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Abstract 27 

Extracellular mRNAs (ex-mRNAs) potentially supersede extracellular miRNAs (ex-miRNAs) and other 28 
RNA classes as biomarkers. Here, we present a comprehensive extracellular RNA (exRNA) study in 29 
human blood circulation based on conventional small RNA-sequencing (sRNA-seq) and sRNA-seq after 30 

T4 polynucleotide kinase (PNK) end-treatment of total exRNA isolated from serum and platelet-poor 31 
EDTA, ACD, and heparin plasma. Applying strict criteria for read mapping and annotation, we found that 32 
compared to conventional sRNA-seq PNK-treatment increased the detection of informative ex-mRNAs 33 
reads up to 50-fold. Based on captured ex-mRNAs from healthy individuals, we concluded that the 34 
exRNA pool is dominated by hematopoietic cells and platelets, with additional contribution from the 35 
liver. About 60% of the 15- to 42-nt long reads originated from the coding sequences, in a pattern 36 
reminiscent of ribosome-profiling studies for high abundance transcripts. Blood sample type had a 37 
considerable influence on the exRNA profile. The number of detected distinct ex-mRNA transcripts 38 

ranged from on average ~350 to 1100 in the different plasma types. In serum, additional transcripts from 39 
neutrophils and hematopoietic cells increased this number to ~2300. For EDTA and ACD, in particular, 40 
we found evidence of destabilization of mRNA and non-coding RNA ribonucleoprotein complexes. In a 41 
proof-of-concept study, we compared patients with acute coronary syndrome (ACS) to healthy controls. 42 
The improved tissue resolution of ex-mRNAs after PNK-treatment enabled us to detect a neutrophil-43 
signature in ACS that escaped detection in an ex-miRNA analysis. Thus, ex-mRNAs provide superior 44 
resolution for the study of exRNA changes in vivo and ex vivo. They can be readily studied by sRNA-seq 45 

after T4 PNK end-treatment. 46 
  47 
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Introduction 48 

Extracellular RNAs (exRNAs) in biofluids were described as early as the first half of the 20th century1 49 
but underwent a more recent renaissance with the detection of circulating miRNAs2. Despite the high 50 
nuclease activity in biofluids, miRNAs (ex-miRNAs) remain detectable due to protection by tightly 51 

bound RNA-binding proteins and/or inclusion in microvesicles2–5. In recent years, especially with the 52 
advancement of RNA-sequencing (RNA-seq), an extensive body of research accumulated regarding the 53 
role of extracellular miRNAs in a broad range of medical conditions and cardiovascular diseases, 54 
including advanced heart failure6 and myocardial infarction7. 55 
 56 
Ex-miRNAs are remarkably stable in circulation, and we recently showed that distinct ex-miRNA 57 
signatures can be followed for months8. However, a general limitation of ex-miRNAs is the relatively low 58 
number of miRNA genes with only few tissue specific members9. Alterations of ex-miRNAs are often 59 

difficult to interpret biologically as they either affect ubiquitously expressed or low-abundance miRNAs 60 
without a clearly identifiable source tissue. In contrast, the number of mRNA genes in the human genome 61 
is at least an order of magnitude higher10 providing a much better tissue and functional resolution for 62 
physiological conditions or disease states. While RNA-sequencing (RNA-seq) potentially offers the most 63 
comprehensive interrogation of ex-mRNAs and their changes lack of robust protocols and challenges in 64 
the analysis of fragmented, short reads hampered their study. 65 
 66 

Technical challenges in exRNA profiling encompass the very low amounts of RNA in body fluids, and 67 
the influence of anticoagulants used for blood collection, increasing the likelihood for batch effects or 68 
spurious findings11,12. The type of blood sample used for RNA isolation can substantially influence the 69 
stability of certain ribonucleoprotein (RNPs) complexes and associated RNAs. A striking example for 70 
differential stability of RNPs with different anticoagulants is the loss of 5’ tRNA fragments using 71 
magnesium-ion-chelating EDTA or citrate salts for blood collection6,13. While it seems likely that these 72 
routinely used chelators for blood collections will impact the stability of other extracellular RNPs, the 73 

