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The ability to rapidly learn from high-dimensional data to make reliable bets about the future outcomes is
crucial in many contexts. This could be a fly avoiding predators, or the retina processing gigabytes of data
almost instantaneously to guide complex human actions. In this work we draw parallels between such tasks,
and the efficient sampling of complex biomolecules with hundreds of thousands of atoms. For this we use the
Predictive Information Bottleneck (PIB) framework developed and used for the first two classes of problems,
and re-formulate it for the sampling of biomolecular structure and dynamics, especially when plagued with
rare events. Our method considers a given biomolecular trajectory expressed in terms of order parameters or
basis functions, and uses a deep neural network to learn the minimally complex yet most predictive aspects
of this trajectory, viz the PIB. This information is used to perform iterative rounds of biased simulations
that enhance the sampling along the PIB to gradually improve its accuracy, directly obtaining associated
thermodynamic and kinetic information. We demonstrate the method on two test-pieces, including benzene
dissociation from the protein lysozyme, where we calculate the dissociation pathway and timescales slower
than milliseconds. Finally, by performing an analysis of residues contributing to the PIB, we predict the
critical mutations in the system which would be most impactful on the stability of the crucial but ephemeral
transition state. We believe this work marks a big step forward in the use of predictive artificial intelligence
ideas for the sampling of biomolecules.

A key contributor to the rich and diverse functioning
of molecular systems is the presence of myriad possible
configurations. Instead of simply staying in the ground
state, a given system can adopt one of many metastable
configurations and stay trapped there for extended peri-
ods of time. It has been a longstanding dream to apply
all-atom molecular dynamics (MD) simulations to learn
what these metastable states are, their relative thermo-
dynamic propensities, the pathways for moving between
them, and associated kinetic constants. However there
have been two central challenges in the use of MD for this
purpose: (a) the large number of states and pathways for
traversing between them, and (b) the inherent rare event
nature of transition between states, wherein a simula-
tion would simply be trapped in whichever metastable
state it was started in. While multiple creative sampling
methods1 and even ultra-specialized supercomputers2

have been introduced for tackling this timescale prob-
lem, the problem is not yet fully solved. For instance, a
large class of sampling methods need an a priori sense of
a reaction coordinate (RC), which is a low-dimensional
summary of the many configurations and pathways.3–7

However this leads to an inherent coupled problem where
one needs extensive sampling of rare events to learn the
RC, but also needs to know the RC in the first place to
perform sampling.

To address this problem, in this article our ansatz is
that efficient sampling of energy landscapes of molecu-
lar systems has the same key underlying challenge as one
faced by a fly as it goes about surviving8, or the human
brain and retina trying to process how to catch a moving

baseball9. Namely, given limited storage and computing
resources, which memories to preserve and which ones to
ignore in order to be best prepared for various possible fu-
ture challenges? This can be paraphrased as the ability to
rapidly learn a low-dimensional representation of a com-
plex system that carries maximal information about its
future state. Since storing and processing large amounts
of information can be computationally and thus energet-
ically expensive for the brain, it has been suggested and
demonstrated that neurons in the brain separate predic-
tive information from the non-predictive background in a
way that by encoding and processing a minimum amount
of relevant information, the brain can still be maximally
prepared of future outcomes. The past–future (or Predic-
tive) Information Bottleneck framework introduced and
developed in many forms by different groups8–11 involves
implementing such neuronal models from an information
theoretic basis that can originally be traced back to Shan-
non’s rate distortion theory.

Here we interpret the reaction coordinate (RC) in
molecular systems as such a past–future information
bottleneck10. We develop a sampling method that for
small biomolecules such as protein–ligand systems, si-
multaneously and with minimal use of human intuition,
learns what this bottleneck is, its thermodynamics and
its kinetics. The central idea is that not all features of
the past carry predictive value for the future. A complex
model can be made to be very predictive, however it will
often obscure physical interpretability and also end up
summarizing noise. In order to address this task, we set
up an optimization problem and demonstrate how it can
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be solved through the use of the principle of variational
inference12 implemented through deep neural networks.
This makes it possible to learn a predictive information
bottleneck11, which we interpret as the RC, that given a
molecule’s past trajectory is maximally predictive of its
future behavior. Our net product is an iterative frame-
work on the lines of Ref.13 that starts from a short MD
simulation, and given this data, makes an estimate of the
RC, its Boltzmann probability, and its associated causal
Green’s function valid for short times. This information
is leveraged to perform systematically biased simulations
with enhanced exploration of phase space, which can then
be used to re-learn the RC along with its probability and
propagator, and iterating between MD and variational
inference until optimization is achieved. At this point
we have converged estimates of the most informative de-
grees of freedom, associated metastable states and their
equilibrium probabilities. Finally, through the use of a
generalized transition state theory based framework on
the lines of Ref.14, we recover the unbiased kinetics for
moving between different metastable states along with
their lifetimes.

