
Genetically regulated gene expression underlies lipid traits in

Hispanic cohorts

Angela Andaleon 1, 2, Lauren S. Mogil 1, Heather E. Wheeler 1, 2, 3, 4*

1 Department of Biology, Loyola University Chicago, Chicago, IL, USA

2 Program in Bioinformatics, Loyola University Chicago, Chicago, IL, USA

3 Department of Computer Science, Loyola University Chicago, Chicago, IL, USA

4 Department of Public Health Sciences, Stritch School of Medicine, Loyola University

Chicago, Maywood, IL, USA

* hwheeler1@luc.edu

1/34

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 31, 2019. ; https://doi.org/10.1101/507905doi: bioRxiv preprint 

https://doi.org/10.1101/507905
http://creativecommons.org/licenses/by/4.0/


Abstract

Plasma lipid levels are risk factors for cardiovascular disease, a leading cause of death

worldwide. While many studies have been conducted in genetic variation underlying

lipid levels, they mainly comprise individuals of European ancestry and thus their

transferability to non-European populations is unclear. We performed genome-wide

(GWAS) and imputed transcriptome-wide association studies of four lipid traits in the

Hispanic Community Health Study/Study of Latinos cohort (HCHS/SoL, n = 11,103),

replicated top hits in the Multi-Ethnic Study of Atherosclerosis (MESA, n = 3,855),

and compared the results to the larger, predominantly European ancestry meta-analysis

by the Global Lipids Genetics Consortium (GLGC, n = 196,475). In our GWAS, we

found significant SNP associations in regions within or near known lipid genes, but in

our admixture mapping analysis, we did not find significant associations between local

ancestry and lipid phenotypes. In the imputed transcriptome-wide association study in

multiple tissues and in different ethnicities, we found 59 significant

gene-tissue-phenotype associations (P < 3.61×10−8) with 14 unique significant genes,

many of which occurred across multiple phenotypes, tissues, and ethnicities and

replicated in MESA (45/59) and in GLGC (44/59). These include well-studied lipid

genes such as SORT1, CETP, and PSRC1, as well as genes that have been implicated in

cardiovascular phenotypes, such as CCL22 and ICAM1. The majority (40/59) of

significant associations colocalized with expression quantitative trait loci (eQTLs),

indicating a possible mechanism of gene regulation in lipid level variation. To fully

characterize the genetic architecture of lipid traits in diverse populations, larger studies

in non-European ancestry populations are needed.

Introduction 1

Lipid levels are a major risk factor for cardiovascular disease, the leading cause of death 2

in the United States [1]. While lipid levels are known to have a highly heritable 3

component, lipid levels as a complex trait are increasingly concerning due to the 4

growing global rate of obesity caused by rapid urbanization and high-fat foods [2]. 5

Hispanic populations have been especially affected by this shift as Hispanic children and 6
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adolescents have the highest rate of obesity among ethnicities in the United States [1, 3]. 7

However, like many other genetic trait studies, large lipid meta-analyses, such as the 8

Global Lipids Genetics Consortium (GLGC), acquire information predominantly from 9

Europeans, and these within-European discoveries may not extrapolate to other 10

populations [4–6]. 11

To increase our understanding of the genetic architecture of lipid traits in 12

non-European populations, we chose to study the Hispanic Community Health 13

Study/Study of Latinos (HCHS/SoL) [7, 8]. Phenotypes under investigation include 14

total cholesterol (CHOL), high density lipoproteins (HDL), triglycerides (TRIG), and 15

low density lipoproteins (LDL). This cohort has been previously studied in a GWAS for 16

lipid traits and there were no novel loci found that replicated in independent cohorts [9]. 17

Here, we expand upon GWAS by integrating eQTL data to predict transcriptomes in 18

multiple tissues and in multiple ethnicities for HCHS/SoL and replication cohorts, the 19

Multiethnic Study of Atherosclerosis (MESA) and GLGC, to further investigate the 20

biological effects of these variants. We performed a linear mixed model GWAS for each 21

of the four lipid phenotypes [10] in HCHS/SoL. We also performed imputed 22

transcriptome-based association studies with PrediXcan [11] for each phenotype and 23

cohort using gene expression prediction models built with data from 44 tissues in the 24

Genotype-Tissue Expression Project (GTEx) [12,13] and monocytes in MESA [14]. We 25

calculated colocalization over all GWAS results with GTEx and MESA eQTL data, 26

indicating possible mechanisms of action through gene regulation [13,15]. To fully 27

characterize the genetic architecture of traits in diverse populations, both larger 28

transcriptome and GWAS cohorts in diverse populations are needed. All scripts used for 29

analyses are available at https://github.com/WheelerLab/px_his_chol. 30

Results 31

Hispanic populations have diverse genetic ancestry between and 32

within self-identified regions 33

We sought to understand the genetically regulated architecture underlying lipid traits in 34

Hispanic populations. The genetic diversity within HCHS/SoL and other Hispanic 35
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populations has been extensively described previously and thus we concentrated on 36

calculating cohort-specific principal components to be used as covariates in our 37

analyses [16–18]. We calculated relatedness and genotypic principal components (PCs) 38

with the software KING, which is designed to estimate kinship coefficients in the 39

presence of population structure [19]. Most HCHS/SoL participants included in the 40

analyses reported a self-identified region of ancestry in the Americas, which we included 41

as a covariate in the regression analyses. Not only is the whole HCHS/SoL cohort 42

genetically differentiated and heterogenous, but there is also great diversity within each 43

self-identified region. Most individuals from the same regions tend to cluster in the 44

same direction until the fifth principal component, but have a wide variation in 45

eigenscores (Fig 1 and S1 Fig). In our further analyses, we used 5 PCs as fixed effects 46

as previously performed (S2 Fig) [16]. 47
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Figure 1. Genotypic principal component eigenscores of HCHS/SoL partic-
ipants by self-identified region. Each line represents an individual in HCHS/SoL
connected by their eigenscores calculated in KING and colored by self-identified region.
Hispanic populations are mainly admixed between Native American, West African, and
European populations, resulting in a genetically diverse and structured cohort under the
umbrella term “Hispanic”.
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Joint analysis of GWAS results implicates 24 loci in lipid traits 48

We performed GWAS using a linear mixed model implemented in the software 49

GEMMA [10] to investigate individual SNP associations with CHOL, HDL, TRIG, and 50

LDL in HCHS/SoL (n = 11,103). There was little test statistic inflation among the 51

GWAS results (S3 Fig). We followed the initial GWAS with fine-mapping by conditional 52

and joint analyses using GCTA-COJO software [20, 21]. We used linkage disequilibrium 53

(LD) calculated with the HCHS/SoL genotypes. We report GTCA-COJO joint effect 54

sizes (bJ) and p-values (pJ) to emphasize independent loci signals. 55

In the fine-mapping joint analysis, we found multiple significant, independent SNPs 56

associated with the four phenotypes. These SNPs include 12 with CHOL, 7 with HDL, 57

0 with TRIG, and 10 with LDL, totalling 29 associations (S1 Table). There were 24 58

unique independent SNPs across the phenotypes with some associations replicating in 59

CHOL and an additional lipid trait (S1 Table). 60

Two of the significant SNPs, both associated with CHOL, had MAF < 0.01 in 61

European populations, but both had MAF > 0.05 within HCHS/SoL (Table 1, Fig 2). 62

rs117961479 is in LD (1000G AMR r2 = 0.632) with rs199768142, which is implicated 63

in total cholesterol levels [22]. SNPs in LD with rs17041688 (1000G AMR r2 > 0.6) in 64

the GWAS catalog had one association with marginal zone lymphoma, and no linked 65

SNPs had obesity or cardiovascular associations [23]. 66

Table 1. Significant conditional and joint analysis SNPs with rare allele frequency in European populations.
In the GWAS of HCHS/SoL, we found 29 independent associations between SNPs and 4 lipid traits in the joint analysis,
including 2 SNPs with minor allele frequency < 0.01 in Europeans. bJ indicates the effect size and pJ represents the p-value,
both from a joint analysis of all the SNPs at the significant loci. The SNPs included in this table have pJ < 5×10−8 and
EUR MAF < 0.01. Neither of these SNPs were present in our genotype data for MESA. Full results for all conditional and
joint analyses are in S1 Table.