overall extent in which the sample types influence the exRNA profile remains unknown. 74 
 75 
By design sRNA-seq cDNA protocols enrich for miRNAs, which carry 5’ phosphate and 3’ hydroxyl 76 
groups. However, in body fluids other classes of RNAs, including potentially mRNAs, most likely exist 77 
as degradation products due to the high nuclease activity8. RNA degradation products possess 5’ OH ends 78 
as well as 2’ or 3’ phosphate or 2’,3’ cyclic phosphate termini. These termini are incompatible with 79 
sRNA-seq, and fragments of those RNAs will largely escape detection. Enzymatic treatment of RNA ends 80 
by T4 polynucleotide kinase (PNK) rescues RNA fragments devoid of the necessary termini and has been 81 
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used for different RNA-seq based applications including exRNA studies14,15. However, an effect on ex-82 
mRNA capture has not been shown thus far. 83 
 84 
Here, we used a recently published RNA isolation protocol that quantitatively recovers exRNAs8, and 85 

combine T4 PNK RNA end-modification with sRNA-seq and stringent read annotation criteria to 86 
demonstrate effective and informative capture of ex-mRNAs. We investigated blood samples with 87 
different commonly used anticoagulants to identify confounding factors, and finally tested the potential of 88 
ex-mRNAs in a proof-of-concept cohort of patients presenting with an acute coronary syndrome. 89 

Methods 90 

Sample procurement 91 

Blood was collected from healthy volunteers and from patients evaluated for acute coronary syndrome at 92 
The Rockefeller University and Mannheim University Medical Centre, respectively, by the first author. 93 
Human tissue samples for bulk mRNA-seq were obtained from the National Disease Research 94 
Interchange (Philadelphia), or from biopsies or discarded surgical waste. Sample procurement was 95 
approved by the institutional review boards of all participating institutions. All participants gave written 96 
informed consent, and the studies were approved by the IRBs of the participating institutions. 97 

RNA isolation 98 

ExRNA was isolated from 425 µl cell-free serum or platelet-depleted plasma using a customized RNA 99 
isolation protocol developed to minimize residual nuclease activity8; the RNA was purified using silica 100 
columns. Cellular or tissue total RNA was extracted using TRIzol with an additional phenol/chloroform 101 
extraction step and concentrated by alcohol precipitation. 102 

PNK treatment of total exRNA 103 

After elution from the silica column, half of the isolated total exRNA was used directly for sRNA-seq, 104 
and the other half treated with T4 PNK in a total reaction volume of 20 µl for 30 min at 37 °C followed 105 

by re-purification and elution of the PNK treated RNA using the same silica column, and then subjected 106 
to sRNA-seq library preparation. 107 

Small RNA-seq 108 

sRNA-seq cDNA library preparation was done as described16 but size selecting from 19- to 45-nt. Long 109 
mRNAseq of cells and tissues was done using the Illumina Stranded mRNA-seq TruSeq protocol 110 
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following the manufacturer’s instructions. Sequencing was conducted in the Genomics Core Facility at 111 
The Rockefeller University. 112 

Bioinformatics analysis 113 

Read annotation 114 

Read processing and annotation for small RNA-seq of serum and plasma samples was done as described17 115 
with modifications for PNK-treated samples. Long RNA-seq reads from tissues or cells were aligned to 116 
the human genome build 38 using the STAR aligner18 and quantified using the featureCounts19 program 117 
based on Ensembl release 82. 118 

Data analysis and statistics 119 

Differential analysis, clustering, and other downstream analyses were done in the R statistical language 120 
and Bioconductor packages. Other statistical tests are indicated in text and figures where appropriate. If 121 
not stated otherwise, results with a p value < 5% were considered significant (Benjamini-Hochberg 122 
adjusted for all RNA-seq comparisons). 123 

Tissue specificity score 124 

An RNA-seq expression atlas comprised of representative tissues was used to calculate a tissue-125 
specificity score to identify the source tissue of circulating mRNAs10. 126 

Clinical laboratory parameters 127 

Standard clinical laboratory assays were performed by the Central Laboratories of the University Medical 128 
Centre Mannheim, Mannheim, Germany, and Memorial Sloan Kettering Cancer Centre, New York, NY, 129 