We first demonstrate the method on sampling the
metastable states in a small peptide. We then apply
it to a problem of immense theoretical and practical
relevance, by calculating the full dissociation process of
benzene molecules from the L99A mutant of the 19 kDa
protein T4 lysozyme15,16. In the last system, with use
of all-atom MD simulations taking barely a few hundred
nanoseconds in total, and with the minimal use of prior
human intuition as in other related methods, we obtain
accurate thermodynamic and kinetic information for a
process that takes few hundred milliseconds in reality.
Our simulations shed light on the complex interplay
between protein flexibility and ligand movement, and
predict, in good agreement with experiments, the
residues whose mutations will have the strongest effect
on the ligand dissociation mechanism. We believe
our approach marks a big step forward in the use of
fully-automated all-atom simulations for the study of
complex molecular and biomolecular mechanisms.

THEORY

Principle of Past–Future Information Bottleneck

We formalize this problem in terms of a high-
dimensional signal X characterizing the state of a N-
particle system under some generic set of thermodynamic
conditions. We take X as some d generalized coordi-
nates or basis set elements, where 1 � d � N . Let the
value of this signal measured at time t, or the “past”,
be denoted by Xt and at time t + ∆t, or the “future”
by Xt+∆t. We call ∆t the prediction time delay. We
assume that Xt and Xt+∆t are jointly distributed as per
some probability distribution P (Xt, Xt+∆t). The mutual

FIG. 1: Network architecture using for learning
predictive information bottleneck χ. The decoder
Q(X∆t|χ) is a stochastic deep neural network, while the
encoder P (χ|X) is of a simple deterministic and thus
directly interpretable linear form.

information I(Xt, Xt+∆t) (see Supplemental Information
(SI) for this and other definitions) quantifies how much
an observation at one instant of time t can tell us about
an observation at another instant of time t+∆t. Further-
more, in this article we restrict our attention to station-
ary systems, hence we omit the choice of time origin and
write down Xt as X and Xt+∆t as X∆t. The principle of
Predictive information bottleneck (PIB)10,11 postulates
a “bottleneck” variable χ which is related to X by an en-
coder function P (χ|X). Given the bottleneck variable χ,
predictions of the future X∆t can be made with a decoder
P (X∆t|χ). PIB says that the optimal bottleneck variable
is one which is as simple as possible in terms of the past it
needs to know, yet being as powerful as possible in terms
of the future it can predict correctly. This intuitive prin-
ciple can be formally stated through the optimization of
an objective function L which is a difference of two mu-
tual informations:

L ≡ I(χ,X∆t)− γI(X,χ) (1)

The above objective function quantifies the trade-off be-
tween complexity and prediction through a parameter
γ ∈ [0,1].

Variational inference and neural network architecture

Typically, both the encoder P (χ|X) and the decoder
P (X∆t|χ) can be implemented by fitting deep neural
networks17 to data in form of time-series of X. Our work
stands out in three fundamental ways to typical imple-
mentations of the information bottleneck principle and
in general of AI methods to sampling biomolecules18–21.
Firstly, we use a stochastic deep neural network to im-
plement the decoder P (X∆t|χ), but use a simple deter-
ministic linear encoder P (χ|X) (see Fig. 1). The sim-
ple encoder ensures that the information bottleneck or
RC we learn is actually physically interpretable, which
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is notably hard to achieve in machine learning. On the
other hand by introducing noise in the decoder, we can
control the capacity of the model to ensure that the neu-
ral network can delineate useful feature from useless in-
formation instead of just memorizing the whole dataset.
Secondly, now that our encoder is a simple linear model,
we completely drop the complexity term in Eq. 1 and set
γ = 0. Due to a reduced number of variables, this leads
to a simpler and more stable optimization problem. Fi-
nally, the rare event nature of processes in biomolecules
makes it less straightforward to use of information bot-
tleneck/AI methods for enhanced sampling. Here we de-
velop a framework on the lines of13 that makes it possi-
ble to maximize the objective function in Eq. 1 through
the use of simulations that are progressively biased using
importance sampling as an increasingly accurate infor-
mation bottleneck variable is learnt.

