering analysis. Figure 1B 120 

details the bi-clustering analysis procedure. For each gene and an integer K, expression 121 

profile of the gene was non-parametrically discretized to generate K binary vectors, where 1s 122 

represent those samples having the gene’s expression in the 
i−1

K
 to 

i

K
 quantile in the ith 123 

vector, i=1,…,K. Otherwise, the vectors have zero values. In this way, the original m × n 124 

gene expression matrix with m genes and n samples is expanded to a Km × n binary matrix, 125 

as shown in Figure 1B and detailed in Methods section. Then, submatrices enriched by 1s in 126 

the discretized matrix are identified as BCs heuristically. Obviously, small K would blur the 127 

variability of gene expression across samples, and large K would severely undercut the power 128 

of bi-clustering and result in small “narrow” bi-clusters. We also noticed that the proportion of 129 

the largest subtype in CRC is about 1/3, and after testing K=2, 3, 4, and 5, we found that the 130 

discretization with K=3 results in largest number of significant associations between BCs and 131 
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biological and clinical features (see details in Methods and Supplementary Figure S1). 132 

Considering these, K=3 is selected for all future analysis. Each identified BC consists of a 133 

subset of samples and a group of genes, in which the genes are consistently expressed highly, 134 

moderately, or lowly over the subset of the samples, forming a tight rank-1 co-expression 135 

module specific to these samples. We utilized a rigorous assessment method for the statistical 136 

significance test of the BC’s (details in Methods section), and those significant BCs are 137 

further examined to see whether genes in a BC enrich a certain pathway or gene set, and 138 

samples in a BC significantly over-represent a certain phenotype. The analysis pipeline is 139 

implemented with our newest QUBIC-R package, which was recently optimized for 140 

large-scale matrices (15). 141 

 142 

Features/outcomes that are of particular interests in this study include: 29 clinical 143 

features/outcomes in supplementary Table 1; 73 cancer-associated gene mutations 144 

(supplementary Table 1); and treatment responses to three chemo therapeutic drugs namely 145 

5-Fluorouracil ， Oxaliplatin, and the combination of 5-Fluorouracil, Oxaliplatin and 146 

Leucovorin. Functional annotation of the BCs are conducted against 1329 pathways and gene 147 

sets in Msigdb (18). The analysis was applied to transcriptomic data of 1,440 patient-derived 148 

CRC tissue samples including the TCGA COAD RNA-Seq data set, as well as seven 149 

microarray data sets (GSE14333, GSE17536, GSE29621, GSE33113, GSE37892, 150 

GSE383832 and GSE39582) measured by Affymetrix UA133 plus 2.0 array platform. (See 151 

detailed data information in Method). The computational pipeline and key statistics of this 152 

work is provided in GitHub via https://github.com/changwn/BC-CRC, which can be readily 153 

transplanted for similar analyzes in other disease scenarios. All the supplementary files could 154 

be found in the same GitHub space. 155 

 156 
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 157 

Figure 1. (A) General analysis pipeline. The analysis was conducted to one TCGA RNA-seq 158 

and seven microarray datasets. BC identification of each high-dimensional data sets is 159 
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conducted by a discretization followed by a bi-cluster identification step (see details in B). 160 

The identified BCs are further annotated by their associations with biological pathways, CMS 161 

class, and patients clinical and prognostic features. Consensus analysis of the BCs throughout 162 

multiple data sets was further conducted. BCs were further associated with response to 163 

different chemo-drugs for identification of alternative chemo-resistance mechanisms. (B) 164 

Data discretization and bi-clustering procedures. The histogram on the left illustrates the 165 

distribution of a gene’s expression. The gene expression is represented as three 0-1 vectors 166 

(D_high, D_moderate and D_low), corresponding to samples with top (blue), medium (green) 167 

and bottom (red) 1/3 expression level of the gene, respectively. The discretized data are then 168 

merged together that expand an original m × n gene expression matrix to a 3m × n binary 169 

matrix, as shown in the right panel. BCs enriched by 1s are further identified by QUBIC-R.  170 

 171 

Comprehensive association studies of BCs with functional gene sets and various 172 

clinical/biological features 173 

A total of 65,744 BCs are identified in the eight primarily analyzed data sets, and on average, 174 

~4,000 BCs are found to be significant in each data set (Table 1). Complete gene/sample 175 

information of all the significant BCs are provided for each dataset via R data space through 176 

the GitHub link, with a description listed in Supplementary table 2. For each significant BC, 177 

we comprehensively investigated whether: (1) genes in the BC significantly enrich biological 178 

pathways or gene sets (p<1e-6); (2) samples in the BC are significantly associated with CMS 179 

class (p<0.005); (3) samples in the BC are significantly associated with clinical features such 180 

as age, gender, races and pathological stages (p<0.005); (4) samples in the BC are 181 

significantly associated with prognostic outcomes, namely patients’ overall and disease free 182 

survival (p<0.005); (5) samples in the BC are significantly associated with genomic mutation 183 

profiles (p<0.005); and (6) samples in the BC are significantly associated with the response to 184 

three selected chemo-drugs (p<0.005). Figure 2A shows the proportion of BCs with 185 

significant annotations of the first four types of associations in the eight data sets. On average, 186 

71.79% (22,981/32,008) of the significant BCs can be significantly annotated by at least one 187 

of the four associations in the eight data sets, with detailed numbers listed in Table 1. 188 

Complete annotation of the BCs is also provided through GitHub and described in 189 

Supplementary Table 2. Note that (5) and (6) are specific to TCGA-COAD dataset. We will 190 

discuss (6) in more details in a separate section. Results for additional clinical features, such 191 

as TNM stages, not present in all datasets, together with (5), are all listed in supplementary 192 

Table 1.  193 

  194 
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Table 1. Bi-clustering information of the eight data sets 195 

Data ID 
#Identified 

BCs 

#Significa

nt BCs 

#Pathway 

enriched 

BCs 

#CMS BCs 
#DFS and 

OS BCs 

#Other 

clinically 

associated BCs 

GSE14333 9631 6547 2597(39.7%) 2512(38.4%) 448(6.8%) 452(6.9%) 

GSE17536 11255 4806 2187(45.5%) 1425(29.7%) 284(5.9%) 63(1.3%) 

GSE29621 8167 1758 582(33.1%) 289(16.4%) 73(4.2%) 56(3.2%) 

GSE33113 9238 2836 795(28%) 958(33.8%) 136(4.8%) 3(0.1%) 

GSE37892 10644 4452 1600(35.9%) 1202(27%) 130(2.9%) 101(2.3%) 

GSE38832 5845 4319 2603(60.3%) 1705(39.5%) 335(7.8%) 0(0%) 

GSE39582 8267 4658 1200(25.8%) 2894(62.1%) 
1068(22.9%

) 
1847(39.7%) 