Chr. BP Pheno. SNP bJ pJ GLGC P HCHS/SoL MAF EUR MAF Intronic gene
2 21199426 CHOL rs17041688 -0.114 4.8×10−9 0.651 0.112 0.003 NA
19 19410750 CHOL rs117961479 -0.153 1.5×10−9 0.740 0.060 0.003 SUGP1

Percent variance explained (PVE) by all genotypes as calculated in GEMMA for each 67

phenotype were similar to those previously observed [25,26]. These values are CHOL: 68

0.269 ± 0.029, HDL: 0.180 ± 0.031, TRIG: 0.135 ± 0.030, and LDL: 0.278 ± 0.030. 69
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Figure 2. Conditional association of rs117961479 with CHOL in HCHS/SoL.
Conditional and joint analysis (COJO) [21] of the HCHS/SoL CHOL GWAS results
revealed a genome-wide significant signal for rs117961479 (pJ = 1.5×10−9). Plotted p-
values for other SNPs in the region are from a conditional GWAS where the rs117961479
genotype was used as a covariate. The color of each dot represents the SNP’s linkage
disequilibrium (LD) r2 with the labeled SNP in the 1000 Genomes American populations.
Many nearby SNPs within or near SUGP1 and MAU2 are in high LD with rs117961479.
These conditional results indicate one signal in this region, which was plotted with
LocusZoom [24].

Admixture mapping does not identify ancestral associations 70

with lipid phenotypes 71

Admixture mapping has been previously used in HCHS/SoL to uncover ancestral tracts, 72

especially of Native American ancestry, that may affect traits [27,28]. We performed 73

admixture mapping using local ancestry estimates of European, African, and Native 74

American chromosome tracts in each individual. We used RFMix to estimate how many 75

alleles at each SNP came from each ancestral population [29]. We ran a separate linear 76

mixed model for each of the three ancestries testing the number of estimated alleles 77

from the origin ancestry for association with each phenotype in GEMMA [10]. Our 78

reference panels for local ancestry were Iberian in Spain (IBS, n = 107), Native 79

American (NAT, n = 27), and Yoruba in Ibadan, Nigeria (YRI, n = 108) with 80

procedures used for reference population selection detailed in the Methods. We used a 81
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significance threshold for admixture mapping tests of P < 5.7×10−5, previously 82

determined within HCHS/SoL [27]. We restricted analyses to chromosomes 16 and 19 83

due to their known importance in lipid traits. None of the significant SNPs within our 84

admixture analyses reached previously determined significance. The most significant 85

ancestry tract was on chromosome 19 from 49945850 bp to 50108983 bp for TRIG in 86

Native American ancestry (P = 3.1×10−4). We include our top 1000 most significant 87

SNPs (P < 5.3×10−3) in admixture analyses in S2 Table. 88

Imputed transcriptome-based association study in HCHS/SoL 89

implicates 14 genes in lipid traits 90

We performed imputed transcriptome-based association studies to investigate the 91

associations of genetically predicted gene expression with the four lipid traits while also 92

accounting for relatedness and structure in the discovery cohort HCHS/SoL (n = 93

11,103) [10,11]. We used two main sets of prediction models: GTEx V6 and MESA. 94

GTEx V6 predictor models include 44 individual tissue models built in predominantly 95

European-American individuals (predictor population n > 70, 85% European and 15% 96

African-American), and MESA predictor models include monocyte models from 5 97

populations comprising multiple ethnicities, including African-American and Hispanic 98

(predictor population n > 233) [12–14,30]. All GTEx results were filtered to those with 99

green flags as described on http://predictdb.org/. We defined discovery significance 100

as P < 3.1×10−8, which is 0.05/(all associations tested). Primary significance may be 101

stringent due to the amount of eQTL sharing between transcriptomic models [31]. We 102

tested significant associations for replication in the genotyped MESA cohort (n = 3,855) 103

and using GWAS summary statistics from GLGC (n = 196,475) [5, 13,32]. There were 104

no Hispanic/Latino populations included in the GLGC analysis [5]. There was little test 105

statistic inflation among the PrediXcan results for HCHS/SoL (S4 Fig), MESA, or 106

GLGC. Full PrediXcan results for all cohorts are available at 107

https://github.com/WheelerLab/px_his_chol. 108

Across 4 phenotypes, 44 GTEx models, and 5 MESA models, we found 59 significant 109

gene-tissue-phenotype associations, including 14 unique significant genes. These include 110

well-studied lipid genes such as APOB, PSRC1, SORT1, and CETP and genes that 111
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have been implicated in cardiovascular traits such as CCL22 and ICAM1 (Table 2, Fig 112

3) [33–35]. 45/59 associations replicated in MESA and 44/59 associations replicated in 113

GLGC (P < 0.05). The only associations that did not replicate in GLGC were those 114

that were not predicted at all due to lack of SNP overlap between the GLGC GWAS 115

summary results and the expression prediction models. All 44 of the GLGC associations 116

also met the more stringent threshold of P < 8.5×10−4, the Bonferroni adjustment for 117

59 tests. Despite being just 2% of the size of GLGC, 40 of the MESA associations also 118

met the Bonferroni adjusted threshold (Table 2). 119
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Figure 3. Predicted expression vs. observed phenotype for CETP. Using the
GTEx Artery Coronary expression prediction model, increased predicted gene expression
of CETP is significantly associated with decreased observed HDL in both HCHS/SoL
(A) and MESA (B) (Table 2), which is consistent with previous studies of CETP [35].

Though most of the results were from the 44 predominantly European GTEx tissue 120

models, we also had significant PrediXcan results using the five MESA monocyte 121

models built in various ethnicities [14]. 14/59 of the significant associations in 122

HCHS/SoL were in MESA models, with 4 associations in CETP and 10 associations in 123

PSRC1 in the same effect direction as the other tissues (Table 2). 124

A recent study investigated cardiometabolic traits, including the four lipid 125

phenotypes, within diverse cohorts using PrediXcan GTEx V7 models, which, unlike V6 126

used in our analyses, include only European ancestry individuals [36]. They found 12 127

gene-lipid-tissue associations at P < 2.6×10−5, one of which replicated in GLGC. We 128

compared their novel GTEx tissue results to our results. None of their gene associations 129

8/34

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 31, 2019. ; https://doi.org/10.1101/507905doi: bioRxiv preprint 

https://doi.org/10.1101/507905
http://creativecommons.org/licenses/by/4.0/


Table 2. Significant PrediXcan associations in HCHS/SoL and replication in MESA and GLGC. We performed
PrediXcan for four lipid phenotypes in HCHS/SoL using GTEx and MESA monocyte gene expression prediction models [12–14].
In total, there are 14 unique genes across 59 significant gene-tissue-phenotype associations. MESA population abbreviations:
African-American (AFA), European (CAU), Hispanic (HIS), AFA and HIS (AFHI), and all populations combined (ALL).