Our typical starting point is an unbiased MD trajec-
tory X =

{
X1, X2, ..., XM

}
with M data points. We

want to develop a low-dimensional mapping χ of this
high-dimensional space, that maximizes the objective
function L = I(χ(X), X∆t). At the heart of this mutual
information lies the calculation of the decoder P (X∆t|χ),
which can in principle be done exactly using Bayes’ the-
orem (SI). However this becomes impractical as soon as
the dimensionality of X increases, due to a fundamental
problem common to statistical mechanics and machine
learning: intractability of the partition function in high
dimensions22,23.

Much of modern statistical physics and machine learn-
ing have attempted to surmount this problem with the
advent of specialized methods22,23. The principle of vari-
ational inference is one such elegant and extremely pow-
erful approach. Let’s consider a generic encoder given by
some conditional probability Pθ(χ|X) where θ is a set of
parameters. Our objective then is to find the optimal RC
or equivalently, the encoder θ which optimizes the PIB
objective:

θ∗ = arg min
θ
L(θ) (2)

As mentioned above, this optimization problem is in-
tractable for almost all cases of practical interest. How-
ever, it is possible to perform an approximate infer-
ence problem by assuming an approximate decoder
Qφ(X∆t|χ) parametrized by the vector φ. For any choice
of φ, we make a straightforward use of Gibbs’ inequality12

to write down (SI):

I(χ,X∆t) = H(Pθ(X∆t))−H(Pθ(X∆t|χ))

≥H(Pθ(X∆t))− C(Pθ(X∆t|χ)||QΦ(X∆t|χ))(3)

Here H and C denote Shannon entropy and cross entropy
respectively. Take note that the first term in Eq. 3 is in-
dependent of our model parameters and hence can be
completely ignored from the optimization. Focusing on
the second term in Eq. 3, we thus obtain a variational
lower bound on the predictive information bottleneck ob-

jective function:

L ≥ L′ = −C(Pθ(X∆t|χ)||QΦ(X∆t|χ)) (4)

Thus L′ is a tractable lower bound bound to the true
Predictive Information Bottleneck objective function L,
that involves a variational approximation through the
trial decoder parametrized by Φ. It has a simple physi-
cal interpretation. We are attempting to learn a decoder
probability function Q that mirrors the actual Bayesian
inverse probability function P in terms of predicting the
future state X∆t of the system, given knowledge of the
RC χ. The difference between the two probability distri-
butions is calculated as a cross-entropy. By maximizing
the right hand side of Eq. 4 simultaneously with respect
to the decoder and encoder parameters Φ and θ respec-
tively, we can then solve the actual optimization problem
posited in Eq. 4 rigorously and identify the optimal RC.

It is clear that a model of a dynamical system X that
attempts to capture just its stationary probability P (X)
will be less informative and useful than one that captures
the joint past-future probability distribution P (X,X∆t).
This is simply because the stationary probability can al-
ways be calculated by integrating P (X,X∆t) over future
outcomes X∆t. What is however less clear is the choice
of the time-delay ∆t24. In biomolecular systems, it is
likely that there will be a hierarchy of time-scales and
thus time-delays relevant to different types of structural
and functional details. In principle, our formulation al-
lows us to probe these various time-delays in a systematic
manner. Here, for the purpose of enhanced sampling, we
propose an approach for selecting ∆t that is rooted in the
reactive flux formalism of chemical kinetics25–27. This
formalism applies to any system with stochastic transi-
tions on a network of microstates with arbitrary, complex
connectivity. Summarily, it states that the correlation
function for a trajectory’s population in any given state
can be partitioned into 3 parts: (a) an initial transient,
inertial part, (b) an eventual exponential decay, and (c)
an intermediate plateau region between the very short-
time and long-time parts. A key insight from this for-
malism is that capturing (c), i.e. the plateau parts of a
system’s state to state dynamics accurately is necessary
and sufficient to capture the temporal evolution at any
timescale. By paraphrasing this argument in the con-
text of the present work, we propose to learn our PIB
model for gradually increasing values of the predictive
time-delay ∆t, and stop when the calculated bottleneck
variable coverges (see numerical examples in Results),
identifying it as the plateau from reactive flux formalism.

