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Summary 

Plants communicate with their environment in many ways, using colors and shapes and 

secreting chemicals. Yet, the possibility that plants emit airborne sounds that reveal their 

condition has not been investigated. Here, we develop a novel method for remotely 

detecting plant sound emission. We use it to demonstrate, to our knowledge for the first 5 

time, that plants emit sounds that can be recorded from a distance. We recorded ~65 

dBSPL ultrasonic sounds at 10 cm distance from tomato and tobacco plants, suggesting 

that these sounds could be detected by many animals from up to several meters. We 

further train machine learning algorithms to identify the physiological condition of 

tomato and tobacco plants based solely on the emitted sounds. We successfully classified 10 

the plant's condition - dry, cut, or intact - based on its emitted sounds. Our results suggest 

that animals, and possibly even other plants, could use sounds emitted by plants to gain 

information about the plant's condition. More investigation on plant bioacoustics in 

general and on sound emission in plants in particular may open new avenues for 

understanding plants, and their interactions with the environment. 15 

 

 

 

 

 20 
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Introduction 

Plants are constantly involved in communication [1]. When flowering plants are ready to breed, 

they attract their pollinators by releasing attractive fragrances and displaying bright colors [2-4]. 

When attacked by herbivores, plants can emit volatile organic compounds (VOCs) that attract 

their herbivores’ predators, leading to an increase in the plant’s survival and fitness [5-7]. VOCs 5 

can also affect neighboring plants, resulting in increased resistance in these plants [8, 9]. 

Altogether, plants have been demonstrated to use visual, chemical and tactile communication [1, 

10-12].  Nevertheless, the ability of plants to emit airborne sounds – that could potentially be 

heard by other organisms – has not been explored [11, 13, 14]. 

 10 

Plants exposed to drought stress have been shown to experience cavitation – a process where air 

bubbles form, expand and explode in the xylem, causing vibrations [15, 16]. Yet, these 

vibrations have always been recorded by connecting the recording device directly to the plant 

xylem [16, 17]. Such contact-based recording does not reveal the extent to which these sound 

vibrations could be sensed at a distance from the plant, if at all [17-19]. Thus, the question of 15 

airborne sound emission by plants remains unanswered [17, 20, 21]. 

 

Many animals, including herbivores and their predators, respond to sound [22-24]. Recently, 

plants were also demonstrated to respond to sounds [13, 25-28], e.g., by changing gene 

expression of specific genes [26, 27], or by producing sweeter nectar in response to pollinator 20 

sound [28]. If plants are capable of emitting informative airborne sounds, these sounds have a 

potential for triggering a rapid effect on nearby organisms, including both animals and plants. 

Even if the emission of the sounds is entirely involuntarily, and is merely a result of the plant’s 
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physiological condition, nearby organisms that are capable of hearing the sounds could 

eavesdrop for their own benefit. Furthermore, some of these responses may be beneficial for the 

emitting plant, for example if the plant’s sounds induce resistance to drought or disease [29-32] 

in neighboring plants – or even in other parts of the same plant. In such cases, plant sound 

emission and perception would be favored by natural selection. Therefore, we hypothesize that 5 

plants emit informative airborne sounds, which may serve as potential signals or cues to their 

environment. Here we show that plants indeed emit airborne sounds, which can be detected 

several meters away. Moreover, we show that the emitted sounds carry information about the 

physiological state of the plant. 

 10 

Results 

To investigate plants’ ability to emit airborne sound emissions, we constructed a reliable 

recording system, in which each plant was recorded simultaneously with two microphones (see 

Fig. 1 for illustration, and Methods for details). We recorded tomato (Solanum lycopersicum) and 

tobacco (Nicotiana tabacum) plants under different treatments, focusing on the ultrasonic sound 15 

range (15-250 kHz), where the background noise is weaker. 
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Figure 1. Experimental setup. In each 

recording, three plants are placed inside an 

acoustic box with two directional 

microphones oriented at each plant. Using 5 

two microphones helps eliminating false 

detections resulting from electrical noise 

clicks of the recording system and cross-

plant interference. Two plant species were recorded: Solanum lycopersicum (tomato) and 