Chr. BP Gene name Pheno. Model HCHS β HCHS P MESA β MESA P GLGC β GLGC P
1 109792641 CELSR2 CHOL Esophagus Mucosa -0.311 9.323×10−12 -0.424 3.095×10−7 -0.321 6.300×10−145

1 109792641 CELSR2 CHOL Liver -0.179 3.471×10−25 NA NA -0.123 2.080×10−119

1 109792641 CELSR2 CHOL Muscle Skeletal -0.195 1.526×10−28 -0.209 1.317×10−9 -0.144 2.169×10−149

1 109792641 CELSR2 CHOL Skin Sun Exposed Lower leg -0.216 1.268×10−10 -0.335 1.930×10−6 -0.127 5.802×10−42

1 109792641 CELSR2 LDL Esophagus Mucosa -0.388 2.662×10−15 -0.418 1.403×10−7 -0.399 6.393×10−204

1 109792641 CELSR2 LDL Liver -0.218 4.283×10−32 NA NA -0.161 3.712×10−183

1 109792641 CELSR2 LDL Muscle Skeletal -0.235 2.534×10−35 -0.234 1.500×10−12 -0.184 5.141×10−220

1 109792641 CELSR2 LDL Skin Sun Exposed Lower leg -0.274 3.415×10−14 -0.369 4.634×10−8 -0.162 6.032×10−60

1 109822178 PSRC1 CHOL MESA monocytes AFA -0.103 1.165×10−11 -0.210 1.801×10−4 -0.163 7.152×10−61

1 109822178 PSRC1 CHOL MESA monocytes AFHI -0.080 6.403×10−16 -0.124 5.406×10−4 -0.175 1.039×10−102

1 109822178 PSRC1 CHOL MESA monocytes ALL -0.082 1.145×10−16 -0.140 7.278×10−5 -0.148 2.074×10−100

1 109822178 PSRC1 CHOL MESA monocytes CAU -0.092 1.984×10−16 -0.188 5.741×10−6 -0.161 9.507×10−99

1 109822178 PSRC1 CHOL MESA monocytes HIS -0.115 2.185×10−17 -0.247 1.842×10−6 -0.249 5.981×10−133

1 109822178 PSRC1 CHOL Esophagus Mucosa -0.173 2.883×10−15 -0.226 3.018×10−8 -0.149 1.324×10−131

1 109822178 PSRC1 CHOL Liver -0.142 3.098×10−23 NA NA -0.105 7.243×10−130

1 109822178 PSRC1 CHOL Lung -0.344 3.267×10−8 -0.316 1.417×10−2 NA NA
1 109822178 PSRC1 CHOL Muscle Skeletal -0.267 7.747×10−9 -0.438 4.135×10−6 -0.235 5.258×10−67

1 109822178 PSRC1 CHOL Pancreas -0.204 3.887×10−10 -0.457 3.811×10−9 -0.161 8.042×10−84

1 109822178 PSRC1 CHOL Pituitary -0.196 1.913×10−11 -0.421 1.125×10−9 -0.149 3.348×10−85

1 109822178 PSRC1 CHOL Testis -0.211 2.429×10−15 -0.235 2.543×10−6 -0.162 2.286×10−94

1 109822178 PSRC1 CHOL Whole Blood -0.822 1.722×10−24 -0.901 3.215×10−9 -0.691 3.309×10−175

1 109822178 PSRC1 LDL MESA monocytes AFA -0.127 6.119×10−15 -0.196 2.732×10−4 -0.210 3.754×10−90

1 109822178 PSRC1 LDL MESA monocytes AFHI -0.095 2.221×10−19 -0.125 2.602×10−4 -0.223 1.057×10−151

1 109822178 PSRC1 LDL MESA monocytes ALL -0.099 1.499×10−20 -0.139 4.357×10−5 -0.187 4.240×10−147

1 109822178 PSRC1 LDL MESA monocytes CAU -0.112 1.179×10−20 -0.184 3.897×10−6 -0.206 2.933×10−146

1 109822178 PSRC1 LDL MESA monocytes HIS -0.138 3.418×10−21 -0.245 8.567×10−7 -0.315 7.900×10−194

1 109822178 PSRC1 LDL Esophagus Mucosa -0.214 7.540×10−20 -0.244 4.273×10−10 -0.189 1.019×10−193

1 109822178 PSRC1 LDL Liver -0.173 2.231×10−29 NA NA -0.135 1.613×10−190

1 109822178 PSRC1 LDL Lung -0.451 1.458×10−11 -0.364 3.239×10−3 NA NA
1 109822178 PSRC1 LDL Muscle Skeletal -0.341 6.847×10−12 -0.402 1.040×10−5 -0.277 1.836×10−87

1 109822178 PSRC1 LDL Pancreas -0.262 6.506×10−14 -0.480 1.079×10−10 -0.201 2.633×10−121

1 109822178 PSRC1 LDL Pituitary -0.254 5.485×10−16 -0.442 2.330×10−11 -0.183 1.146×10−120

1 109822178 PSRC1 LDL Skin Not Sun Exposed Suprapubic -0.187 1.492×10−10 -0.228 2.529×10−4 NA NA
1 109822178 PSRC1 LDL Testis -0.255 5.398×10−19 -0.236 8.441×10−7 -0.208 4.254×10−139

1 109822178 PSRC1 LDL Whole Blood -1.011 1.096×10−31 -0.959 4.887×10−11 -0.866 7.059×10−253

1 109852192 SORT1 CHOL Liver -0.166 5.472×10−28 NA NA -0.106 1.046×10−123

1 109852192 SORT1 LDL Liver -0.203 1.217×10−35 NA NA -0.136 7.449×10−183

1 109852192 SORT1 LDL Pancreas -0.284 3.414×10−9 -0.300 1.318×10−4 -0.237 6.478×10−96

1 110026101 ATXN7L2 LDL Liver -0.103 2.109×10−9 NA NA -0.064 6.624×10−53

1 110230436 GSTM1 CHOL Small Intestine Terminal Ileum -4.469 1.481×10−8 NA NA NA NA
1 110230436 GSTM1 LDL Small Intestine Terminal Ileum -5.404 1.747×10−10 NA NA NA NA
2 21224301 APOB CHOL Adipose Subcutaneous 0.193 2.400×10−11 0.199 6.413×10−4 0.166 2.972×10−67

2 21224301 APOB LDL Adipose Subcutaneous 0.233 6.653×10−14 0.209 1.854×10−4 0.193 1.117×10−86