USA. 130 

Results 131 

PNK treatment of exRNA improves the capture of mRNA fragments by small RNA-seq 132 

To test if PNK treatment improves capture of ex-mRNA fragments we performed sRNA-seq comparing 133 
untreated to PNK-treated total exRNA input from the same donors. Different anticoagulants were used to 134 

assess their influence on the exRNA profile (Fig. 1). 135 
 136 
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Plasma and serum were collected from six healthy volunteers. Collection tubes for plasma samples 137 
contained the divalent-metal-ion-chelating EDTA and ACD salts or the polyanion heparin. All plasma 138 
samples were platelet-depleted, and total exRNA was recovered by our recently published isolation 139 
protocol which preserves RNA integrity and quantitatively recovers exRNA8. Multiplexed sRNA-seq 140 

libraries were generated minimizing batch effects (libraries 1-4; Fig. 1, Supplementary Data 1). 141 
 142 
More than 95% of the processed reads were 12- to 42-nt in length. Such short reads impose challenges for 143 
confident transcript assignment due to multi-mapping. For conventional sRNA-seq, i.e. miRNA studies, 144 
this is minimized by hierarchical mapping and requiring a minimum read length of 16-nt17. Hierarchical 145 
mapping ensures that more abundant RNAs like rRNAs and tRNAs take precedence over less abundant 146 
classes like mRNAs and miRNAs if a sequence matches to more than one RNA class. To arrive at a 147 
comprehensive assessment, we initially retained reads <16-nt. With that, over 80% of reads mapped to 148 

established classes of human RNAs and human genome with the expected enrichment for miRNAs in the 149 
untreated samples (Fig. 1B). The most apparent difference after PNK-treatment was the increase in the 150 
rRNA fraction. A residual 3-15% of reads mapped to the E. coli genome, and ~1% to bacterial expression 151 
plasmids and diatoms (Supplementary Data 1). Bacterial RNA is a common contaminant in 152 
recombinantly produced enzymes used for library preparation and residual diatom RNA exists in 153 
commercial silica matrices used for nucleic acid isolation. In standard RNA-seq applications using higher 154 
amounts of input RNA, these sequences do not influence the results but they can contribute a sizeable 155 

fraction of sequence reads in low input samples like body fluids6,8. 156 
 157 
Ex-mRNA reads comprised 6.5 to 20% with some enrichment after PNK-treatment in EDTA and ACD 158 
plasma but not in heparin plasma or serum (Fig. 1B). Further review of read alignments, however, showed 159 
that untreated samples collected more mRNA reads with 1 or 2 mismatches, i.e. inflating the mRNA read 160 
count by inclusion of low-confidence reads (Supplementary Data 2). As expected, reads <15-nt had a high 161 
fraction of multi-mapping (Supplementary Fig. 1). Therefore, our final ex-mRNA analysis was restricted 162 

to perfectly mapping reads (0 mismatch) 15-nt or longer with at most two mapping locations. The latter 163 
was necessary to account for the identical coding sequences of the hemoglobin paralogs HBA1 and 164 
HBA2 that would otherwise be underrepresented. 165 
 166 
Using these annotation criteria PNK-treatment unambiguously increased the percentage of ex-mRNA 167 
reads and even more the number of unique transcripts captured. Compared to untreated samples, in PNK-168 
treated samples the mRNA read count increased ~4-fold in ACD samples and ~9-fold in all other sample 169 
types (Fig. 1C). Requiring 5 unique reads per mRNA and donor sample, we captured an average (min, 170 

max) of 2313 (452, 4634), 583 (162, 1192), 350 (75, 625), and 1108 (591, 1760) distinct mRNA 171 
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transcripts in serum, EDTA plasma, ACD plasma, and heparin plasma samples, respectively. This 172 
compared to only 46 (2, 182), 33 (1, 86), 27 (5, 70), and 43 (0, 140) distinct mRNAs in the corresponding 173 
untreated samples (P value < 8e-09, Wilcoxon rank sum test), representing a 13- to 50-fold increase. 174 

Ex-mRNAs in circulation originate mostly from the coding sequences and not UTRs 175 