TCGA_CO

AD 
2697 2632 1077(40.9%) 743(28.2%) 183(7%) 954(36.2%) 

 196 

Figure 2B shows the cumulative ratio of the BCs that show significant annotations for at least 197 

once, among pathway, CMS class, patients’ prognosis and other clinical outcomes (y-axis), 198 

wherein the BCs are ordered by their bi-clustering significance levels on a descending order 199 

(x-axis). On average, more than 80.7% of the top 20% significant BCs and 66.4% of all 200 

significant BCs could be significantly annotated in the eight data sets, indicating more 201 

significant BCs tend to be more biologically/clinically relevant. This shows that our 202 

bi-clustering algorithm could indeed identify local modules that bear biological/clinical 203 

significance. In general, for the most significant BCs (p<1e-200), their genes tend to have 204 

strong associations to biological pathways, including cell cycle, cell proliferation, cell death, 205 

biosynthesis and metabolism of nucleic acid, mRNA and protein, cytoskeleton synthesis, 206 

protein phosphorylation, cell membrane, cell adhesion, and immune response and chemokine 207 

activity pathways (Figure 3). However, their samples don’t seem to be significantly associated 208 

with existing clinical features or CMS classes, meaning that these BCs may be general to the 209 

large population. In the next level (1e-200<p<1e-50), the BCs associated with CMS class or 210 

other clinical features are with relatively smaller sizes and less significance compared to the 211 

first level, and these BCs enrich a different group of biological pathways including immune 212 

response, extracellular matrix, cytoplasmic part, O linked and N linked protein amino acid 213 

glycosylation, cell membrane, protein modification, lipoprotein biosynthesis and lipid 214 

metabolism, ABC transporter, steroid hormone metabolism and signaling pathway.  215 

 216 

On average, we have seen that 44.7% of the DFS associated and 33.9% of the OS associated 217 

BCs are also associated with at least one CMS class while the rest are CMS classification 218 

independent, as shown in Figure 2C, suggesting possible CMS class specific prognosis 219 

markers. Most of the CMS dependent DFS associated BCs are associated with CMS class I 220 

and IV while some OS associated BCs were found to be independent of the CMS classes. 221 

 222 

The ratio of BCs that are significantly associated with biological pathways (left), CMS classes 223 

(middle) and patient’s DFS and OS (right) versus the quantiles of the bi-clustering 224 

significance  are shown in Figure 2D. Again, we observe that the more significant BCs tend 225 
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to significantly enrich more biological pathways. Similar patterns are not identified for CMS 226 

class in all datasets. This coincides with our initial motivation that: patients stratifications 227 

should not be fixed for all the clinical/biological outcomes, as each of them may have 228 

different levels of diversity, and even the most cancer relevant stratification, such as CMS, 229 

may not perfectly align with the true subtypes with regard to a certain prospective outcome. 230 

Interestingly, BCs associated with patients’ survival, including DFS and OS, fall into two 231 

groups: one group accounts for ~30% of the DFS/OS associated BCs with higher significance 232 

(p~1e-200<p<1e-80), which shows an overall significant association with DFS/OS regardless 233 

of CMS. BCs in this group enrich a diverse set of signaling transduction pathways including 234 

NOTCH, RHO factor, TRKA receptor, EGF, RAS, cell surface/ kinase receptor, glycoprotein, 235 

chemokine and other immune response related signaling pathways. The other group is formed 236 

by BCs with relatively lower significance (p~1e-80<p<1e-20), and their associations with 237 

DFS/OS tend to exhibit CMS dependency. This means that the DFS/OS associations are 238 

diverse among CMS classifications. Biological characteristics of these BCs are discussed in 239 

the following sections.  240 

 241 

Figure 2. Statistics of the BC landscape in the eight data sets. (A) Proportions of the BCs 242 

(y-axis) associated with biological pathways (PE), CMS, patients’ DFS/OS survival, clinical 243 

features, and their combinations (Multi) in each data set (x-axis). (B) Cumulative rates of BCs 244 

(y-axis) with at least one of the four types of annotations versus ranks of BCs (x-axis). The 245 

BCs are ordered by their bi-clustering significance in a descending manner in each data set. 246 

(C) Proportions of the BCs (y-axis) that are associated with certain CMS classes among the 247 
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BCs with significant associations to patients’ survival, including DFS and OS, in each dataset 248 

(x-axis). (D) Cumulative rates of BCs (y-axis) significantly associated with biological 249 

pathways (left), CMS classes (middle) and patient’s DFS and OS (right) versus the quantiles 250 

of the bi-clustering significance (x-axis). For example, a “0.2” quantile means the top 20% 251 

significant BCs. (E) Proportions of the BCs (y-axis) with significant associations to different 252 

CMS classes in each data set (x-axis). (F) Among the BCs with significant associations to 253 

patients’ survival, the proportions of the BCs (y-axis) associated with CMS types in each data 254 

set (x-axis). (G) For BCs associated with different CMS class, the average overlapping rates 255 

(y-axis) between the genes in the BC and CMS marker genes in each dataset (x-axis). (H) 256 

Among all the DFS/OS associated BCs, the proportion of the BCs (y-axis) that significantly 257 

over-represent a (sub)sample class in each dataset (x-axis). In (C), (E) and (F): None: CMS 258 

unclassified samples; Multi-CMS: a class of samples falling into more than one CMS classes; 259 

Multi-class: a class of BCs significantly associated with more than one CMS classes. In (H): 260 

None: CMS unclassified samples; overall: the BCs associated with survival throughout all 261 

patients, but not with a particular CMS class; Multiple: the BCs associated with patients’ 262 

survival specific to the patients of more than CMS classes.  263 

 264 

A consensus functional annotation of the bi-cluster landscape  265 

Our analysis has revealed that BCs associated with different clinical features enrich distinct 266 

sets of pathways, suggesting that different biological/clinical features are characterized by 267 

different responsive mechanisms. Among these BCs, a notable portion exhibit a 268 

CMS-dependent manner. To help us better understand the functional annotations of these BCs, 269 

and the underlying sub-groupings they may represent, we summarized the biological 270 

pathways that are consistently enriched by the BCs across all datasets, that do show 271 

significant signs of clinical associations, including CMS, OS, DFS and their intersections. We 272 

call this a consensus functional annotation of the BC landscape in CRC. As shown in Figure 3, 273 

49 pathways/gene sets in total are examined, and here is how these pathways were selected. 274 

We first placed the BCs of each dataset into 18 pools shown on the top of the figure: BCs of 275 

top bi-clustering significance, over-representing CMS I, II, III, IV, unclassified, associated 276 

with DFS in general, associated with DFS and CMS I, II, III, IV, unclassified, associated with 277 