15 58702768 LIPC HDL Liver -0.175 2.558×10−9 NA NA NA NA
16 56995762 CETP HDL MESA monocytes AFHI -0.425 7.337×10−30 -0.560 8.862×10−8 -0.951 0
16 56995762 CETP HDL MESA monocytes ALL -0.259 1.076×10−27 -0.327 2.156×10−7 -0.518 0
16 56995762 CETP HDL MESA monocytes CAU -0.202 7.302×10− -0.408 6.857×10−7 -0.675 0
16 56995762 CETP HDL MESA monocytes HIS -0.290 1.848×10−31 -0.572 8.532×10−11 -0.835 0
16 56995762 CETP HDL Artery Coronary -0.454 1.286×10−27 -0.983 1.372×10−13 NA NA
16 56995762 CETP HDL Cells Transformed fibroblasts -0.120 1.504×10−8 -0.144 1.093×10−1 NA NA
16 56995762 CETP HDL Esophagus Mucosa -1.011 6.544×10−32 -2.084 2.853×10−14 NA NA
16 56995762 CETP HDL Lung -0.477 1.515×10−24 -0.979 2.270×10−12 NA NA
16 57023397 NLRC5 HDL Cells Transformed fibroblasts -0.107 3.175×10−18 -0.218 8.743×10−4 NA NA
16 57023397 NLRC5 HDL Heart Atrial Appendage 0.156 1.643×10−9 0.062 5.211×10−1 NA NA
16 57392684 CCL22 HDL Esophagus Muscularis -9.841 1.405×10−38 -15.845 3.502×10−14 NA NA
19 10381511 ICAM1 HDL Esophagus Muscularis -0.181 1.998×10−8 -0.439 1.021×10−2 -0.153 1.068×10−10

19 11039409 TIMM29 CHOL Brain Cerebellar Hemisphere 5.137 1.754×10−13 NA NA NA NA
19 11309971 DOCK6 HDL Artery Tibial 0.457 2.930×10−9 0.776 1.015×10−3 0.268 2.196×10−5

19 44645710 ZNF234 LDL Breast Mammary Tissue -0.171 1.872×10−8 0.265 1.669×10−3 NA NA

9/34

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 31, 2019. ; https://doi.org/10.1101/507905doi: bioRxiv preprint 

https://doi.org/10.1101/507905
http://creativecommons.org/licenses/by/4.0/


replicated in our analyses (all P > 0.09). 130

A majority of significant PrediXcan gene associations have 131

colocalized GWAS and eQTL signals 132

We further investigated whether the PrediXcan gene associations had colocalized signal 133

with known eQTLs. Colocalization provides additional evidence that the SNPs in a 134

given expression model are functioning via gene regulation to affect lipid traits. We 135

restricted variants to those within PrediXcan models and we tested them for 136

colocalization of eQTLs and lipid trait GWAS associations. We used the software 137

COLOC, which estimates the colocalization probability for a SNP between an eQTL 138

and a GWAS hit [15]. We have previously applied COLOC to gene-level PrediXcan 139

results and observed clustering of significant genes into non-colocalized, colocalized, or 140

unknown signal [13]. P3 estimations indicate the probability of independent signals 141

from an eQTL association and a GWAS association, with P3 > 0.5 indicating no 142

colocalization. P4 > 0.5 indicates a shared eQTL and GWAS association of variants 143

within the prediction model, and if neither P3 nor P4 > 0.5, whether or not the GWAS 144

and the eQTL signals are colocalized is unknown [13,15]. We used eQTL data from 145

GTEx V6 and MESA monocytes, the same populations as the PrediXcan 146

predictors [14,30]. 147

We calculated colocalization probabilities for all significant gene-phenotype-tissue 148

associations. Of these associations, 40/59 had a better than chance probability of 149

colocalization between GWAS and eQTL signals (P4 > 0.5) (Table 3). This included 150

the genes PSRC1, APOB, CELSR2, SORT1, CETP, DOCK6, ICAM1, CCL22, and 151

LIPC. Of the remaining 19 associations, 12 were likely independent signals (P3 > 0.5) 152

and 7 were inconclusive. Full results are available at 153

https://github.com/WheelerLab/px_his_chol. 154

Of the 8 significant associations found in liver, 7/8 had a significant P4 (P4 > 0.5) 155

and 6/8 with P4 > 0.99, highlighting the liver’s importance in lipid metabolism and 156

possibly indicating its action through gene regulation. While somewhat expected, these 157

results are notable because the GTEx liver tissue has a smaller sample size (n = 97) 158

than other tissues with multiple associations (whole blood: 2/49, n = 338; MESA 159
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Table 3. Gene associations and colocalization with eQTLs. We performed COLOC to test colocalization between
HCHS/SoL GWAS and eQTL data in our transcriptomic models (44 GTEx, 5 MESA). We found 40/59 of significant (P <
3.61×10−8) PrediXcan associations had significant probability (P4 > 0.5) for colocalization, indicating that the variants may
be acting through gene regulation to affect the phenotypes. P3 > 0.5 indicates independence between GWAS and eQTL
signals. Full results are available at https://github.com/WheelerLab/px_his_chol.