It has been previously reported, that ex-mRNAs in cell culture media mostly originate from the 3’ UTR of 176 
mRNA transcripts20. Review of read alignments in our study, however, indicated that most of the 177 
ex-mRNA reads originated from the transcript coding sequence (CDS), a pattern that was only observable 178 
in PNK-treated samples due to better transcript coverage. Read distribution and read length were 179 
reminiscent of ribosome-profiling data, which indicated that ex-mRNA fragments are ribosome protected 180 
and circulate as polysome or monosome complexes. This observation was confirmed by a metagene 181 
analysis that was based on an average of 12,789 to 16,486 ex-mRNA transcripts depending on sample 182 
type. This showed that ~60% of the reads originated from the CDS and ~30% from the 3’ UTR (Fig. 2). 183 

Anticoagulants have a widespread effect on the exRNA profile 184 

The anticoagulants we studied are the predominant ones used to collect blood samples in clinical practice 185 
and for research purposes. All of them influence blood cells ex vivo21–23, and heparin 186 
may not be removed sufficiently by common extraction protocols and as a result interfere with 187 
downstream applications24. This is especially relevant if patient populations are studied that often receive 188 
high doses of heparin. 189 
 190 

We therefore next looked at how sample type influenced the measured exRNA composition for both the 191 
untreated and PNK-treated samples. We noted the previously reported destabilization of 5’ tRNA 192 
fragments in EDTA and ACD samples (Supplementary Fig. 2)6,13, and alterations in miRNA composition 193 
between serum and platelet-depleted EDTA plasma12. In an ANOVA-like comparison we observed 194 
abundance differences for 86 miRNAs in the untreated samples and of 1,458 mRNA transcripts in the 195 
PNK-treated samples between the three plasma types and serum (Supplementary Data 3 and 4). Serum 196 
generally had a higher abundance of ex-miRNAs (e.g. miR-223 and -142) and ex-mRNAs (e.g. S100A8) 197 

enriched in myeloid cells and platelets. In a gene set analysis ex-mRNAs abundant in serum were 198 
associated with inflammation and leukocyte activation whereas plasma ex-mRNAs were more related to 199 
general cellular processes like translation (Supplementary Data 5). Although there was a high degree of 200 
similarity between the exRNA profiles of EDTA and ACD plasma, as expected from their mechanism of 201 
action (Supplementary Fig. 3B), there were distinctive differences as well. For instance, EDTA plasma 202 
had increased levels of erythropoietic transcripts, i.e. miR-451(1) and hemoglobin mRNAs, compared to 203 
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all other samples. ACD had 3- to 4-fold higher levels of miR-150(1), a lymphocyte-restricted miRNA, 204 
than the other sample types (Supplementary Fig. 3A, Supplementary Data 3 and 4). 205 
 206 
The destabilizing effect of the chelating reagents, ACD and EDTA, on ribonucleoprotein complexes was 207 

not restricted to tRNAs. Both altered read coverage signatures of other RNAs. Human small nuclear 208 
RNAs U1 and U2 snRNAs are ~164-nt and ~190-nt non-coding RNAs, respectively, which assemble with 209 
proteins into small nuclear ribonucleoproteins (snRNPs). Biochemical studies demonstrated that U1 and 210 
U2 possess core structures that are relatively resistant to nuclease digestion25. In high magnesium 211 
conditions several U1 domains are protected from nuclease digestion whereas in low magnesium 212 
conditions, i.e. after the addition of EDTA or similar chelating reagents, only the core region remained 213 
relatively resistant to digestion. Our sRNA-seq data agreed well with these earlier observations 214 
(Supplementary Fig. 3C). In addition, the coverage of the more protected core region was 4- to 8-fold 215 

lower in EDTA and ACD plasma, respectively, than in the other two sample types. There was no 216 
difference in read coverage patterns for snRNAs U2, U4, U5, and U6 or the large ribosomal subunits, 18S 217 
and 28S, between the different sample types. 218 

Hematopoietic cells, platelets, and liver are the major sources of exRNAs in healthy individuals 219 

We next sought to identify contributing tissue sources to the exRNA pool in the physiological state. We 220 
generated a polyA mRNA-seq tissue atlas comprising major human cell and tissue types and calculated a 221 
tissue specificity score (TSS)10 for all of the 19,810 mRNAs as defined in Ensembl release 82 222 