OS in general, associated with OS and CMS I, II, III, IV, unclassified, for each dataset. For 278 

each BC in each pool of each dataset, pathway/gene set enrichment was performed, and 279 

within each pool, the pathways that are enriched most consistently across all datasets are 280 

selected, as shown on the left of the figure. This results in a subset of pathways/gene sets that 281 

are consistently enriched by BCs that are shown to have one of the 18 characteristics.  282 

 283 

To have an even finer view, we drew pie graphs with sectors of varied radius and shade to 284 

provide a more quantitative measure of the intricate relationships among pathways/gene sets 285 

and different phenotypes. Each pie graph consists of up to eight sectors, one sector for one 286 

dataset, depending on whether DFS or OS data is available for the dataset. The radius of the 287 

sector shows the proportion of genes in the pathway that are hit by the BC in the dataset, and 288 

shade of the sector shows the significance of the enrichment test for the genes in the BC 289 

against the pathway. The larger the radius, the more the genes are being hit the BC; the darker 290 

the shade, the more significant the enrichment is. Note that for each pool, only the BC with 291 
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the highest enrichment significance of the pathway is selected, in drawing the radius and 292 

shade of the sectors. Details of the color parameters are shown in Supplementary Note. 293 

 294 

Moreover, to exhibit how similar the 18 different pools or phenotypes are, we regrouped the 295 

47 pathways, and found that they in fact fall into 10 categories: BCs of top bi-clustering 296 

significance, over-representing CMS I, II, III, IV, unclassified, associated with DFS, 297 

associated with DFS in a CMS dependent manner, associated with OS, associated with OS in 298 

a CMS dependent manner, as shown on the right of the figure. The re-grouping was done in 299 

such a way that each pathway was given a score based on the average radius and shade of the 300 

pie graph over all datasets, namely, the hitting frequency and the enrichment significance 301 

value, and was then assigned to one of the 10 categories with a highest score. The 10 302 

categories we used here are very similar to the 18 characteristics or pools we presented earlier, 303 

only in a coarser way.  304 

 305 

This consensus map is a novel visualization that greatly helps us visualize for samples in 306 

different cancer subtypes and key clinical outcomes, how they express distinct functional 307 

pathways, and they relate to each other and to what extent they resemble, and the resolution is 308 

for each pathway and each dataset. As shown in Figure 3, for samples in different CMS 309 

classes, they are characterized by different pathways/gene sets: CMS I by ER stress, wound 310 

healing, macrophage and B cell activation, WNT signaling and glucose metabolisms; CMS II 311 

by hormone receptor, TP53 and IL2 signaling; CMS III by cell proliferation and cell 312 

matrix-adhesion; CMS IV by T cell activation and Cyclin dependent kinase; and unclassified 313 

samples by notch, MYC and TGF-beta signaling pathways. Moreover, different CMS classes 314 

don’t seem to be completely isolated. BCs associated with CMS I are also enriched by 315 

immune signaling pathways including IL-3, -5, -6, -12, -27, STAT, and interferon gamma 316 

signaling pathways, as well as nucleotide biosynthesis, WNT signaling, lipid metabolism, and 317 

glycolysis pathways, which are markers of CMS II and III classes (4). Considering that CMS 318 

I is a subtype with high MSI and strong immune cell activation (4), our observation clearly 319 

suggests that there are distinct subgroups inside CMS I class with different immune activation 320 

status that display CMS II-like characteristics with high expression of epithelial and WNT 321 

signaling markers and CMS III-like characteristics of metabolism dysregulations. More 322 

intriguingly, the BCs associated with CMS class IV fall into two categories: one enriched by 323 

integrin binding, epithelial cell cycle, cell death, cell-cell and cell-matrix adhesions pathways, 324 

while the other enriched by immune response, MYC and WNT signaling, and metabolism 325 

pathways. The first category show expression of cancer and stromal cell marker genes, 326 

suggesting different levels of stromal cell infiltration in CMS IV class samples. In contrast, 327 

the second category enriches marker genes of CMS class I-III, suggesting there are subgroups 328 

of CMS IV samples with distinct characteristics of CMS class I, II or III. CMS IV is a subtype 329 

with high stromal infiltration and angiogenesis (4). Our previous study has identified a 330 

dynamic population of mesenchymal-like cells with similar markers as CMS IV (19). With 331 

these observations, we suspect that CMS IV is a combination of CMS I-III but with higher 332 

proportion of stromal cells, hence higher expression of mesenchymal cell markers and lower 333 

rate of somatic mutations. However, it is noteworthy that the CMS IV cancers have generally 334 

poorer prognosis comparing to CMS I-III, indicating the level of stromal infiltration may 335 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 31, 2018. ; https://doi.org/10.1101/508275doi: bioRxiv preprint 

https://doi.org/10.1101/508275


 11 

serve as an important prognosis marker for all the CMS classes. We have also seen that a 336 

number of BCs associated with CMS II and CMS III are enriched by marker genes of other 337 

CMS classes. The BCs associated with the unclassified samples are enriched by signaling 338 

pathways of MAPK, P38, GPCR, NOTCH, TGF-beta, ARF6 and other kinase receptors and 339 

pathways responsive to micro-environment stresses including ER stress, oxidative stress, 340 

dysregulated immune activation and extracellular matrix malfunction. We suspect that these 341 

samples are with activation of specific signaling pathways or with distinct micro-environment 342 

stresses that cause varied gene expressions, hence cannot be classified by the distance based 343 

CMS classifier. A consensus functional annotation of the BCs enriching different CMS classes 344 

are given in Supplementary Table 3. 345 
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 346 

Figure 3. A consensus map representing the intricate relationships between key 347 

pathways and clinical features, as well as similarities among different clinical features. 348 

The top of the figure shows 18 different pools that the BCs in each dataset are placed in, and 349 

the left of the figure shows the pathways that are consistently enriched by the BCs in the pool. 350 

Each pie graph consists of up to eight sectors, one sector for one dataset, depending on 351 

whether DFS or OS data is available for the dataset. For each of the 18 pools in each dataset, 352 

only the BC with the highest enrichment significance of the pathway is selected, and the level 353 
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of enrichment is presented by the radius and shade of the sectors: the larger the radius, the 354 

more the genes in the corresponding pathway are being hit the BC; the darker the shade, the 355 

more significant the enrichment is using genes in the BC for the pathway. On the right, the 356 

pathways are re-grouped into 10 categories, so that the pathway is assigned to the group that it 357 

most significantly represents. 358 

 359 

Heterogeneous prognosis of CRC in retrospective of CMS 360 

For all the eight data sets, on average 19.2% (12,641/65,744) of the BCs are significantly 361 

associated (p<0.005) with at least one of the CMS classes, and among these, the proportion of 362 