Nicotiana tabacum (tobacco). 10 

 

We found that plants emit sounds, and that drought-stressed plants (see Methods) emit 

significantly more sounds than control plants (p<e-7, Wilcoxon test). The mean number of 

sounds emitted by drought-stressed plants during one hour was 35.4±6.1 and 11.0±1.4 sounds for 

tomato and tobacco, respectively (Fig. 2a). In contrast, the mean number of sounds emitted per 15 

hour by plants from all the well irrigated control groups was lower than 1 (Fig. 2a). Three 

controls were used: recording from the same plant before treatment (self-control), recording from 

an untreated same-species neighbor plant (neighbor-control, see Methods), and recording an 

empty pot without a plant (Pot). Our system did not record any sound in the Pot control (Fig. 

2a). 20 

How does a dry plant sound? Figs. 2b, c show examples of raw recorded time signals and their 

spectra as recorded from drought-stressed tomato and tobacco plants. The mean peak sound 

intensity recorded from drought-stressed tomato plants was 61.6±0.1 dBSPL at 10 cm, with a 
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mean peak frequency of 49.6±0.4 kHz (frequency with maximal energy), and the mean intensity 

recorded from drought-stressed tobacco sounds was 65.6±0.4 dBSPL at 10.0 cm, with a mean 

frequency of 54.8±1.1 kHz. 

Similarly to drought-stressed plants, cut plants (see Methods) also emitted significantly more 

sounds than control plants (p<e-7, Wilcoxon test). Cut tomato and tobacco plants emitted 5 

25.2±3.2 and 15.2±2.6 sounds per hour, respectively (Fig. 2a), while the mean number of sounds 

emitted by control plants was lower than 1 (Fig. 2a). Figs. 2b, c show examples of recorded time 

signals and their spectra as recorded from cut tomato and tobacco plants. The mean peak 

intensity of the sounds emitted by cut tomato plants was 65.6±0.2 dBSPL at 10 cm distance with 

a mean peak frequency of 57.3±0.7 kHz (frequency with maximal energy), and the mean 10 

intensity of the sounds emitted by cut tobacco plants was 63.3±0.2 dBSPL at 10.0 cm distance 

with a mean frequency of 57.8±0.7 kHz. The distributions of sound peak intensity and the 

maximum energy frequency of cut and drought-stressed tomato and tobacco plants are shown at 

Fig. 3a. Spectrograms of raw recorded sounds from cut and drought-stressed tomato and tobacco 

plants are shown at Supporting Information Fig. S1. 15 
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Figure 2. Plants emit remotely-

detectable ultrasounds under 

stress. (a) Mean number of sounds 

emitted during 60 minutes of 5 

recording by tomato and tobacco 

plants under two treatments, drought 

stress and cutting. Three control 

groups were used – empty pots, and 

two groups of untreated plants: self-10 

control – the same   plants before 

treatment; and neighbors-control – 

untreated plants that shared the 

acoustic box with treated plants. All 

treatment groups emitted 15 

significantly more sounds (p<e-7, 

Wilcoxon test) than all control 

groups (treated: 

MeanTomato−Cut = 15.2 ± 2.6, 

MeanTobacco−Cut = 21.1 ± 3.4, 20 

MeanTomato−Dry = 35.4 ± 6.1, 

MeanTobacco−Dry = 11.0 ± 1.4 ), 

self-control (Meanself<1 for all) and 

neighbors control (Meanneighbors<1 

for all). The system did not record any sound from pots without plants during the experiments 25 

(Meanpots=0). 20≤n≤30 plants for all groups. (b) Examples of time signals of sounds emitted by: 

a drought stressed tomato, a drought stressed tobacco, a cut tomato, and a cut tobacco. (c) The 

spectra of the sounds from (b). 