(Supplementary Data 6). Genes restricted to a few tissues or cell types had a TSS greater than 3, e.g. 223 
aldolase B (ALDOB) expressed in liver and kidney, while classic marker genes like albumin (ALB) or 224 
cardiac troponin T (TNNT2) had a TSS greater than 4. 225 
 226 
A total of 3,167 ex-mRNAs entered comparative analysis, and of those 144 had a TSS > 3 (102 >3 but <4, 227 
42 >4; Supplementary Data 7), therefore being most informative regarding tissue of origin. About 30% of 228 
the 144 mRNAs were most abundant in neutrophils, 10% in liver, and 5% each in red blood cells (RBCs), 229 

platelets, and skeletal muscle. Conversely, when we compared the 1,000 highest expressed mRNAs for 230 
each tissue in the atlas to the 3,167 ex-mRNAs, we found a much higher fraction of the top 1,000 231 
transcripts from RBCs, platelets, neutrophils, PBMC, and monocytes captured in circulation than from 232 
any of the other tissue (Fig. 3 and 4, Supplementary Fig. 4, Supplementary Data 8). Our annotation 233 
criteria led to the detection of certain highly tissue-specific genes from other tissues, e.g. MYBPC3 234 
(myocardium), SFTPB (lung), or MIOX (kidney; Supplementary Fig. 4) in some serum or plasma sample 235 
types. However, the underlying reads were repetitive and short and therefore highly suggestive of 236 
annotation artefacts. 237 
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 238 
We noted, again, a clear difference between sample types. In EDTA and ACD plasma we detected 12% to 239 
21% of the top 1,000 hematopoietic mRNAs. This percentage increased to 27% to 49% in heparin, and 240 
38% to 81% in serum. Particularly striking was this difference for neutrophils, for which we detected 241 

17%, 49%, and 81% of the 1,000 most highly expressed transcripts in ACD, EDTA, and serum, 242 
respectively, as ex-mRNAs (Fig. 4, Supplementary Fig. 4 Supplementary Data 8). The increase of 243 
ex-mRNAs in serum compared to the other samples is likely related to in vitro neutrophil degranulation 244 
and apoptosis during coagulation. On the mRNA level this is much more pronounced for neutrophil than 245 
platelets transcripts, of which we detected 35% in heparin and 42% in serum. Although miRNAs have 246 
been reported as markers for platelet activation12, our data suggest that neutrophils also contribute to 247 
coagulation-dependent miRNA abundance changes. 248 
 249 

In summary, these results indicated that hematopoietic cells, platelets, and the liver are main contributors 250 
to the ex-mRNA profile and based on our data there was little support that other solid tissues contribute 251 
substantially. 252 

RNA end-modification increases the diagnostic potential of exRNA in disease 253 

To evaluate the clinical potential of ex-mRNAs in patients we studied exRNA changes in a pilot cohort of 254 
patients with an acute coronary syndrome (ACS; n = 6) and age- and gender-matched healthy controls (n 255 
= 10; Supplementary Data 1 and 9). All patients had evidence of myocardial necrosis based on elevated 256 

cardiac troponin I levels, highly-sensitive and routinely used marker for myocardial damage. Patients with 257 
myocardial injury provided a good proof-of-concept cohort as the myocardium is one of the few tissues 258 
expressing tissue-specific miRNAs (myomirs miR-208a, -208b, and -499), which have been shown to be 259 
elevated in the circulation of these patients. In comparison to the controls the ACS group had higher white 260 
blood cell counts (Supplementary Data 9 and 10). 261 
 262 
Because the ACS group received high doses of heparin before sample collection as part of , all patient and 263 

control samples were collected in heparin plasma to avoid any biases associated with different 264 
anticoagulants as described before. Two small RNA-seq libraries were generated from untreated (library 265 
5) and PNK-treated (library 6) total RNA (Supplementary Fig. 5). Unsupervised hierarchical clustering of 266 
the 3’-adapter spike-in small RNAs did not separate the two groups, arguing against any potential bias 267 
due to residual heparin in the samples (Supplementary Fig. 6). 268 
 269 
In the differential analysis 18 miRNAs were altered in the untreated samples, 11 higher and 7 lower in 270 
ACS than controls (Fig. 5A; Supplementary Data 11). The myocardium-specific miRNA miR-208b(1) in 271 
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the ACS group was 17-fold higher than in the controls, the other two myocardium-specific miRNAs miR-272 
208a (FDR 0.07%) and miR-499 (FDR 0.15%) were elevated 8-fold in ACS. These changes were in line 273 
with release due to myocardial injury and in magnitude similar to what we reported for patients in 274 
advanced heart failure6, and again supporting that any heparin-associated bias did not substantially 275 