BCs associated with each class is shown in Figure 2E. On average, BCs associated with at 363 

least one CMS class only cover 23.6%, 15.6%, 30.1% and 24.1% of the samples for CMS I-IV, 364 

respectively (shown in Supplementary Figure 2), suggesting that most of the underlying 365 

cancer sub-groups may not align perfectly well with the CMS classification. Comparing the 366 

proportion of samples in the BCs falling under different CMS class (shown in Figure 2F), 367 

there are relatively more BCs aligning with CMS class I and IV, and unclassified, suggesting 368 

higher variations among the samples within these classes. Of note, BCs associated with the 369 

four CMS classes, especially class III and IV, contain genes that highly overlap with the 370 

putative CMS marker genes; while the CMS marker genes rarely show up in BCs associated 371 

with the unclassified samples, as shown in Figure 2G. This indicates that the genes we 372 

identified in the BCs are indeed coherent with the marker genes of CMS class. Very few BCs 373 

are observed to have associations with the samples of multiple CMS classes. 374 

 375 

Among all the BCs associated with DFS, 42.9% also over-represent certain CMS classes, 376 

while this rate is 49.5% for OS (See Figure 2H), on average. Particularly, 53.1% and 40.4% of 377 

these CMS-specific BCs fall under CMS IV class for DFS and OS respectively, on average. 378 

For DFS, the CMS IV specific BCs enrich the following pathways: glycosaminoglycan 379 

biosynthesis and metabolism, UDP glycosyltransferase, lipid, phospholipid and 380 

glycosphingolipid metabolism, mRNA splicing, and steroid hormone metabolism; while for 381 

OS, the pathways are : immune signaling, WNT and MYC signaling, VEGF signaling, tumor 382 

necrosis, notch signaling, cell proliferation and integrin pathways. This observation suggests 383 

that the extracellular matrix, glycosaminoglycan metabolism, lipid metabolism are prognostic 384 

markers for DFS if the patients are diagnosed with CMS class IV, while for OS, the markers 385 

are related to stromal infiltration. Similarly, we also observed a large proportion of CMS class 386 

I (19.1%) and CMS II specific (17.7%) BCs for DFS associated BCs, and CMS II specific 387 

(25.1%) BCs for OS associated BCs. The CMS I specific DFS associated BCs enrich 388 

chemokine signaling, integrin signaling, chondroitin sulfate and sulfur metabolism, O linked 389 

glycosylation, and other immune and inflammation related pathways; CMS II specific DFS 390 

associated BCs enrich hypoxia response, O linked glycosylation, PI3K signaling, apoptosis, 391 

and immune response pathways; and CMS II specific OS associated BCs enrich cell cycle, 392 

nucleotide excision repair, and MYC signaling pathways.  393 

 394 

It is noteworthy that the T cell and leukocyte activation is a significant OS dependent feature 395 

for CMS1 patients but not for other CMS classes (Figure 3). CMS I has high MSI, mutation 396 

load and immune response, associated with higher abundance of neo-antigen and better 397 
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response to immune-therapy (4). A high (CD8+) T-cell infiltration and activation in this group 398 

contributes to higher anti-tumor immune population. For the rest of the classes, CMS III 399 

generally has low infiltration level of T cells, and we suspect the even though cancers of CMS 400 

II and IV have high T cell infiltration, but these T cell are either exhausted or non-cancer 401 

associated. Hence the tissue level T cell gene expression do not show associations with the 402 

patients’ prognosis in any of CMS class II-IV. Such observations suggest the divergence of 403 

prognosis associated mechanisms among different CMS groups. 404 

 405 

In addition to these, we constructed multi-variant Cox regression model to explain the 406 

patients’ prognosis using selected prognosis associated BCs and CMS class. (see Methods). 407 

Our analysis suggested that the BCs forming independent predictive markers for DFS enrich 408 

pathways including chemokine receptor, O-linked glycan biosynthesis, apoptosis, 409 

mitochondria, cell membrane, MAPK activity, tissue morphogenesis, VEGFR pathway, lipid 410 

homeostasis and cell surface receptor activity; while for OS, the BCs enrich cell death, cell 411 

proliferation, mitosis, glycosaminoglycan synthesis, integrin (possibly suggests stromal 412 

infiltration level), T cell activation, WNT beta-catenin signaling, leukocyte activation, 413 

extracellular region and glucose transport and VEGFR pathway. 414 

 415 

In summary, our analysis reveals distinct prognosis markers of different prognosis type and 416 

CMS class. Specifically, the DFS markers are largely enriched by genes related to 417 

micro-environmental stresses while the OS markers is more determined by the level of 418 

stromal infiltration and immune response. 419 

 420 

Alternative drug resistance mechanisms of CRC  421 

Chemo-therapy is one of the standard cancer treatment methods that induces cell death of fast 422 

proliferating cancer cells (20). It has been reported that cancer cells could develop resistance 423 

mechanism to chemo-therapy through alterations in pathways including cell proliferation, 424 

apoptosis, DNA damage repairing and stress response through changes in expression levels 425 

and/or mutation status of key genes (21, 22). Our understanding of drug resistance mechanism 426 

is largely complicated by intra-tumor heterogeneity within a tumor tissue and its intricate 427 

micro-environmental stresses. It is noteworthy that multiple alternative resistance 428 

mechanisms may exist among the patients, where each patient’s cancer cells acquiring one or 429 

several such mechanisms can suffer from poor prognosis to chemo-therapy. In this study, we 430 

attempt to identify the multiple chemo-resistance mechanisms within a heterogeneous patients 431 

population by our bi-clustering formulation. We hypothesize that the alternative resistance 432 

mechanisms among patients could be reflected by the BCs associated with poor prognosis to a 433 

certain chemo-drug. 434 

  435 

The clinical information in TCGA provides patients’ treatment response to three most 436 

prevalent CRC chemo-therapy plans, including 5-Fluorouracil (5-FU), Oxaliplatin (OXA), 437 

and the combination of OXA, 5-FU and Leucovorin (FOLFOX). We selected those BCs 438 

associated with resistances to the three drugs with TCGA expression data. A BC is defined as 439 

associated with resistance of a chemo-drug if the following two conditions are both met: (1) 440 

among drug treated samples, the overall survival of samples in the BC is significantly worse 441 
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than those not in the BC (p<0.001); and (2) among samples in the BC, the overall survival of 442 

samples that are drug treated is significantly worse than those not treated (p<0.05). Among 443 

the resistance associated BCs, we posit that multiple may correspond to the same resistance 444 

mechanism. In order to identify the most unique set, we incorporated a log-rank test coupled 445 

with agglomerative clustering to cluster the BCs of similar resistance mechanisms into groups, 446 

each of which is linked with one unique drug resistance mechanism (see details in Methods 447 

section). 448 

 449 

To identify resistance mechanism associated BCs, we conducted an agglomerative clustering 450 

and log-rank test based approach to group the BCs that are highly represented by poor 451 

responders. Specifically, we generate agglomerative clustering for all the drug resistance 452 

related BCs where the distance of a pair of BCs is measured by the Jaccard index of the 453 

samples in the two BCs. Two BCs are clustered if at least one of the two sample set 454 

differences between the two BCs are insignificantly associated with drug resistance. 455 