 

 30 
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Can we identify the condition of a plant based on the acoustics of the sounds it emits? To test 

this, we trained a regularized machine learning classifier. We divided the sounds to four groups 

in a 2X2 design, with two plant types – tomato and tobacco, and two treatments – drought or 

cutting. The treatments were applied to the plants before the beginning of the recording. The 

binary classifier was trained to separate two equal-size groups (“pair”) in each comparison 5 

(Tomato-Dry vs Tomato-Cut; Tobacco-Dry vs Tobacco-Cut; Tomato-Dry vs Tobacco-Dry; 

Tomato-Cut vs Tobacco-Cut). For cross validation, the model was tested only on plants that were 

not a part of the training process (see Methods for more details). 

The classifier achieved ~70% accuracy for each of the four pairs (Fig. 3b red line), significantly 

better than random (p<e-13 for each pair, see methods). The same classifier was trained to 10 

discriminate between the electrical noise of the system (see Methods) and the sounds emitted by 

either tobacco or tomato plants, and achieved more than 98% accuracy for both (Fig. 3b). We 

used Support Vector Machine (SVM) as the classifier and scattering network [23] for feature 

extraction. The results were robust to the dimension of the descriptors and the scattering network 

specific parameters (Fig. S2). The results were also significantly better than random when we 15 

used MFCC [33] as the input features (p<e-4, see methods) and even when we only used 4 basic 

acoustic features [34, 35] the results were significantly better than random for 5 of the pairs  (p< 

e-4; Fig. 3b). 
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Figure 3. The plant condition can be detected from a distance just by listening to its sound 

emissions. (a) The recorded sounds intensity peak and the max energy frequency for the four 

groups – drought stressed tomato plants, cut tomato plants, drought stressed tobacco plants and 5 

cut tobacco plants. (b) The accuracy of sound classification achieved by different feature 

extraction methods, with SVM classifier. The best results were obtained using scattering network 

method for feature extraction (red line) – significantly better than when we use MFCC or Basic 

methods for feature extraction for all the pairs (P<0.05, P< e-6 correspondingly, Wilcoxon sign 

rank test). Training set size of the two groups in each pair was equal (400< sounds for each pair, 10 

see Table S2). 

 

Discussion 

Our results demonstrate for the first time that plants emit remotely-detectable airborne sounds 

and do so particularly under stress (Fig. 2a). The plant emissions that we report, in the ultrasonic 15 

range of ~20-100 kHz, could be detected from a distance of 3-5m (see Methods), by many 
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mammals and insects (when taking their hearing sensitivity into account, e.g., mice [36] and 

moth [24]). Moreover, we succeeded in differentiating between sounds emitted in two different 

stress conditions – dry and cut (Fig. 3b) – with precision of ~70% using supervised machine 

learning methods. These findings can alter the way we think about the Plant Kingdom, which has 

been considered to be almost silent until now [20]. 5 

 

Our work can be extended in several ways. First, plant sound emissions can be tested outdoors. 

For that, the classifiers would need to separate ‘regular outdoor sounds’ from plant sounds. 

However, note that the plants sounds we recorded are all in the ultrasonic range, which is overall 

quieter than the audible range [37]. Second, our results can be generalized to other species of 10 

plants from different families. In a preliminary study we successfully recorded sounds from 

additional plants from different taxa, e.g., Mammillaria spinosissima cactus and Henbit 

deadnettle (Fig. S3). We thus expect that many plants have the ability to emit sounds, but the 

exact characteristics of these sounds, and the similarity between groups, are yet to be identified. 

Third, future studies could explore the sounds emitted under different plant states, including 15 

other stress conditions such as disease, cold, herbivores attack, or UV radiation, and other life 

stages, such as flowering and fruit bearing. Once a large library of plant sounds is constructed, it 

could be analyzed by modern tools to obtain additional insights. 

 

A possible mechanism that could be generating the sounds we record is cavitation – the process 20 

whereby air bubbles form and explode in the xylem [15, 16]. Cavitation explosions have been 

shown to produce vibrations similar to the ones we recorded [15, 16], but it has never been tested 

whether these sounds are transmitted through air at intensities that can be sensed by other 
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organisms. Regardless of the specific mechanism generating them, the sounds we record carry 

information, and can be heard by many organisms. If these sounds serve for communication a 

plant could benefit from, natural selection could have favored traits that would increase their 

transmission. 