influence this comparison. Individual myeloid-enriched miRNAs were elevated in ACS as well, e.g. miR-276 
223(1), while platelet miRNAs in general were not changed (Fig. 5A). 277 
 278 
In agreement with our previous results after PNK-treatment, it improved the detection of distinct ex-279 
mRNAs 30-fold, with an average (min, max) of 1124 (47, 4825) ex-mRNAs captured in the PNK-treated 280 
samples compared to an average of 38 (6, 313) in the untreated samples. Differential analysis identified 281 
209 changed mRNA transcripts, 167 higher and 42 lower in ACS than controls. Most prominent was a 282 
marked increase in neutrophil transcripts in ACS (Fig. 5B, Supplementary Data 12) while platelet 283 

transcripts like the highly specific PF4 and PPBP were unchanged between the two groups (Fig. 5C). The 284 
top 6 elevated mRNA fragments in the ACS group by FDR (Fig. 5D) were IFITM2 (4.2-fold, TSS 2.25), 285 
MGAM (10-fold, TSS 4.3), CXCR2 (4.5-fold, TSS 4.1), H3F3A (3.6-fold, TSS 0.74), GCA (3.8-fold, 286 
TSS 3.2), and S100A8 (3.7-fold, TSS 3.2) all of which highly expressed in neutrophils (Supplementary 287 
Data 6) and many specifically expressed in this cell type. The reads of the released neutrophil transcripts 288 
originated again mainly from the CDS of the transcripts (Fig. 5E). In contrast to our observations with 289 
myocardium-specific miRNAs, we did not detect any myocardial mRNAs in circulation. 290 

 291 
Taken together, these data support that ex-mRNAs a neutrophil signature in the ACS group with a release 292 
of ribosome-associated transcripts, a change not detectable on the miRNA level. 293 

Discussion 294 

Here, we showed that mRNA fragments in circulation (ex-mRNAs) can be efficiently captured by T4 295 

polynucleotide kinase (PNK) end-treatment of total extracellular RNA (exRNA) followed by sRNA-seq. 296 
Ex-mRNAs provide superior tissue and functional resolution for most conditions compared to other RNA 297 
classes because of the higher number of comparatively well annotated, highly expressed tissue-restricted 298 
transcripts. Tissue-specific ex-miRNAs, in selected cases, offer complementary information. 299 
 300 
Ex-miRNAs have been widely studied as biomarkers in many types of diseases and conditions6,7,26,27. 301 
They perform well in the detection of tissue damage of organs with tissue-specific miRNAs like the liver 302 

(miR-122)28 or the heart (myomirs)6,7. Individual miRNAs alone or in combination are also used for risk 303 
prediction for chronic conditions27, and characteristic ex-miRNA changes have been shown to be stable 304 
over months even in the absence of detectable illness8. But the precise tissue-source or etiology of such 305 
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differences based on the ex-miRNA profile remain unclear. Many tissues do not possess specifically-306 
expressed miRNAs, and measurements of ubiquitously or weakly expressed miRNAs in biofluids are 307 
prone to misinterpretation. 308 
 309 

Patients with acute coronary syndrome (ACS) represented a good benchmark population to evaluate our 310 
analysis of ex-mRNAs given the consistently reported elevations of myocardium-specific miRNAs 311 
(myomirs) in circulation6,7. As expected, myomirs were elevated in ACS but aside from these changes 312 
few alterations were detectable between ACS and healthy controls on the ex-miRNA level. However, the 313 
ACS group had a characteristic neutrophil ex-mRNA signature in circulation, i.e. elevated levels of 314 
neutrophil-enriched and -specific genes. Although this finding needs validation in larger cohorts and 315 
could have been confounded by the higher leukocyte count in the ACS group, the results are in line with 316 
the increasing recognition of inflammation and neutrophil activation for atherosclerotic disease. 317 