Variational inference on unbiased and biased trajectories

We now show how to calculate L′ in practice. For a
given unbiased trajectory

{
X1, X2, ..., XM+k

}
with large
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enough M , we can easily show (SI):

L′ =
1

M

M∑
n=1

log Q(Xn+k|χn) (5)

where χn is sampled from P (χ|Xn) and the time inter-
val between Xn and Xn+k is ∆t. For practical rare event
systems however, a typical MD trajectory will be trapped
in the state where it was started. Here we use our current
best estimate of the PIB to perform importance sampling
of the landscape, so that the system is more likely to
sample different regions in configuration space, and use
this enhanced sampling to iteratively improve the qual-
ity of the RC. However, the data so generated is biased
per definition, and we need to reweight out the effect
of the bias. We suppose that along with the time se-
ries

{
X1, X2, ..., XM+k

}
we also have been provided the

corresponding time-series for the bias V applied to the
system

{
V 1, V 2, ..., VM+k

}
. We can then use the princi-

ple of importance sampling28 to write our PIB objective
function L′ as follows (SI):

L′ =

{
M∑
n=1

eβV
n

}−1 M∑
n=1

eβV
n

log Q(Xn+k|χn) (6)

where β is the inverse temperature. The above equa-
tion is however approximate, as it makes the assumption
Pbiased(X

n+k|χn) ≈ Punbiased(X
n+k|χn). This is exact

as ∆t 7→ 0, and can be expected to be reasonably valid
for small enough ∆t. Namely, for small ∆t, we expect
that the system in time interval ∆t on an average would
not have diffused too far from its starting position at the
beginning of that interval. If the bias varies smoothly
enough that its natural variation length scale is smaller
or comparable to this diffusion distance, then for small
enough ∆t we can indeed make the aforementioned ap-
proximation. This means that we select the smallest pos-
sible ∆t at which the RC estimate plateaus. In principle
a more exact version of Eq. 6, one which exactly corrects
the effect of bias even on the short time propagator of
the system, can be derived and used - however the com-
putational costs for such procedures can be formidable
enough to make them impractical for our purpose.

Patching it all

We now state our complete enhanced sampling algo-
rithm, that accomplishes in a seamless manner, the iden-
tification of the RC together with the sampling of its
thermodynamics and kinetics, generalizing the frame-
work from Ref.13. The first step is to perform an ini-
tial round of unbiased MD simulation. This trajectory,
expressed in terms of d order parameters or basis func-
tions {s1, ..., sd} (where 1 � d ≤ N), is fed to a deep
learning module (Fig. 1). The deep learning module im-
plements the optimization of L′ in Eq. 6 through the

use of multi-layer feed-forward neural network for the
stochastic decoder Q, and a physically interpretable lin-
ear map for the deterministic encoder P (Fig. 1). Unlike
the decoder, the encoder has no noise term and always
maps {s1, s2, ..., sd} to

∑
i cisi, where {ci} denote the

weights of different order parameters. We perform this
optimization for gradually increasing values of the pre-
dictive time-delay ∆t, and estimate RC χ (given by the
values of the weights ci) as seen by the first “plateau” in
terms of when it ceases to depend on choice of ∆t. This
value of ∆t is then kept constant for different rounds of
our protocol. At this point we have an initial estimate
of χ and also its unbiased probability distribution Pu(χ).
These are both used to construct a bias potential Vbias(χ)
for the next iteration of MD:

Vbias(χ) = kBT logPu(χ) (7)

where kB is Boltzmann’s constant and T is the temper-
ature. With this bias potential added to the original
Hamiltonian of the system, we run a biased MD simula-
tion. This explores an increased amount of configuration
space since we have applied a bias along our estimated
slow degree of freedom, viz. the PIB or the RC. This
next round of MD trajectory is once again fed to the deep
learning module, but this time each data point carries a
weight w = eβVbias to compensate for the applied bias.
This now identifies an improved RC χ and its unbiased
probability through the use of importance sampling:

Pu(χ) ∝ 〈wδ(χ− χ(t))〉b
〈w〉b

≡ e−βF (χ) (8)

where the subscript b denotes sampling under a biased
ensemble with weight w = eβVbias and F (χ) is the free
energy along χ. From here, using the bias as −F (χ)
our algorithm can now enter into further iterations of
MD–deep learning–MD–... This looping continues until
both the RC χ and the free energy estimate F (χ) along
the RC have converged. We have thus obtained an opti-
mized reaction coordinate and its Boltzmann probability
density, or equivalently the free energy. Through these
we can directly demarcate the relevant metastable states
and quantify their relative propensities. Furthermore, we
can also calculate the transition rates for moving between
these metastable states. The central idea is to keep all
transition states between the different metastable states,
as identified through the RC, devoid of any bias. As we
show in examples, this can be easily achieved when im-
plementing Eq. 8, by ensuring that any barriers in the
unbiased probability distribution of the estimated RC are
completely bias-free. Once we have done this, we take
into account that by virtue of it being the PIB, the RC al-
ready encapsulates any relevant, predictive modes in the
system. Thus the hidden modes and barriers which have
invariably been corrupted through the addition of such a
bias do not have any predictive power for the dynamics
of the system, and are thus not relevant to the process
at hand. This then implies that (i) the biased dynam-
ics preserves the state-to-state sequence one would have
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FIG. 2: (a) Unbiased simulation trajectory. The alanine dipeptide molecule is shown in inset. (b) Absolute weights
for different order parameters in the first training round as a function of the predictive time delay ∆t. (c-f) Free
energy along the adaptively learnt RC along with the corresponding biased trajectories for different training rounds.
(g) Free energy along φ, ψ after the RC has converged. (h) Kinetics from the post-training biased runs as well as
reference unbiased runs. The two are essentially indistinguishable.

seen with unbiased dynamics, and (ii) through the use
of a simple time rescaling calculation (see SI and Ref.14)
we can the calculate the acceleration of rates achieved
through biased simulations. Finally, we can perform self-
consistency checks for the reliability of the rescaled ki-
netics by analyzing the unbiased lifetimes for robustness
with precise choice of biasing protocols (SI).

RESULTS

We now demonstrate the use of the PIB framework
with two biomolecular case-studies, in both of which we
simultaneously learn the RC, the free energy and kinetic
rate constants. In each case the RC χ is constructed
as a linear combination χ =

∑
i cisi, where {ci} de-

note the weights of different pre-selected order param-
eters {s1, s2, ..., sd}.

Conformation transitions in a model peptide

First we consider the well-studied alanine dipeptide
system (Fig. 2(a)). This system, as characterized by
its Ramachandran dihedral angles, can exist in different
metastable states with varying stabilities and hard-to-
cross intermediate barriers. However, due to its small
size (22 atoms) it serves as a reliable benchmark where
we can perform longer than microsecond unbiased MD
simulations to compare our PIB calculations against.

Here we choose {cosφ, sinφ, cosψ, sinψ} as our order
parameters, where φ and ψ are the backbone dihedral an-
gles (marked in the inset of Fig. 2(a)). By taking trigono-
metric functions of dihedral angles, we avoid problems
related to periodic boundary conditions. The PIB proto-
col used here is shown in Fig. 2. In the initial round, we