Chr. BP Gene Model Pheno. HCHS β HCHS P P3 P4
1 109792641 CELSR2 Liver CHOL -0.179 3.471×10−25 0.001 0.999
1 109792641 CELSR2 Muscle Skeletal CHOL -0.195 1.526×10−28 0.001 0.999
1 109792641 CELSR2 Liver LDL -0.218 4.283×10−32 0.001 0.999
1 109792641 CELSR2 Muscle Skeletal LDL -0.235 2.534×10−35 0.002 0.998
1 109792641 CELSR2 Skin Sun Exposed Lower Leg LDL -0.274 3.415×10−14 0.006 0.982
1 109792641 CELSR2 Skin Sun Exposed Lower Leg CHOL -0.216 1.268×10−10 0.007 0.982
1 109792641 CELSR2 Esophagus Mucosa LDL -0.388 2.662×10−15 0.028 0.959
1 109792641 CELSR2 Esophagus Mucosa CHOL -0.311 9.323×10−12 0.028 0.959
1 109822178 PSRC1 Liver CHOL -0.142 3.098×10−23 0.001 0.999
1 109822178 PSRC1 Liver LDL -0.173 2.231×10−29 0.001 0.999
1 109822178 PSRC1 Esophagus Mucosa LDL -0.214 7.540×10−20 0.002 0.998
1 109822178 PSRC1 Esophagus Mucosa CHOL -0.173 2.883×10−15 0.003 0.997
1 109822178 PSRC1 Pancreas CHOL -0.204 3.887×10−10 0.010 0.981
1 109822178 PSRC1 Pancreas LDL -0.262 6.506×10−14 0.010 0.981
1 109822178 PSRC1 Whole Blood CHOL -0.822 1.722×10−24 0.019 0.977
1 109822178 PSRC1 Whole Blood LDL -1.011 1.096×10−31 0.019 0.977
1 109822178 PSRC1 Skin Not Sun Exposed Suprapubic LDL -0.187 1.492×10−10 0.044 0.906
1 109822178 PSRC1 Pituitary LDL -0.254 5.485×10−16 0.019 0.905
1 109822178 PSRC1 Pituitary CHOL -0.196 1.913×10−11 0.020 0.902
1 109822178 PSRC1 Testis CHOL -0.211 2.429×10−15 0.090 0.891
1 109822178 PSRC1 Testis LDL -0.255 5.398×10−19 0.090 0.891
1 109822178 PSRC1 Muscle Skeletal CHOL -0.267 7.747×10−9 0.070 0.801
1 109822178 PSRC1 Muscle Skeletal LDL -0.341 6.847×10−12 0.072 0.795
1 109822178 PSRC1 MESA monocytes HIS LDL -0.138 3.418×10−21 0.285 0.715
1 109822178 PSRC1 MESA monocytes HIS CHOL -0.115 2.185×10−17 0.293 0.707
1 109822178 PSRC1 Lung CHOL -0.344 3.267×10−8 0.067 0.437
1 109822178 PSRC1 Lung LDL -0.451 1.458×10−11 0.067 0.432
1 109822178 PSRC1 MESA monocytes CAU CHOL -0.092 1.984×10−16 0.998 0.002
1 109822178 PSRC1 MESA monocytes CAU LDL -0.112 1.179×10−20 0.998 0.002
1 109822178 PSRC1 MESA monocytes AFHI CHOL -0.080 6.403×10−16 0.999 0.001
1 109822178 PSRC1 MESA monocytes AFHI LDL -0.095 2.221×10−19 0.999 0.001
1 109822178 PSRC1 MESA monocytes AFA LDL -0.127 6.119×10−15 1.000 0.000
1 109822178 PSRC1 MESA monocytes AFA CHOL -0.103 1.165×10−11 1.000 0.000
1 109822178 PSRC1 MESA monocytes ALL LDL -0.099 1.499×10−20 1.000 0.000
1 109822178 PSRC1 MESA monocytes ALL CHOL -0.082 1.145×10−16 1.000 0.000
1 109852192 SORT1 Liver CHOL -0.166 5.472×10−28 0.001 0.999
1 109852192 SORT1 Liver LDL -0.203 1.217×10−35 0.001 0.999
1 109852192 SORT1 Pancreas LDL -0.284 3.414×10−9 0.035 0.910
1 110026101 ATXN7L2 Liver LDL -0.103 2.109×10−9 0.988 0.010
1 110230436 GSTM1 Small Intestine Terminal Ileum CHOL -4.469 1.481×10−8 0.080 0.340
1 110230436 GSTM1 Small Intestine Terminal Ileum LDL -5.404 1.747×10−10 0.080 0.340
2 21224301 APOB Adipose Subcutaneous CHOL 0.193 2.400×10−11 0.167 0.833
2 21224301 APOB Adipose Subcutaneous LDL 0.233 6.653×10−14 0.305 0.695
15 58702768 LIPC Liver HDL -0.175 2.558×10−9 0.061 0.652
16 56995762 CETP MESA monocytes ALL HDL -0.259 1.076×10−27 0.002 0.998
16 56995762 CETP MESA monocytes AFHI HDL -0.425 7.337×10−30 0.002 0.998
16 56995762 CETP MESA monocytes HIS HDL -0.290 1.848×10−31 0.005 0.995
16 56995762 CETP Esophagus Mucosa HDL -1.011 6.544×10−32 0.007 0.963
16 56995762 CETP Lung HDL -0.477 1.515×10−24 0.007 0.961
16 56995762 CETP Artery Coronary HDL -0.454 1.286×10−27 0.026 0.819
16 56995762 CETP Cells Transformed Fibroblasts HDL -0.120 1.504×10−8 0.509 0.124
16 56995762 CETP MESA monocytes CAU HDL -0.202 7.302×10−23 0.997 0.003
16 57023397 NLRC5 Heart Atrial Appendage HDL 0.156 1.643×10−9 0.130 0.060
16 57023397 NLRC5 Cells Transformed Fibroblasts HDL -0.107 3.175×10−18 1.000 0.000
16 57392684 CCL22 Esophagus Muscularis HDL -9.841 1.405×10−38 0.034 0.749
19 10381511 ICAM1 Esophagus Muscularis HDL -0.181 1.998×10−8 0.023 0.802
19 11039409 TIMM29 Brain Cerebellar Hemisphere CHOL 5.137 1.754×10−13 0.071 0.086
19 11309971 DOCK6 Artery Tibial HDL 0.457 2.930×10−9 0.020 0.820
19 44645710 ZNF234 Breast Mammary Tissue LDL -0.171 1.872×10−8 0.095 0.250
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monocytes ALL 3/49, n = 1,163), signifying that liver is an especially important tissue 160

in lipid metabolism as extensively studied previously [15,37]. 161

We found differences in colocalization probabilities between the MESA models of 162

different ethnicities. This is most prevalent in the CETP model, a known driver of 163

cholesterol metabolism, where only the models including Hispanic genotypes had P4 > 164

0.99, while the CAU model displayed independent GWAS and eQTL signals (Table 3). 165

This is likely due to the shared LD patterns in the Hispanic eQTL and GWAS cohorts 166

(Fig 4). SNPs included in the MESA HIS and MESA CAU PrediXcan models for CETP 167

are different because elastic net variable selection, which was used to generate the model 168

in each population [14], is partially dependent on correlation among variables, i.e. LD. 169

Thus, since the LD pattern of HCHS more closely resembles HIS than CAU and because 170

linked SNPs in HCHS and HIS were most significantly associated with HDL and CETP 171

expression, respectively, the colocalization probability is much higher in the HIS model 172

than the CAU model (Fig 4, Table 3). 173

Discussion 174

We integrated expression quantitative trait loci (eQTL) data from multiple tissues and 175

multiple ethnicities in transcriptome-wide association and colocalization studies to 176

investigate the biological mechanisms underlying lipid trait variation. GWAS have 177

previously been performed in the Hispanic discovery cohort, HCHS/SoL, with no novel, 178

replicable associations found [9], similar to our SNP-level findings. We acknowledge our 179

GWAS findings were limited due to our restriction to SNPs present in PrediXcan 180

models, which were derived from predominantly European cohorts. However, with 181

PrediXcan, we found 59 transcriptome-wide significant gene associations with lipid 182

traits in HCHS/SoL, with 45/59 gene-tissue-phenotype combinations replicating in 183

MESA and 44/59 combinations replicating in GLGC. MESA and GLGC are of diverse 184

(African-American, European, and Hispanic ancestry) and European-only ancestry, 185

respectively, with a similar replication rate in MESA, which has < 2% of the cohort size 186

of GLGC. 187

Imputed-transcriptome based association methods like PrediXcan offer benefits over 188

SNP-level GWAS in producing actionable results [11]. Running PrediXcan across GTEx 189
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models can implicate particular tissues in a phenotype. Here, we find the most (8/59) 190

significant associations with the GTEx liver models compared to other tissue models, 191

which is encouraging as the liver is key in cholesterol synthesis and metabolism (Table 2, 192

Fig 3) [37]. PrediXcan results include a direction of effect, and many of our results had 193

the same direction of effect as in vivo observations in humans and mice [35,40]. For 194

example, we found increased expression of PSRC1 is significantly associated with lower 195

CHOL and LDL in multiple tissues and ethnicities. The same relationship has been 196

previously observed in the cholesterol metabolism of mice and in the measured gene 197

expression in an Indian population [41,42]. Our CETP results indicated that higher 198