Endothelial damage and neutrophil activation have been linked to thrombus formation in animal studies29, 318 
and neutrophils in atherosclerotic plaques are detectable in animal models as well as human samples30. 319 
Irrespective of the reason for the neutrophil signature in the ACS cohort, i.e. an inflammatory response to 320 
ACS or due to higher neutrophil counts, the results clearly emphasize the superior tissue resolution of ex-321 
mRNAs compared to ex-miRNAs. The lack of detectable myocardial ex-mRNAs in any of the samples 322 
used in this study is most likely due to the low sequencing depth of ex-mRNAs caused mainly by large of 323 
rRNA fractions but differential stability of ex-miRNAs and ex-mRNA fragments likely contributes5. 324 

 325 
While our study did not address different mechanisms of exRNA release or the different compartments of 326 
exRNAs currently discussed, a few findings suggest that ex-mRNAs and probably a large part of all 327 
exRNA circulate within polysome complexes. First, in ex-mRNAs transcripts sequenced with good 328 
coverage, i.e. high abundance transcripts, read length (~28-nt) and read distribution across the transcripts 329 
were reminiscent of sequencing data from ribosome profiling studies31. Second, the loss of 5’ tRNA 330 
halves in EDTA and ACD samples6,13 is consistent with loss of protection by the RNA-binding protein 331 

ZNF598 after polysome disassembly due to Mg2+ chelation. We have recently shown that ZNF598 binds 332 
tRNAs and translating ribosomes32, and the circulating tRNA halves correspond precisely to the region 333 
protected by the ZNF598. Chelation of Mg2+ by EDTA, traditionally used experimentally for that 334 
purpose25,33, and ACD in blood collection tubes will lead to disassembly of polysomes render the 335 
associated tRNAs vulnerable to nuclease digestion. The more widespread effect of RNP destabilization 336 
after Mg2+ chelation is furthermore evident by loss of RNA fragments from certain regions of U1 RNA, 337 
and overall fewer captured transcripts in EDTA and ACD samples though it ultimately remains unclear 338 
how much ex vivo effects of the different plasma additives on hematopoietic cells contribute to these 339 

differences21–23. Aside from the utility to study in vivo changes of exRNAs and to develop diagnostic 340 
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applications, the discriminatory value of ex-mRNA compared to other RNA classes can also be utilized to 341 
assess such changes and biases related to blood collection and processing, which are well known in 342 
laboratory medicine and of which the effects of EDTA and ACD are the most prominent. 343 
 344 

The finding that most reads originate from the coding sequence and not the UTRs is in contrast to a recent 345 
report by Skog et al.15 and likely due to different sRNA-seq protocols and analysis strategies. In fact, 346 
while Skog et al. and Danielson et al.14 used RNA end-treatment with RNA-seq they did not report 347 
enrichment of ex-mRNAs. In our study, strict mapping criteria were necessary to increase the signal-to-348 
noise ratio for ex-mRNAs. 349 
The adoption of exRNAs as clinical biomarkers will require quantitative and reasonably fast assays like 350 
qPCR. However, primer design for short fragments is challenging, and qPCR like other not-sequencing 351 
based assays does not easily allow to verify the amplified signal (i.e. read sequence). The diminutive 352 

amounts of RNA in body fluids increases the risk of introducing biases. For instance, up to 30% of reads 353 
in samples not end-treated with T4 PNK in this study mapped to the plasmid of Rnl2 ligase, which is used 354 
for adapter ligation during the sRNA-seq cDNA preparation. Omitting this plasmid reference from the 355 
mapping hierarchy during sequence read alignments resulted in a substantial amount of plasmid 356 
sequences aligning perfectly to other RNA classes, including mRNA transcripts, even using the most 357 
stringent mapping criteria. Similar considerations will have to be taken into account with different 358 
methods or further refinements, like e.g. using heparinase treatment to reduce possible interference of 359 

heparin with enzymatic reactions, or enzymatic rRNA removal. 360 
 361 
In conclusion, total exRNA PNK-treatment followed by sRNA-seq allows for robust investigation of 362 
ex-mRNA changes for biomarker discovery and other studies. Future method refinements, such as 363 
depletion of rRNA and tRNA fragments, will further increase the potential of this approach.  364 
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Figures 450 