Completed information of BC groups are given in Supplementary Table 4. 456 

  457 

5-FU is one of the most commonly used chemo-drugs in treating CRC (23). We identified 11 458 

BCs associated with 5FU resistance. Agglomerative clustering and stepwise test revealed that 459 

the 11 BCs form four groups, where each group consists of a number of genes tightly 460 

co-expressed, and a number of samples presented with 5FU resistance, as shown in Figure 4A. 461 

The first BC group is highly enriched by the genes involved in known chemo-resistance 462 

related mechanisms, including over expression of CFLAR involved in apoptosis and FAS 463 

signaling; CAPRIN2 related to cell proliferation and cancer multi-drug resistance; DNA 464 

excision repair gene XPA; cell cycle regulating proteins DMTF1 and SYCE2; killer cell 465 

activating receptor associated protein TYROBP; taurine metabolism gene CSAD; RNA 466 

processing proteins RBM6 and CLK1; DNA binding and transcriptional regulatory genes 467 

ZNF638, ZNF169, ZNF26, ZNF333, ZNF493, ZNF234 and ZNF33A; OGT, TAS2R5, 468 

LTB4R2 related to cellular response to chemical stimuli. It is noteworthy that a number of 469 

genes in this panel including CFLAR, CAPRIN2, XPA, TYROBP, CLK1, OGT, and 470 

LTB4R2 have been previously identified to relate to chemo-resistance in other cancer types 471 

(24-29). The second BC group is composed by highly expressed genes including SMAD2, 472 

SMAD4, TCF12, ELP2, ATG2B, PIGN, MBP, NCBP3 and PIK3C3, which enrich pathways 473 

of cell cycle, cell metabolism regulation, TGF-beta signaling, PI3K cascade, autophagy, 474 

immune responses and mRNA production regulation. The third BC group is enriched by a 475 

large number of pseudo genes and the protein coding genes in this group enrich the translation 476 

regulation and viral infection, in which genes TMA7, DEXI and EIF3CL have been 477 

previously reported as related to cisplatin and fluorouracil resistance in bladder and gastric 478 

cancer (30, 31). In addition, the four BCs group are also enriched by two different groups of 479 

ribosome proteins, which are related to translational control and elongation of peptides. 480 

  481 

OXA is a platinum-based antineoplastic chemo-drug used to treat colorectal cancer (23). We 482 

have identified 10 BCs with strong associations to OXA resistance, which were further 483 

clustered into three groups as shown in Figure 4B. The first BC group shows an overlap with 484 

the first group in 5FU resistance, in that the genes are also involved in known 485 
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chemo-resistance related mechanisms including CFLAR, CAPRIN2, TYROBP, CLK1, OGT 486 

and LTB4R2 as well as SYCE2, RBM6, ZNF638, ZNF169, ZNF26, ZNF333, ZNF493, 487 

ZNF234 and ZNF33A related to cell cycle, mRNA processing and DNA binding. Meanwhile, 488 

this group also contains overly expressed DNA synthesis and cell cycle genes POLA1, CHFR, 489 

and TAF1; mRNA processing gene PCF11; EPHA7 and COL4A3 related to tissue 490 

development; and ITPR2 related to calcium dependent signaling transduction. The second 491 

group also contains CFLAR, CAPRIN2, SYCE2, and LTB4R2 identified in the first group. In 492 

addition, this group also contains cyclin-D binding transcription factor DMTF1; 493 

transcriptional regulation co-factor EP300; GTF2H4 related to RNA polymerase II 494 

transcription initiation; mRNA splicing gene DDX39B; and cell surface channel, transporter 495 

or exchanger genes PKD2, TRAPPC10, SMG1, and TRIO. The third group contains a 496 

number of nuclear ribonucleoproteins and HSPA5, where the latter has been previously 497 

identified as a chemo-resistance biomarker and molecular target in B-lineage acute 498 

lymphoblastic leukemia (32). 499 

  500 

FOLFOX is combinatorial therapy of 5Fu, OXA with Leu--a reduced folic acid based drug 501 

that is used in combination with other chemotherapies to enhance effectiveness or prevent 502 

side effects of the chemo-drugs (23, 33). We have identified eight BCs forming four BC 503 

groups (Figure 4C). The first BC group shows strong overlaps with the first group of 5FU 504 

chemo-resistance, and the first and second group of OXA chemo-resistance, which includes 505 

CFLAR, CAPRIN2, SYCE2, CSAD, MSH5, XPA, OGT, LTB4R2, ZNF234, ZNF169, 506 

ZNF493, ZNF26, and ZNF333. The second group is composed of highly expressed JAK2, 507 

which is involved in multiple cytokine receptor signaling pathways related to immune 508 

response; Rho GTPase Activating Protein DLC1 (tumor suppressor); cell death related genes 509 

NME1, BCL2L15 and RPSS3A; tissue development regulating gene FOXA2; TCA cycle and 510 

respiration electron transport genes ATP5C1 and COX7A2L; and mitochondrial inner 511 

membrane translocase TIMM23. In addition, this group is also highly enriched by overly 512 

expressed ribosome proteins. The third group contains highly expressed CAPRIN2, cell 513 

proliferation regulating gene DMTF1 and mRNA processing proteins DDX39B and GTF2H4. 514 

The fourth group is composed of under expressed microRNA MIR3911 and antisense mRNA 515 

EIF1AX-AS1. 516 

  517 

To validate the drug resistance mechanism we identified using BCs, we collected independent 518 

datasets of drug screening on colon cancer cell line (see methods). Unfortunately, to the best 519 

of our knowledge, 5-FU is the only one drug with a wide spectrum of sensitivity measure on 520 

cell lines among the three. 5-FU screening was performed on 29 and 19 colon cancer cell 521 

lines for two independent datasets (34, 35). In each dataset, we computed the correlations 522 

between the basal level expressions of all the genes and cell’s response to 5-FU, measured by 523 

IC50 and GI50 (see Supplementary table 5). Distribution of the correlations for genes in each 524 