perform a short unbiased MD simulation (see Fig. 2(a)
for trajectory and SI for technical details). The neu-
ral network decoder consists of two hidden layers, with
128 neurons in each layer. To safeguard against spurious
local minima solution learnt by the neural network, we
perform independent training runs with random initial
weights for order parameters. The RC is then deter-
mined as the linear encoder of the trained neural net-
work with smallest loss function during training. In Fig.
2(b), we show how the weights rapidly converge as func-
tions of predictive time delay ∆t and reach a plateau
in less than 2 ps. We then set ∆t = 2 ps in all fu-
ture rounds. Fig. 2(c) shows the RC χ as well as the
bias V (χ) learnt along it to be used in the next round
of MD. With this biasing potential, we perform biased
MD simulation as shown in Fig. 2(d). This trajectory
through the use of Eq. 8 leads to a more complicated
bias structure as shown in Fig. 2(e) along with the im-
proved RC χ. Biased simulation with this new RC and
bias as shown in Fig. 2(f) finally leads to escape from
the starting metastable state. The final obtained RC is:
χ = 0.02 cosφ + 0.97 sinφ − 0.25 cosψ − 0.02 sinψ. It is
known for alanine dipeptide that φ is more relevant than
ψ for capturing the conformational transitions, and our
PIB based RC estimate agrees with that. The shift in
weights of order parameters across different rounds (SI)
reflects how our iterative scheme finds the optimal RC: a
better RC provides better sampling and using the infor-
mation from the better sampling we can learn a new RC
which can further enhance the sampling, and so on.

Now that we have achieved back-and-forth motion in
terms of the rare event we intended to study, we use
this final RC and bias to perform multiple sets of longer
simulations with no further refinement of the RC. This
yields the free energy surface (defined as−kBT logP (φ, ψ)
where P is the unbiased Boltzmann probability) as shown
in Fig. 2(g). This is in excellent agreement with previ-
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FIG. 3: Benzene-lysozyme dissociation: The absolute
value of weights for 11 order parameters in the first
round as a function of predictive time delay.

ously published benchmarks for this system28. At the
same time, we use the acceleration factor to rescale the
biased time back to the unbiased time. In Fig. 2(h) we
show the cumulative distribution functions of the first
passage time from the deeper basin as obtained through
this approach, and through much longer unbiased MD
runs which are feasible given the small size of this sys-
tem. The distribution functions and their best-fit Pois-
son curves are nearly indistinguishable, and lead to ex-
cellent agreement in values of the escape rate constant
from the deeper basin, given by k = 5.2 ± 0.8µs−1 and
5.8± 0.9µs−1 respectively for biased and unbiased simu-
lation respectively.

Benzene dissociation from T4-L99A lysozyme

We now apply our framework to a very challenging
and important test case, namely the pathway and ki-
netic rate constant of benzene dissociation from the pro-
tein T4-L99A lysozyme in all-atom resolution15,16. We
also demonstrate how the RC calculated through our
approach can be directly used to perform a sensitivity
analysis of the protein, and predict the most important
residues whose mutations could have a significant affect
on the stability of the protein-ligand complex. Such an
analysis has direct relevance to predicting, for instance,
the mutations in a protein which could lead to a phar-
macological drug losing its efficacy. For this problem
we choose 11 fairly arbitrary order parameters denoted
{s1, ..., s11}. Eight of these are ligand-protein distances
while three are intra-protein distances (see SI for order
parameter details) . The RC is learnt as a linear combi-
nation of these order parameters, namely χ =

∑
i cisi.

For this problem as well we start with a short unbi-
ased MD simulation. As shown in Fig. 3, the weights of
different order parameters in the RC learnt from this tra-
jectory change as a function of the predictive time-delay
∆t, but converge quickly. On the basis of this plot, we
set ∆t = 2ps for all further calculations. We then iter-
ate – using the same neural network architecture as for
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FIG. 4: The 2-component Predictive Information
Bottleneck for benzene-lysozyme dissociation, where the
optimized weights for different order parameters are
illustrated, after scaling all weights to keep c1 = 1 in χ1.

alanine dipeptide (Fig. 1) – between rounds of learning
an iteratively improved RC χ1 together with its prob-
ability distribution, and running biased MD using the
iterations RC and probability distribution as bias V1(χ1)
(Eq.7). After 9 rounds, we find that the bias saturates
as a function of training rounds. That is, no further en-
hancement in egodicity is achieved by performing addi-
tional rounds of the aforementioned iteration. This cor-
responds to the system reaching configuration where the
previous PIB ceases to be effective. To learn a new PIB,
we use the ”washing out” trick from29 to learn a second
RC χ2 conditioned on our knowledge of the first RC χ1.
In the next few rounds of learning–MD iterations, we (a)
keep χ1 and V1(χ1) fixed, and (b) do not account for
V1(χ1) when using Eq.8. Through this we learn a bias
V (χ1, χ2) = V1(χ1)+V2(χ2). In principle we can lift this
assumption and learn more complicated non-separable
V (χ1, χ2). In a few rounds of training χ2, we observed
spontaneous disassociation of the ligand from the pro-
tein. We are now ready to use the RC (χ1, χ2) (shown
in Fig. 4) and its bias V (χ1, χ2) learnt to directly study
the pathway and kinetics of ligand dissociation.