CETP expression is associated with lower HDL levels, which has been previously 199

observed extensively within humans and has become a potential drug target for 200

preventing atherosclerosis [35,43–46]. Directions of effect revealed by PrediXcan can 201

help elucidate genetic pathways of metabolism or potential drug targets [11]. 202

Our significance threshold was stringent because we used the Bonferroni correction 203

over all associations, but many of the eQTLs between genes and tissues, especially 204

related tissues, are the same or in linkage disequilibrium [31]. PSRC1 and SORT1 are 205

linked and were both highly significant in our analyses. Knowing liver is the key tissue 206

involved in lipid metabolism may help us prioritize the slightly more significant SORT1 207

liver association over PSRC1, even though PSRC1 associations were more significant in 208

9 other tissues (Table 3). However, because liver expression between the genes is highly 209

correlated (Pearson R=0.75) [47], conditional analyses cannot help us distinguish 210

between one or both genes contributing to lipid metabolism. In one functional study, 211

overexpression and knockdown of Sort1 in mice altered cholesterol levels, while 212

perturbation of Psrc1 did not [48], suggesting SORT1 is the more likely causal gene [47]. 213

However, subsequent functional studies also implicate PSRC1 in cholesterol transport in 214

apoE-/- mice [41]. Thus, additional evidence is often necessary to identify the most 215

likely causal gene or genes, due to potential confounding PrediXcan results from linkage 216

and co-regulation of gene expression [47]. 217

We found numerous significant gene associations with lipid traits that displayed 218

colocalization with eQTL signals and replication with GLGC (Tables 2 and 3). These 219

include CELSR2, PSRC1, SORT1, GSTM1, APOB, LIPC, CETP, NLRC5, CCL22, 220

ICAM1, TIMM29, DOCK6, ZNF234. Of these genes, CELSR2, PSRC1, GSTM1, 221
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SORT1, APOB, LIPC, CETP, and DOCK6, which all have been extensively implicated 222

and studied in the processes of lipid metabolism in humans [5, 49–52]. Other genes 223

within this set are located near these well-studied genes, such as NLRC5, which is 5,645 224

bp downstream from CETP. Here, we describe the current implications of genes that 225

are greater than 100 kb away from the closest significant gene or previously observed 226

known lipid gene (Table 3). 227

Increased CCL22 predicted expression significantly associated with lower HDL levels, 228

showed evidence of colocalization, and the gene is located 375 kb downstream from 229

CETP (Tables 2 and 3). It is involved in immunoregulatory and inflammatory processes, 230

and variants within it have been implicated in multiple sclerosis and lupus [53,54]. Apoe 231

knockout mice with a high cholesterol diet were found to have significantly higher 232

CCL22 serum levels than similar mice on a regular diet, contributing to the progression 233

of atherosclerosis [55]. A separate study in humans from the same group found 234

increased CCL22 abundance associated with ischemic heart disease progression [56]. 235

These observations correlate with our observed association of higher predicted CCL22 236

expression with lower HDL levels, as higher amounts of HDL might protect against 237

atherosclerosis [57]. 238

Increased ICAM1 predicted expression is significantly associated with lower HDL 239

levels, it showed evidence of colocalization, and it is located 803 kb upstream of LDLR, 240

a prominent lipid gene. It produces ICAM-1, an intercellular adhesion molecule. In male 241

rats, a high cholesterol diet was found to significantly influence ICAM-1 molecule levels 242

in the aorta, signifying a correlation between a cholesterol diet and ICAM-1 expression, 243

and ICAM-1 molecule levels were negatively correlated with baseline HDL levels [58]. 244

Another study found that HDL suppresses expression of ICAM1 through transfer of 245

microRNA-223 to endothelial cells, which correlated with our observed association [59]. 246

Increased GSTM1 predicted expression is significantly associated with lower CHOL 247

and LDL levels and is located 378 kb downstream from SORT1 (Table 2). A study in 248

north India found no significant difference in any lipid phenotype between individuals 249

with GSTM1 (-) and GSTM1 (+), but did find that the GSTM1 (-) genotype had a 250

2-fold increased risk of developing coronary artery disease in the cohort [60]. This gene 251

has also been studied for association with atherosclerosis, and frequency of 252

atherosclerosis in a GSTM1 polymorphic group were found to be 1.2 times higher than 253
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those in the control group in a study from a Brazilian cohort [61]. 254

In many studies, participants are asked to self-identify under a given label, such as 255

the four race/ethnicity classifications used in MESA: “White, Caucasian”, “Chinese 256

American”, “Black, African-American”, and “Hispanic”. These self-identifications are 257

often not indicative of genetic ancestry, especially in admixed populations such as 258

African-Americans and Hispanics due to a complex population history [32]. For 259

example, even within self-identified regions in Latin America, populations can be 260

heavily stratified (Fig 1 and S1 Fig). Our group recently created the first multi-ethnic 261

transcriptomic prediction models for PrediXcan and observed that predictive 262

performance was improved in cohorts of similar ancestry [14]. In our current analysis, 263

we found PSRC1 and CETP to be significantly associated with multiple phenotypes in 264

MESA models, and these genes have been previously extensively studied in association 265

with lipids [49]. The majority of HCHS/SoL results replicated in both GLGC and 266

MESA even though there is a 50-fold difference in sample size (Table 2). 267

Recent studies have tested the portability of PrediXcan models across populations, 268

notably between African and European populations. When predicting gene expression 269

using GTEx models, the Yoruba population from West Africa had poorer accuracy 270

compared to several European-ancestry populations tested [62]. Another study found 271

similar results as both simulated and real African-American populations had poorer 272

correlations of predicted versus observed gene expression than European 273

populations [63]. Accuracy varied with both model population sample size and 274

ancestry [63]. Both studies emphasized that a shared genetic architecture and ancestry 275

between test and reference populations is imperative for accurate gene expression 276

prediction and that further efforts in collection and creating multi-ethnic models are 277

needed [62,63]. 278

In 2012, Stranger et al. observed significant sharing of eQTL effect sizes between 279

Asians, European-admixed, and African subpopulations and suggested that the driving 280

force behind the discovery of an eQTL in one population but not another is mainly due 281

to allele frequency differences and not due to differences in absolute effect size [64]. 282

Indeed, we recently showed differences in gene expression predictive performance are 283

due to allele frequency differences between populations [14]. In MESA, we also showed 284

that genetic correlation (rG) of eQTLs depends on shared ancestry proportions, ranging 285
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from rG=0.46 between AFA and CAU to rG=0.62 between HIS and CAU [14]. Thus, 286

each population has shared and unique eQTL effects. Other than population-specific 287

SNPs present in the MESA monocyte prediction models, SNPs that are both rare in 288

European populations and common in Hispanic populations are not present in our 289

analyses here and we continue to seek larger and more diverse gene expression data to 290

improve inclusion of population-specific effects. 291

Another recent study showed that incorporating the use of local ancestry can 292

improve eQTL mapping and gene expression prediction [65]. Future studies of lipid 293

traits in larger Hispanic populations may include testing local ancestry portions 294

individually in this population to see if less-studied ancestries, such as Native American 295

and West African, are associated with SNPs and genes that have not been previously 296

observed in European-majority cohorts. In our admixture mapping analysis to 297

determine if significant GWAS signals originate from tracts of African or Native 298