BC group was compared with the distribution of the correlation for all genes, which serves as 525 

a random background. Density curves of the correlations of each BC group and the 526 

background are shown in Figure 4D and 4E. We have seen that, comparing with the 527 

background correlation level, genes in BC group 4 show much higher correlations to cells’ 528 

resistance to 5-Fu, and BC groups 1-3 also contain a marked portion of genes that are more 529 
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correlated with 5-Fu resistance than background. This serves as further validation of our 530 

observations of alternative drug resistance mechanisms. Detailed lists of the validation data 531 

are provided in Supplementary Table 5. 532 

In summary, for each chemo-drug, we have identified a few resistance mechanisms, some of 533 

which are novel to CRC, and they are presented in the form of BC groups. It is noteworthy 534 

that the genes CFLAR, CAPRIN2, SYCE2, OGT, and LTB4R2 are consistently observed as 535 

resistance associated for all the three drugs. Further investigation of the sample distribution of 536 

the BC groups suggests that the first BC group of 5-Fu, OXA and the second BC group of 537 

FOLFOX highly overlap, which correspond to poor response of 5-Fu and OXA in CMS1 538 

samples and FOLFOX in CMS2 samples (Figure 4F). The second BC cluster of OXA and the 539 

third BC cluster of FOLFOX overlap, which corresponds to poor response in CMS1 samples. 540 

In addition, the 5-Fu BC groups 2, 3 and 4 show that patients of CMS III, CMS III/IV and 541 

CMS II/III are particularly resistant to 5-Fu; OXA BC groups 2 and 3 show that OXA 542 

resistance is in particular obvious in CMS II/III and CMS I/II/III; FOLFOX BC groups 1, 3, 543 

and 4 show that resistance of the drug prevalently happen to patients of CMS II/IV, CMS II 544 

and CMS IV. Interestingly, 5-Fu BC group 1 and FOLFOX BC groups 1 and 4 do not seem to 545 

show chemo-resistance mechanisms specific to any CMS classes. Among the identified BC 546 

groups for each drug type, some of them are enriched by genes involved in chemo-resistance 547 

related biological processes or known chemo-resistance markers. Meanwhile, we have seen in 548 

1-2 BC groups for each drug type there exists novel biomarkers, including overly expressed 549 

ribosome genes and under expressed ncRNAs. 550 
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 551 

Figure 4. Possible alternative chemo-resistance mechanism depicted by BC groups. (A-C) 552 

Discretized gene expression profile of the resistance BC groups for 5FU (A), OXA (B), and 553 

FOLFOX (C). For (A-C), in the left-most panels, blue and white in the heatmap represent 1s 554 

and 0s in the discretized data matrix, while red represents the matrix element belonging to a 555 

certain BC group, framed in green dashed line. In the middle panels, the dendrograms show 556 

the results of agglomerative clustering of the resistance associated BCs. Each BC group is 557 

framed by a dashed rectangle. In the right-most panels, the survival curves represent for the 558 

drug treated patients, the comparison of overall survival of the patients in a BC group (red) 559 

with those not (black). (D-E) Distribution of the correlations calculated between expressions 560 

of genes in different groups with drug resistance measure IC50, in CTRP v2 dataset (D) and 561 

GI50 in K Bracht et al.’s dataset (E). The x-axis represents the correlations and the y-axis 562 

represents the density. (F) Relationships between chemo-resistance BCs and different CMS 563 

classes. In columns 1-3, a “cross” sign indicates the drugs that samples in the BCs show 564 

resistance for; in columns 4-6, larger sizes of the sectors indicate higher significances that the 565 

BC’s resistance mechanisms is also exhibited in CMS I (blue), II (yellow), III (green), and IV 566 

(red); in columns 7-10, larger sizes of the squares indicate higher significances that the BC is 567 

positively (blue)/negatively (red) enriched by samples in each CMS class (only p<0.001 are 568 

shown); the last column shows for each BC, the type of drug and BC group it is linked to. 569 

 570 

Bi-clusters associated with mutations 571 
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We have also tested the association between BCs and 117 high frequently-mutated and 572 

non-MSI-associated genes in TCGA COAD data. Our analysis identified that 29.1% 573 

(550/1886) of the BCs annotated by the aforementioned four types of associations and 22.5% 574 

(168/746) of the unannotated BCs are associated with at least one of the gene mutations. 575 

Interestingly, among the BCs that are associated with at least one gene mutation, a large 576 

proportion of the mutations happen in genes including TMEM132D, BCL9L, NF-1, SCN10A, 577 

PCDHA10, DIP2C, GLI3, TET2, and ARFGEF2, while only a small number fall into key 578 

CRC associated gene including APC, TP53, KRAS, CTNNB1, and PIK3CA. The mutation 579 

associated BCs majorly enrich pathways of nucleotide and glucose metabolism and immune 580 

responses. Detailed pathway enrichment of each gene mutation associated BCs is given 581 

through GitHub and described in Supplementary Table 2. 582 

 583 

DISCUSSIONS 584 

Disease subtype and drug therapy specific prognostic markers can offer valuable guidance in 585 

precision medicine. High throughput transcriptomics data of large cohort studies enables 586 

comprehensive identifications of prognostic markers on whole genome level. However, with 587 

patient specific features such as disease subtypes, drug treatment or other clinicopathological 588 

features, a limited number of samples is often stratified into even finer classes wherein each 589 

has a small number of samples. In such case, the statistical power on each stratified class of 590 

samples is largely reduced. Moreover, even though CMS and other cancer subtyping methods 591 

have used highly cancer relevant features, when looking at a particular drug response or 592 

prognosis, multiple alternative alterations may exist in specific but unknown subset of 593 

samples, which may or may not overlap with a certain stratification. In addition, multiple 594 

genes may interactively contribute to one response mechanism, which is especially the case in 595 

terms of drug resistance markers, as alterations in multiple pathways are always employed in 596 

one off-target resistance mechanism (36-38). How alternative drug resistance mechanisms 597 

(and their combinations) are correlated with disease subtypes or other clinicopathological 598 

features is largely undiscovered. Limiting our analysis into a pre-defining cancer subtyping or 599 

signature pathways would be a potential hurdle that could not only be misleading, but also 600 

severely harm the statistical power. 601 

 602 

Our unsupervised bi-clustering based approach have the following advantages in identifying 603 

alternative disease subtypes/ drug therapy specific prognostic gene markers: (1) efficiently 604 

control false discoveries; (2) readily detect informative co-expressed prognostic markers; (3) 605 

conveniently handle the intricate relationships among different subtypes, and their 606 

interactions with various clinical outcomes. Of note, deriving prognostic or predictive 607 

markers from BCs with high statistical significance could not only decrease the number of 608 

independent tests but also limiting markers to co-expression gene modules, the expression 609 

level of which are more relevant in the disease context. The sample compositions in each BC 610 

provides an easily comprehensible way to understand the underlying subtypes, as well as the 611 

functional modules being executed in the BC. Our analysis has clearly demonstrated that 612 

bi-clustering based approach can effectively identify biomarkers for alternative prognosis 613 

related or drug resistance mechanisms from large scale transcriptomics data. We posit that 614 

bi-clustering is more sensitive to locate the biomarkers specific to small subset of samples and 615 
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the inference on the multiple genes in the BC can be provide more biologically coherent 616 

interpretations.  617 

 618 

Nonetheless, we have seen a few more challenges that remain to be solved beyond this study: 619 