 5 

Figure 4. Who can potentially 

benefit from listening to 

plants? An illustration of 

potential benefits of listening to 

sounds emitted by a drought 10 

stressed plant: (i) A neighbor 

plant can be alert for drought (ii) A flying moth looking for a host plant can sense plant stress 

and modify its behavior accordingly (iii) A farmer can use this information to update his 

irrigation plan. 

 15 

We have shown that plants sounds can be effectively classified by simple machine learning 

algorithms. We thus suggest that other organisms may have evolved to classify these sounds as 

well, and respond to them (Fig. 4). For instance, many moths – some of them using tomato and 

tobacco as hosts for their larvae [38, 39] – can hear and react to ultrasound in the frequencies and 

intensities that we recorded [22-24]. These moths may potentially benefit from avoiding laying 20 

their eggs on a plant that had emitted stress sounds. We hypothesize that even some predators 

may use the information about the plant’s state to their benefit. For example, if plants emit 

sounds in response to a caterpillar attack, predators such as bats [40] could use these sounds to 
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detect these plants [41] and prey on the herbivores, thus assisting the plant. The same sounds 

may also be perceived by nearby plants. Plants were already shown to react to sounds [13, 25-27] 

and specifically to increase their drought tolerance in response to sounds [29, 31]. We speculate 

that plants could potentially hear their drought stressed or injured neighbors and react 

accordingly. 5 

Finally, plant sound emissions could offer a novel way for monitoring the crops water state – a 

question of crucial importance in agriculture [42]. More precise irrigation can save up to 50% of 

the water expenditure and increase the yield , with dramatic economic implications [42, 43]. In 

times when more and more areas are exposed to drought due to climate change [44], while 

human population and consumption keep increasing [45], efficient water use becomes even more 10 

critical, for both food security and ecology. 

 

Conclusion 

We demonstrate for the first time that stressed plants emit remote detectable sounds, similarly to 

many animals, using ultrasound clicks not audible to human ears. We also found that the sounds 15 

contain information, and can reveal plant state. The results suggest a new modality of signaling 

for plants and imply that other organisms could have evolved to hear, classify and respond to 

these sounds. We believe that more investigation in the plant bioacoustics field, and particularly 

in the ability of plants to emit and react to sounds under different conditions and environments, 

will reveal a new pathway of signaling, parallel to VOCs, between plants and their environment. 20 

 

Materials and Methods 

Plants materials and growth conditions  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 3, 2019. ; https://doi.org/10.1101/507590doi: bioRxiv preprint 

https://doi.org/10.1101/507590


13 

 

Tomato – Solanum lycopersicum ‘Hawaii 7981’ [46] – and tobacco – Nicotiana tabacum 

‘Samsun NN’ – were used in all the experiments. All the plants were grown in a growth room at 

25 °C and kept in long-day conditions (16 h day, 8 h night). The plants were tested in the 

experiments 5-7 weeks after germination. 

 5 

Recording protocol 

The recordings were performed in a 50 × 100 × 150 𝑐𝑚3 acoustically isolated box tiled with 

acoustic foam on all sides to minimize echoes. Two cable holes, 2 cm radius each, were located 

in two corners of the box and covered with PVC and acoustic foam. Inside the acoustic box were 

only the recorded plants, 6 microphones, and an UltraSoundGate 1216H AD converter (Avisoft). 10 

The PC and all the electricity connections were in the room outside the acoustic box. Two USB 

cables connected the PC to the 1216H device inside the box, through the holes. There was no 

light inside the acoustic box. 