American ancestry within HCHS/SoL, we did not find any significant results, possibly 299

due to the small non-admixed Native American reference cohort (n = 27) we used from 300

the 1000 Genomes Project. This cohort is mainly Peruvian, which is likely not the best 301

reference panel for the Native American component of most individuals in 302

HCHS/SoL [66]. To have a higher power in these analyses, more samples, especially 303

from Native American genomes and transcriptomes, are needed to integrate local 304

ancestry into gene expression studies. By combining information from both local 305

ancestry mapping and eQTL studies in non-European populations, we may better 306

characterize and predict gene expression in admixed populations. 307

There is a dearth of diversity of genetic studies that greatly impacts the ability to 308

apply the results of genetic studies to non-European populations. With many 309

biobank-sized resources only including European data, this gap continues to grow [6]. 310

Without data collection and proper models for non-European populations, there is less 311

potential for accurate implementation of precision medicine. To fully characterize the 312

impact of genetic variation between and within populations and allow all individuals to 313

benefit from biomedical research, we must expand genetic studies to include individuals 314

of diverse ancestries. 315
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Materials and Methods 316

This work was approved by the Loyola University Chicago Institutional Review Board 317

(project number 2014). 318

Phenotypic and genomic data 319

The analyses in HCHS/SoL and MESA were performed with whole genome genotypes 320

from the database of Genotypes and Phenotypes (Table 4) [67]. The HCHS/SoL cohort 321

is composed of self-identified Hispanic adults (18-74) recruited from four urban centers 322

in the US: Chicago, IL; Miami, FL; the Bronx, NY; and San Diego, CA, using a 323

previously described household-based sampling technique with written consent of the 324

individual in their preferred language with data subsequently de-identified [7]. Within 325

the collected lipid phenotypes, we rank-normalized CHOL, HDL, TRIG, and LDL to 326

correct the skewing in the raw data. The majority of participants reported a 327

self-identified region from Cuba (n = 1,987), Dominican Republic (n = 1,132), Mexico 328

(n = 4,056), Puerto Rico (n = 1,984), Central America (n = 1,244), or South America 329

(n = 707). Original genotypes were collected from a standard Illumina Omni2.5M array 330

with 109,571 custom SNPs. 331

Table 4. Genotyped cohorts

HCHS MESA
Accession number phs000810.v1.p1 phs000209.v13.p3
Pre-QC SNPs 2,536,661 909,622
Pre-QC individuals 12,434 8,224
Post-QC SNPs 2,074,058 819,939
Post-QC individuals 12,235 8,224
Post-imputation SNPs 7,576,834 7,043,460
Ind. with lipid pheno. 11,104 3,855

Within the MESA cohort, individuals were recruited from six urban centers in the 332

US: Baltimore, MD; Chicago, IL; Forsyth County, NC; Los Angeles County, CA; 333

northern Manhattan, NY; and St. Paul, MN. Genotype data were collected from blood 334

samples using an Affymetrix 6.0 SNP array and phenotype data from Exam 1 were used. 335

MESA individuals include those that self-identified as “Black, African-American” (AFA, 336

n = 613), “White, Caucasian” (CAU = 2,243), and “Hispanic” (HIS, n = 999). Cohorts 337

underwent quality control and imputation as previously performed by our group [14]. 338
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Summary statistics from the Global Lipids Genetics Consortium were downloaded 339

from http://csg.sph.umich.edu/willer/public/lipids2013/. This cohort is 340

>95% European and contained 196,475 individuals. The original study had 341

quantile-normalized phenotypes [5]. 342

Quality control 343

For quality control, we merged the two HCHS/SoL permission groups from dbGaP and 344

ran all processes in PLINK. All of the genotypes are in genome build GRCh37/hg19. 345

We removed individuals with genotyping rate < 99%. Additionally, we removed SNPs 346

with failed heterozygosity (outside ± 3 standard deviations from the mean), with failed 347

Hardy-Weinberg equilibrium (P < 1×10−6), and restricted analyses to SNPs on 348

autosomes only. Unlike the typical quality control process for non-admixed populations, 349

we did not remove principal component outliers nor did we remove individuals with 350

>0.125 identity by descent in HCHS/SoL as this would have included >66% of the 351

sample [68–70]. 352

Imputation, relationship inference, and principal component 353

calculation 354

For imputation, we used the University of Michigan Imputation Server with EAGLE2 355

phasing [71]. The reference panel was 1000 Genomes Phase 3, using all populations due 356

to the multi-continental nature of the cohort [72]. We then filtered imputation results to 357

SNPs with R2 > 0.8 and minor allele frequency > 1% within PLINK. Quality control 358

and imputation for MESA was performed by our group previously with the same 359

parameters [14]. In MESA, each subpopulation was imputed separated and the 360

post-imputation quality control procedures involved filtering by R2 > 0.8 in each 361

subpopulation, combining the imputations, filtering by MAF > 0.01, and keeping all 362

SNPs with genotyping rate > 0.99. 363

Within this cohort, there are potentially confounding amounts of genetic 364

substructure present [73] (Fig 1). In structured and admixed cohorts, such as Hispanic 365

and African-American populations, software such as KING are robust to complex 366

population structure for relatedness and principal component calculations. [16]. We 367
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calculated pedigrees, then inferred relationships across all individuals in the cohort into 368

a relationship matrix, and also calculated the first 20 principal components using KING, 369

and we used the first 5 principal components in the rest of the analyses as performed 370

previously within this cohort and since PCs > 5 explained less than 5% of the variance 371

each (Fig 1 and S2 Fig) [19,74]. 372

Genome-wide association study 373

We used the software GEMMA for the GWAS portion of the study. We ran separate 374

univariate linear mixed models for each of the four phenotypes and included the 375

relationship matrix as random effects. For the covariates used as fixed effects within the 376

model, we included self-identified region, use of lipid or other cardiovascular medication, 377

and the first 5 of 20 principal components as previously conducted in this cohort [16]. P 378

values presented were calculated using the Wald test [10]. We restricted the analyses to 379

SNPs in PrediXcan models as this was the main focus of the analyses, analyzing in total 380

1,770,809 SNPs for each phenotype. We performed multi-SNP-based conditional and 381

joint association analysis using GWAS data in GCTA-COJO, and we included the 382

genotype data to use the linkage disequilibrium calculations in the actual genotypes 383

with a collinearity cutoff of 0.9 and a standard genome-wide significance threshold of 384

5×10−8 [20, 21]. We report these results and not base GWAS results to emphasize 385

independent SNPs. 386

Local ancestry inference 387

Since local ancestry inference for a population with three or more origins requires 388

reference populations, we used Iberian from Spain (IBS) and Yoruba from Ibadan, 389

Nigeria (YRI), both from 1000 Genomes Phase 3, as representatives for European and 390

West African ancestry, respectively [72]. The European component of Hispanic 391

populations has been previously identified as most similar to modern-day Iberian 392

populations, and the African component has been identified as most similar to the 393

Yoruba people [75]. 394

In ADMIXTURE, we ran the 1000G American (AMR) populations with the Native 395

American sequences, 1000G IBS, and 1000G YRI as reference populations, and kept 396
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1000G AMR individuals with > 90% native American ancestry to use as a Native 397

American reference panel for uniformity with 1000G (NAT), including 4 Mexicans from 398