(1) most of current bi-clustering methods tend to exclude the highly overlapping BCs, which 620 

may be problematic when consistency of BCs across different datasets are to be performed. 621 

This raises a demand for effective identification of bi-clusters with high consistency through 622 

different data sets; (2) our current analysis pipeline lacks a predicative model using BCs, 623 

which largely limits its potential of practice. A possible solution is to incorporate the 624 

bi-clusters with a binary matrix factorization formulation, i.e. treating each BC as a column 625 

basis of the discretized data matrix, and the predictive model could be built between an 626 

outcome variable and the sets of explanatory variables consisting of the loadings of all the BC 627 

bases; (3) it is noteworthy some genes within a prognosis or drug resistance predictive BC are 628 

only selected because they are co-expressed (or co-regulated) with the true prognosis or drug 629 

resistance associated genes, and the third challenge remains to identify the genes that truly 630 

contribute to the poor prognosis or drug resistance that can become possible drug targets; and 631 

(4) the BC’s statistical significance is estimated by an estimation formula for the upper bound 632 

of p value. The current method works well for the BCs with small number of 0s, but an 633 

improvement is need for the BCs with low consistency. We fully anticipate these challenges 634 

can be solved in future studies to increase the feasibility of BC based biomarker study. 635 

 636 

Overall, our analysis generated a comprehensive annotation of BC based co-expression 637 

modules in CRC that offers novel biological characterizations for CMS classification and 638 

brings new insight of disease subtype and drug therapy specific prognosis predictive markers. 639 

The analysis procedures including bi-clustering formulation, identification, significance 640 

assessment and parameter settings are provided through https://github.com/changwn/BC-CRC, 641 

that can be more generally applied in precision medicine study of other disease types. 642 

 643 

METHODS 644 

Data collection 645 

We have collected transcriptomics data of 1,440 colorectal cancer tissue samples including 646 

the one RNA-Seq data from TCGA and seven microarray data sets from GEO database. The 647 

micro-array datasets are selected with the following criteria: (1) data are collected by the top 648 

10 most frequently utilized human microarray platforms in GEO database; (2) dataset has 649 

more than 50 samples; and (3) dataset also provide certain prognostic or clinical outcome 650 

information. We use RPKM normalized expression value for RNA-Seq data and RMA 651 

normalized expression for microarray data. Detailed data information is provided in Table 2. 652 

The DFS used in this study is defined as starting at primary treatment and stopping at disease 653 

relapse or death. Expression of each gene with multiple probes is assessed by expression of 654 

the probe with highest mean expression value in each data set. Genes of mean expressions at 655 

bottom 30% quantile in each microarray data set, and genes with 0 expression in more than 85% 656 

samples in the RNA-Seq data set are removed from the analysis, in order to control the noise 657 

of non- or lowly- expressed genes. 658 

 659 
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Table 2. Data information of the analyzed data. 660 

 661 

Data ID Sample# Follow-up  Platform Normalization 

GSE14333 290 DFS Affymetrix U133 Plus 2.0 RMA 

GSE17536 177 OS/DFS Affymetrix U133 Plus 2.0 RMA 

GSE29621 65 OS/DFS Affymetrix U133 Plus 2.0 RMA 

GSE33113 90 DFS Affymetrix U133 Plus 2.0 RMA 

GSE37892 130 DFS Affymetrix U133 Plus 2.0 RMA 

GSE38832 122 OS/DFS Affymetrix U133 Plus 2.0 RMA 

GSE39582 566 OS/DFS Affymetrix U133 Plus 2.0 RMA 

TCGA-COAD 385 OS RNA-Seq RPKM 

 662 

Colon cancer consensus molecular subtype prediction 663 

We applied the R package CMSclassifier to predict the CMS classification of each sample in 664 

the eight data sets (39), by which each sample will be predicted with four CMS scores 665 

representing its similarity to the four CMS classes. One sample is classified to one subtype if 666 

its CMS score of the subtype is larger than 0.5 and a sample is considered as with 667 

multiple-classification if both top two CMS scores are larger than 0.5 and the difference 668 

between the two scores is smaller than 0.1. 669 

 670 

Modeling the regulatory states of gene expressions via data discretization  671 

To capture the regulatory states of a gene, we re-format the original expression data matrix 672 

into a larger binary matrix. Specifically, for a gene expression data 𝑋m×n with m genes and n 673 

samples, we first generate a K × n binary matrix Yg for each gene g. Yg[𝑖, 𝑗] = 1 if and 674 

only if 𝑋[𝑔, 𝑗] is in the 𝑖th quantile of 𝑋[𝑔, ], 𝑖 = 1, … , 𝐾. Hence each row of Yg indicates 675 

the samples with certain expression patterns of 𝑔. Then we merge all the Yg to form a 676 

Km × n binary matrix 𝑌Km×n  and apply our in-house bi-clustering software QUBIC-R to 677 

identify the bi-clusters enriched by 1s in 𝑌Km×n . 678 

 679 

The rationality of this formulation is that each of the bi-cluster identified here corresponds to 680 

a group of genes, the expression levels of each of which, are highly consistent over a subset of 681 

samples, hence representing a gene co-expression module specific to the subset of samples. It 682 

is worth noting that samples in one bi-cluster are highly likely to share similar transcriptional 683 

regulatory signals controlling the relevant genes. More discussion about the connection 684 

between bi-clusters and gene expression control are available in Supplementary Method.  685 

 686 

To select a proper K, we have generated binary matrices for each data set by using K=2, 3, 4, 687 

and 5 and examined the rate of the bi-clusters that are significantly associated with (1) 688 

biological pathways, (2) clinical features, and (3) CMS classification, among all the 689 

significant bi-clusters identified in each binary matrix. On average, highest rates of significant 690 

BCs are achieved when K=3 throughout all the eight data sets (See more details in 691 

Supplementary Figure S1).  692 

 693 

Bi-clustering analysis of binary matrices 694 
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We applied our recently released bi-clustering R package – QUBIC-R to identify bi-clusters 695 

in discretized matrices. It is noteworthy that the number of rows ranges from 28,754 to 71,940 696 

in this analysis. To the best of our knowledge, QUBIC R package is the most efficient 697 

bi-clustering software in the public domain that can handle input data of such large scale. The 698 

three parameters are set as follow: consistency level c=0.25, desired output number o=3000, 699 

and bicluster overlapping rate f is set at five different levels, 0.85, 0.875, 0.9, 0.95, and 1, 700 

depending on the input data size and number of 1s in each row. Detailed information for 701 

bi-clustering parameters determination and program running for each dataset are available in 702 