The recordings were performed using a condenser CM16 ultrasound microphone (Avisoft), 

digitized using an UltraSoundGate 1216H A/D converter (Avisoft), and stored onto a PC. The 15 

sampling rate was 500 KHz, and we used a high-pass filter of 15 KHz built-in the system. A 

recording started only when triggered with a sound which exceeded 2% of the maximum 

dynamic range of the microphone. Two microphones were directed at each plant stem, from a 

distance of 10 cm. Only sounds that were recorded by both microphones were considered as 

“plant sounds” in the analysis afterwards. The frequency responses of the microphones can be 20 

found in the Avisoft website: http://www.avisoft.com. 
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Data processing 

Data processing was performed off-line using a matlab code we developed (MATLAB 8.3, The 

MathWork Inc.), with the following steps: 1. Identifying the microphone that had recorded the 

highest intensity peak at the moment recording started. 2. Selecting the sounds that were detected 5 

by two microphones oriented at the same plant at the same time, and saving them for further 

analysis. Throughout the experiments, not a single detection of a sound was observed 

simultaneously at different plants. “Noise” sounds were obtained when the box included only 

acoustic equipment without plants or pots, and each “noise” was detected by one microphone 

only. These noises probably resulted from electrical noise of the acoustic equipment. 10 

 

Drought stress experiment 

Each plant was recorded twice: first before drought treatment (“self-control”), and again after it. 

In the first recording, all the plants were healthy and their soil was moist. Then, for 4-6 days, half 

of the plants were watered while the other half were not, until the soil moisture in the pots of un-15 

watered plants decreased below 5%. Then, the plants were recorded again at the same order. In 

each recording session three plants were recorded simultaneously for one hour and each triplet of 

plants included at least one watered and one un-watered plant to allow “neighbors-control” – 

watered plants that were recorded while sharing the acoustic box with un-watered plants. Soil 

moisture content was recorded using a hand‐held digital soil moisture meter ‐ Lutron PMS‐714. 20 

 

Cut stress experiment 
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The experiment followed the experimental design of the drought stress experiment described 

above, but drought stress was replaced with cutting of the plant. Here the pot soil was kept moist 

for all the plants throughout the experiment. The plants included in the treatment group were cut 

with scissors close to the ground right before the recording started. The severed part of the plant, 

disconnected from the roots, was recorded. We used the same controls of the drought stress 5 

experiment. 

 

Classifying sounds 

Our classification method was composed of two main stages. First, we extracted various acoustic 

features from the raw recorded signals. Second, we trained a model to classify plant sounds into 10 

classes based on the feature representation obtained in the first stage. We used three methods of 

feature extraction: (a) Deep scattering Network, as described in Andén and Mallat [47], red 

dotted line in Fig. 3b. This method extends MFCC while minimizing information loss. We used 

the implementation by ScatNet [48], with Morlet wavelets. The results were robust to the 

dimension of descriptors and the scattering network specific parameters: number of layers used; 15 

time support of low pass filter; and Q-Factor (Fig. S2). The values of the specific parameters 

used in this work are shown at Table S1. (b) MFCC feature extraction (dashed black line in Fig. 

3b). We used the Ellis Dan implementation [33]. (c) Basic features. The basic features we used 

were energy, energy entropy, spectral entropy, and maximum frequency (gray line in Fig. 3b) 

[34, 35]. We used SVM with Radial kernel with the LIBSVM implementation as classifier. We 20 

used Z-score for normalization and PCA to reduce the dimensionality of the problem. We used 

only the training set to choose the number of components. 
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During the training process we leave all the emitted sounds of one plant out for cross validation. 

Then we constructed the training set such that the two compared groups would be at the same 

size. We repeated the process so that each plant constructed the testing group exactly one time. 

The accuracy of the classification was defined as the percentage of correct labeling over the total 

size of the testing set [49, 50]. The numbers of plants in each group are shown at the Table S3. 5 

 

Statistical analysis 

For statistical analysis of the number of sound emissions for the treatment and the control groups 

(Fig. 2a) we used the Wilcoxon rank-sum test. 

To compare our classifier to random result (Fig. 3b), we used the binomial probability 10 

distribution function (PDF) and calculate the probability to get the classifier accuracy or higher 

randomly for each group. 

To compare the results obtained when using scattering network for feature extraction to the 

results obtained when using MFCC or basic feature extraction methods (Fig. 3b), we used 

Wilcoxon sign rank test. 15 
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