 451 
 452 
Fig. 1. Treatment of total extracellular RNA with T4 polynucleotide kinase (T4 PNK) followed by 453 

small RNA-sequencing (sRNA-seq). (A) Total RNA was isolated from 450 µl serum or platelet-depleted 454 
EDTA, acid citrate dextrose (ACD), and heparin plasma from 6 healthy individuals and purified using 455 
silica-based spin columns. Half of the RNA was treated with T4 PNK and re-purified (PNK-treated) and 456 
multiplexed sRNA-seq libraries were prepared separately for the untreated (libraries 1 and 2) and end-457 
treated RNA (libraries 3 and 4). (B) Differences in read annotation in the four sample types for untreated 458 
RNA and PNK-treated RNA using initial annotation settings (up to 2 mismatches, multi-mapping). (C) 459 
Differences in nuclear mRNA capture between untreated and PNK-treated RNA using final annotation 460 

criteria (no mismatch and up to two mapping locations). 461 
 462 
  463 
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 464 
Fig. 2. Read distribution of reads across mRNA transcripts. (A, B) Read coverage for the hemoglobin 465 

A2 transcript (A) and the albumin transcript (B) by sample type for untreated (upper rows) and T4 PNK 466 
end-treated (lower rows) samples. Exon boundaries (HBA2: 3 exons, ALB: 15 exons) are indicated by 467 
alternating intensities of grey, and UTRs are distinguished from CDS by thinner bars. (C) Metagene 468 
analysis with relative read coverage (percentage) across 5’ UTRs, CDS, 3’ UTRs for untreated and PNK-469 
treated samples as well as corresponding data obtained after 100 random simulations (across an average 470 
of 759 to 3,500 captured transcripts for untreated samples and an average of 2,750 to 16,487 captured 471 
transcripts for PNK-treated samples depending on sample type). 472 
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 474 
Fig. 3. Tissue sources of circulating mRNAs (A). Heat map with the top the 821 most abundant ex-475 
mRNAs in circulation for untreated and PNK treated (left) together with selected cells or tissues (right). 476 
Selected, tissue-specific/enriched miRNAs and mRNAs are labelled together with the tissue-specificity 477 
score.  478 
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 479 
Fig. 4. Top expressed transcripts from hematopoietic tissues captured in circulation. The 1,000 most 480 
abundant nuclear mRNA transcripts from the selected cell types that collected 5 unique or 10 total reads 481 
in at least 3 of the 6 donors per sample type were considered captured. The captured transcripts (x axis) 482 
were ordered in descending order by the tissue specificity score (TSS, y axis). Transcripts with a TSS 483 
greater than 3 were highlighted in red and listed, space permitting. 484 
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 486 
Fig. 5. Changes in extracellular mRNAs and miRNAs in patients with ACS compared to controls. 487 

(A) MA plot of ex-miRNAs changes color coding highly expressed miRNAs in platelets defined as the 488 
top 85% miRNAs. (B, C) MA plot of ex-mRNA changes color coding highly expressed neutrophil genes 489 
(B) or platelet genes (C). Navy blue: highly expressed and FDR > 5%; orange: highly expressed and FDR 490 
< 5%; red: not highly expressed and FDR < 5%; grey: all other. Selected transcripts are highlighted: (A) 491 
myocardium specific miRNAs: 208a(1), 208b(1), 499(1); miRNAs abundant in neutrophils: 185(1), 492 
24(2), 223(2), or miRNAs specific, 122(1), or typic, 192(1), for liver; (B) mRNA transcripts highly 493 
enriched in neutrophils or platelets (C). (D) Heat map showing altered ex-mRNAs in the ACS group 494 
compared to healthy controls. Selected mRNAs are indicated on the right. (E) RNA-seq read coverage of 495 

the 523-nt S100A8 transcript in ACS group and healthy controls (down-sampled to 600,000 reads). 496 
Transcript structure indicated at the bottom with the three exons in alternating intensities of grey, and the 497 
5’/3’ UTRs as thin bars. 498 
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