Supplementary Method. 703 

 704 

By extending Xing Sun et al.’s work (40-42), we derived an analytical formula to estimate the 705 

upper bound of significance values for the BCs. Suppose in a random binary matrix M with 706 

𝑚0 rows and 𝑛0 columns, its probability of 1 for any element, namely, 𝑝(𝑀[𝑖, 𝑗] = 1),, is 707 

denoted as 𝑝0. Then the upper bound of the probability that at least one submatrix 𝑀1 exists 708 

in 𝑀 could be assessed by the following formula, where 𝑀1 has 𝑚1 rows, 𝑛1 columns 709 

𝑧0 total number of 0, and 𝑛1 ≥ 𝐾: 710 

P(∃ 𝑀1 𝑤𝑖𝑡ℎ 𝑛1 ≥ K) ≤ (
 𝛽𝑛1

2

𝑧0
) 𝑛0

−(𝛽+1)(𝐾−𝑠(𝑛1,𝑛0,𝛽)(log𝑏 𝑛0)𝛽+1, when 𝑛 →  ∞, 711 

where 712 

𝛼 =
𝑚0

𝑛0
, 𝛽 =

𝑚1

𝑛1
, b =

1

p0
 713 

p0 = 𝑃(𝑀[𝑖, 𝑗] = 1) = 1 − 𝑃(𝑀[𝑖, 𝑗] = 0) for ∀ 𝑖, 𝑗 714 

s(n1, n0, 𝛽) =
𝛽 + 1

𝛽
log𝑏 n0 −

𝛽 + 1

𝛽
log𝑏 (

𝛽 + 1

𝛽
log𝑏 n0) + log𝑏 𝛼715 

+
(1 + 𝛽) log𝑏 𝑒 − 𝛽 log𝑏 𝛽

𝛽
 716 

 717 

More details of the derivation of this estimation formula is given in Supplementary Method. 718 

We have tested this significance estimation method on simulated data and compared its 719 

performance with the Chernoff’s bound method (43), which is a popular measure for the 720 

effectiveness of biclustering methods. In detail, we conducted bi-clustering analysis by using 721 

same parameters on randomly generated gene expression matrices with same sizes. 722 

Significance values for the identified BCs are evaluated using both two methods and are 723 

compared with empirical p values. The analysis revealed that p values generated by our 724 

methods can more accurately recover the empirical p values comparing to the Chernoff’s 725 

bound method. Particularly, our method offers a good control of false discover rate for the 726 

BCs that are highly enriched by 1s, hence it is more robust in picking out the significant ones 727 

from a large number of BCs identified in a large matrix. This is particularly key to large–scale 728 

matrix. 729 

 730 

Annotations of the biological and clinical characteristics for each bi-cluster 731 

Biological characteristics of each BC is assessed by whether genes in the BC significantly 732 

enrich a biology pathways or gene set. The enrichment analysis is computed by 733 

hypergeometric test, and in total, 1329 canonical gene sets including KEGG, BIOCARTA, 734 
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REACTOME pathways and 1472 GO terms from MsigDB are used in the study. Here 735 

p=0.005 is used as the cutoff for significance. 736 

 737 

Association analysis of each BC with clinical features were conducted using different tests 738 

based on the nature of the feature. For discrete clinical features including CMS classifications 739 

and pathological stages, we utilized fisher exact test; for continuous clinical features except 740 

for survival outcome, we compared the feature value for samples in and out of the BC by 741 

Mann Whitney test. p<0.005 is used as significance cutoff for all these tests. Notably, 742 

associations with CMS are conducted for only BCs containing more than five samples of the 743 

CMS class. For survival outcomes including DFS and OS, we compared the survival for 744 

samples in and out of the BC, using log-rank test with significance cutoff p<0.05. 745 

 746 

Analysis of somatic mutations in TCGA data 747 

TCGA COAD level 2 mutation profile of 429 samples predicted by mutect is retrieved from 748 

GDC database. A total of 932 genes with mutations in more than 5% (22/429) samples are 749 

selected. Considering high MSI causes the CRC genomes to be hyper-mutated, we exclude a 750 

majority of the 932 genes whose mutations are highly associated with MSI, and 73 gene 751 

mutations not associated with MSI are retained for further analysis. The association of a 752 

gene’s mutation and MSI is calculated as the association between gene mutation and CMS 753 

class I—the class known to have high MSI, using Chi-square test (p<0.1).  754 

 755 

Multiple variable cox-regression model with variable selections 756 

In order to identify the BCs that could best predict prognosis, we constructed multiple 757 

variable Cox-regression model between patients’ survival and the BCs shown to be associated 758 

with survival with a variable selection procedure. Here, each BC is coded into one binary 759 

explanatory vector with 1’s for samples in the BC and 0’s for samples not in the BC. 760 

Specifically, we applied forward and backward stepwise variable selection approach to select 761 

the model with lowest AIC value by using SURVIVAL and MASS package R.. 762 

 763 

Agglomerative clustering and stepwise log-rank test based approach for identification of 764 

alternative drug resistance associated BC groups 765 

Among the BCs that are detected to show resistance to the chemo-drugs, we posit that each 766 

BC suggests one mechanism for the drug resistance. However, there may exist more than one 767 

BC corresponding to the same mechanism. In order to identify the most unique set of 768 

resistance mechanisms, we incorporated a log-rank test coupled with agglomerative clustering 769 

to cluster the BCs of similar resistance mechanisms into groups, each of which is linked with 770 

one drug resistance. 771 

 772 

To do this, we first defined the distance between any two BCs as D(BCI, BCj) = 1 −773 

|(𝑆𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝐵𝐶𝑖)∩(𝑆𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝐵𝐶𝑗)|

|(𝑆𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝐵𝐶𝑖)∪(𝑆𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝐵𝐶𝑗)|
, based on which an agglomerative clustering was performed. 774 

In each step of the clustering, two clusters 𝑋 and 𝑌 are merged, if (1) samples in 𝑋 ∩ 𝑌 is 775 

significantly associated with resistance to the drug, (2) neither samples in 𝑋\𝑌 or 𝑌\𝑋 is 776 

significantly associated with the drug resistance. A sample collection is defined as associated 777 
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with resistance of a chemo-drug if the following two conditions are both met: (1) among drug 778 

treated samples, the overall survival of samples in the collection is significantly worse than 779 

those not in the collection (p<0.001); and (2) among samples in the collection, the overall 780 

survival of samples that are drug treated is significantly worse than those not treated (p<0.05). 781 

The agglomeration is stopped when no clusters could be merged. 782 

  783 
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