Los Angeles, USA and 23 Peruvians from Lima, Peru [76]. In total, our reference panel 399

populations were IBS (n = 107), NAT (n = 27), and YRI (n = 108). We restricted 400

analyses to chromosomes 16 and 19 due to their known importance in lipid traits. 401

To prepare our genotypes from local ancestry estimation, we used HAPI-UR to infer 402

haplotypes with a maximum HMM window size of 64 [77]. We calculated local ancestry 403

inference using RFMix in PopPhased mode, and due to our unequal reference 404

population sizes, following the recommendation to use a minimum node size of 5 and a 405

window size of 0.025, with all other options run as default [29]. 406

Admixture mapping 407

We converted the RFMix output to the three continental ancestry allelic estimations 408

(NAT, IBS, and YRI). We tested each ancestry allele count for association with each 409

phenotype to observe how local ancestry may be associated with each lipid trait using a 410

univariate linear mixed model including relatedness as random effects and the first 5 411

principal components, lipid medications, and region as fixed effects [10]. Genome-wide 412

admixture mapping significance was previously determined in HCHS/SoL at 413

5.7×10−5 [27]. 414

Imputed transcriptome-based association study 415

We used the software PrediXcan to produce predicted expression from genotype for 416

both HCHS/SoL and MESA. The models we used include 44 tissue models from the 417

GTEx V6 tissues with at least 70 individuals (85% European, 15% African-American) 418

each, with an average of 5,179 genes predicted in each tissue [11, 13, 30]. We did not use 419

GTEx V7 as the models only include individuals of European ancestry. We filtered the 420

GTEx V6 results by removing red- and yellow-flagged false positive gene-tissue 421

associations and our results only include gene-model combinations with green flags as 422

described at http://predictdb.org/. The other set of PrediXcan models we used 423

were made from monocyte gene expression in MESA [14]. Each of these five models had 424

a training set of at least 233 individuals, including models of African-American (AFA), 425
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European (CAU), Hispanic (HIS), AFA and HIS (AFHI), and all populations combined 426

(ALL). These models were retrieved from http://predictdb.org/, and all models in 427

the analyses were filtered by protein coding genes, R2 > 0.01 and predictive 428

performance P < 0.05. Individuals used to train the AFHI, ALL, and HIS models are 429

also included in the MESA lipid trait replication cohort [14]. 430

After the 49 predicted expression files were made using PrediXcan, we ran them as a 431

pseudo-genotype in a univariate linear mixed model in GEMMA using the command 432

-notsnp. This was performed in GEMMA rather than base PrediXcan as base 433

PrediXcan does not have an option to include a relationship matrix, which is important 434

in a heavily related and structured cohort like HCHS/SoL [10]. We again included the 435

KING relationship matrix as random effects and the first five principal components, use 436

of lipid medication, and self-identified region as fixed effects. P values presented were 437

calculated using the Wald test. 438

Since we did not have the GLGC genotypes, we used the software S-PrediXcan, 439

which is an extension of PrediXcan that takes GWAS summary statistics as input [13]. 440

We ran S-PrediXcan on GLGC with all 44 GTEx tissue models and all 5 MESA 441

monocyte models in different ethnicities. We considered significance in the discovery 442

population, HCHS/SoL, as P < 3.1×10−8, 0.05/(all gene-model associations), and in 443

the replication populations, MESA and GLGC, as P < 0.05 within the model. This 444

significance threshold is conservative, since many tissues share eQTLs [31]. 445

Colocalization analysis 446

We performed a colocalization analysis by applying the software COLOC to the lipid 447

GWAS results and eQTL data from GTEx and MESA to determine whether eQTLs 448

within gene prediction models and GWAS hits were shared [15]. We subset the COLOC 449

input to only contain SNPs within the predictor models of genes from the PrediXcan 450

analyses due to computational restraints. A higher P4 probability (P > 0.5) indicates 451

likely colocalized signals between an eQTL and a GWAS hit, especially in well-predicted 452

genes with a high R2 value, while a high P3 probability indicates independent signals 453

between an eQTL and a GWAS hit and a high P0, P1, or P2 indicates an unknown 454

association [13]. Analyses were run using scripts from the S-PrediXcan manuscript at 455
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https://github.com/hakyimlab/summary-gwas-imputation/wiki/Running-Coloc 456
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Figure 4. Colocalization of HCHS/SoL HDL GWAS and MESA eQTL sig-
nals at the CETP locus. (A) Zoomed in Manhattan plot of the key SNPs driving
the CETP association in the MESA HIS and MESA CAU PrediXcan models. Filled
circles represent HDL associations in HCHS/SoL and open triangles represent eQTLs
in MESA (up- or down-triangles indicate the effect allele is associated with increased
or decreased CETP expression, respectively). Blue symbols represent SNPs in the
MESA HIS PrediXcan model and black symbols represent SNPs in the MESA CAU
PrediXcan model. Linkage disequilibrium (LD) plots are labeled with the population
genotypes used to calculate r2. Note several SNPs present in the Hispanic populations
were monomorphic in MESA CAU and thus not included on the plot. Comparison
between eQTL and HCHS/SoL HDL GWAS p-values for SNPs in either the MESA HIS
(B) or MESA CAU (C) PrediXcan model. The most significant HCHS/SoL HDL GWAS
SNP is the index SNP (purple diamond) in each plot. LD is calculated from the 1000
Genomes American (AMR) or European (EUR) populations. Note the index SNP is
linked to the strongest eQTL signals in the MESA HIS model, but not in the MESA CAU
model. Plots were generated with snp.plotter (A) and LocusCompare (B,C) [38,39].
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Supporting information

S1 Table. HCHS/SoL GCTA-COJO results for independent GWAS loci

across all lipid phenotypes.

S2 Table. Top 1000 SNPs with most significant P values for admixture

mapping.

S1 Fig. Genotypic principal component analysis in HCHS/SoL by

self-identified regions. PC1 vs. PC2 is plotted for each individual separated by their

self-identified region. From previous observations and studies, Hispanic populations

have multiple continental ancestries due to a previous history of colonization and

slavery: African (bottom right, YRI), Native American (left, NAT), and European (top,

EUR). Caribbean populations, such as the Cuban, Dominican, and Puerto Rican

groups, tend to be mainly admixed between African and European, while mainland

populations such as Mexican, Central American, and South American, tend to be

mainly admixed between Native American and European.

S2 Fig. Scree plot of the proportion of variance explained by the first 20

principal components. Principal components 1, 2, and 3, explain 16.934%, 11.060%,

and 5.494% of the variance, respectively. All other principal components explain < 5%

of the variance each. All analyses used 5 PCs as fixed effects, as previously used in

analyses of HCHS/SoL.

S3 Fig. Quantile-quantile plots of the four lipid traits for GWAS results in

HCHS/SoL. Genomic control lambda values (λ) indicate little genome-wide deviation

from the significance expectation line in any of the GWAS results.

S4 Fig. Quantile-quantile plots of the four lipid traits for PrediXcan

results in HCHS/SoL. PrediXcan results for all 44 GTEx tissue models and 5 MESA

monocyte populations are combined. Each point is a gene-tissue or gene-population

association. Genomic control lambda values (λ) indicate little genome-wide deviation

from the significance expectation line in any of the PrediXcan results.
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