For this we launch 20 independent biased simulations
using (χ1, χ2) as RC and V1(χ1) + V2(χ2) as bias. By
calculating the acceleration factor, we can recover the
original timescale of the first passage time. As we show
in SI, we fit the cumulative distribution function to
a Poisson process and get an escape rate constant of
3.3 ± 0.8/s, which is in good agreement with other sim-
ulation methods30–32. We also obtain a range of free en-
ergies viewed as functions of different order parameters
(SI). These are in excellent agreement with previously
published results, especially the ones using same force-
fields29–32.

Predicting critical residues

On the basis of the predictive information bottleneck
that we have now calculated, we can directly predict

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 28, 2018. ; https://doi.org/10.1101/507822doi: bioRxiv preprint 

https://doi.org/10.1101/507822
http://creativecommons.org/licenses/by/4.0/


7

FIG. 5: Critical residue analysis for benzene-lysozyme
complex. The plot on left shows for every residue the
maximal mutual information between the PIB and
either of the Ramachandran angles φ, ψ of that residue.
The top 10 residues are highlighted through markers
and in the right plot, illustrated relative to the ligand in
a typical intermediate pose.

which protein residues have the most critical effect on
the benzene-lysozyme transition state. To do so, our
guiding principle is that the residues which carry higher
mutual information with the predictive information bot-
tleneck are more likely to have an impact on the sta-
bility of the system, for instance, if these residues were
to be mutated. By performing a scan of the mutual in-
formation between the predictive information bottleneck
and the backbone dihedral angles of different residues,
we can rank them as being most critical to least criti-
cal (see SI for further details of the calculation set-up).
As shown in Fig. 5, some of the important residues
are (in order of decreasing relevance): Ser136, Lys135,
Asn132, Leu133, Ala134, Phe114, Val57, Asp20, Leu118
and Val131. These residues can be classified in three
broad groups: (a) residue 114, and residues 131–136:
together these contribute to breathing movement be-
tween the two helices through which the ligand leaves,
(b) residue 118, which is the major hydrophobic inter-
action in the bound state, and (c) residues 20 and 57,
which lie in different disordered regions between ordered
parts of the protein, and have no obvious interpretation.
The roles of groups (a) and (b) have been hinted at in
previous works32–34 and are thus yet another validation
of our approach. It remains to be seen if group (c) indeed
has biophysical relevance possibly through a long-range
allosteric communication pathway, or is just noise from
our calculations.

DISCUSSION

In this work we have introduced a new framework for
the simultaneous sampling of the reaction coordinate,
free energy and rate constants in biomolecules with rare
events. Our work is grounded in the Predictive Infor-
mation Bottleneck framework, which is an information
theoretic approach for building minimally complex yet
maximally predictive models from data. Such a frame-
work has previously been found useful for modeling fruit
fly movement and human vision. Here we exploit the
commonality between these diverse problems and that of
sampling complex biomolecular systems, namely the need
to quickly predict the future state of a system given noisy
and high-dimensional information. Our method imple-
ments this framework through the use of a unique “linear
encoder–stochastic decoder” model, where the latter is a
deep neural network with inbuilt noise. Here we demon-
strated the applicability of the method by studying con-
formational transitions in a model peptide and ligand dis-
sociation from a protein, in explicit water and all-atom
resolution. Through extremely short and computation-
ally cheap simulations, we obtained thermodynamic and
kinetic observables for slow biomolecular processes in ex-
cellent agreement with other methods, experiments and
long unbiased MD. Last but not the least, by virtue of
having captured the most predictive degrees of freedom
in the system, we could also make, arguably for the firs
time, direct predictions of how protein sequence can im-
pact dissociation dynamics - namely, which mutations in
the protein would be most deleterious to the dissociation
process. We believe this work marks an important step
ahead in computer simulation of molecules, and should be
useful to different communities for robust, reliable studies
of rare events.
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