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Abstract

Estrogen receptor alpha (ERα) activity is associated with increased cancer cell proliferation. Studies aiming to under-
stand the impact of ERα on cancer-associated phenotypes have largely been limited to its transcriptional activity. Herein,
we demonstrate that ERα coordinates its transcriptional output with selective modulation of mRNA translation. Im-
portantly, translational perturbations caused by depletion of ERα largely manifest as "translational offsetting" of the
transcriptome, whereby amounts of translated mRNA and protein levels are maintained constant despite changes in
mRNA abundance. Transcripts whose levels, but not polysome-association, are reduced following ERα depletion lack
features which limit translational efficiency including structured 5’UTRs and miRNA target sites. In contrast, mRNAs
induced upon ERα depletion whose polysome-association remains unaltered are enriched in codons requiring U34-modified
tRNAs for efficient decoding. Consistently, ERα regulates levels of U34-modification enzymes, whereas altered expres-
sion of U34-modification enzymes disrupts ERα dependent translational offsetting. Altogether, we unravel a hitherto
unprecedented mechanism of ERα-dependent orchestration of transcriptional and translational programs, and highlight
that translational offsetting may be a pervasive mechanism of proteome maintenance in hormone-dependent cancers.
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Introduction

Gene expression is regulated at multiple levels including
transcription and mRNA transport, storage, stability and
translation. These processes together with protein degra-
dation govern proteome composition (Morris et al, 2010;
Piccirillo et al, 2014; Bisogno & Keene, 2018). While
mRNA levels are key determinants of the proteome un-
der non-stressed growth conditions, the contribution of
mRNA translation remains contentious (Schwanhäusser
et al, 2011; Li et al, 2014, 2017). In contrast, it is well
established that altered translational efficiencies reshape
the proteome during various dynamic responses including
cellular differentiation and endoplasmic reticulum stress
(Kristensen et al, 2013; Baird et al, 2014; Liu et al, 2016;
Guan et al, 2017).

Translation can be regulated globally, leading to altered
translational efficiency of most cellular mRNAs, or selec-
tively by modulating translation of limited subsets of mR-
NAs (Piccirillo et al, 2014). Most commonly, selective
changes in translational efficiency are considered to al-
low modulation of protein levels in absence of correspond-
ing changes in mRNA levels (Larsson et al, 2010). This
is thought to be mediated by interactions between RNA-
elements in untranslated regions (UTRs), RNA-binding
proteins and translation initiation factors (Koromilas et
al, 1992; Hershey et al, 2012; Hinnebusch et al, 2016;
Masvidal et al, 2017). Accordingly, 5’UTR length, structure
and presence of cis-acting elements such as upstream open
reading frames (uORFs); and 3’UTR trans-acting factors
including microRNAs (miRNAs) play a pivotal role in trans-
lational control (Gebauer et al, 2012; Larsson et al, 2013;
Hinnebusch et al, 2016; Gandin et al, 2016b). Although the
vast majority of known RNA elements implicated in modu-
lation of mRNA translation reside within UTRs, it has been
reported that nucleotide sequence and/or elements in the
open reading frame may also regulate translation (López et
al, 2015; Thandapani et al, 2015). Indeed, selective alter-
ations of transfer RNAs (tRNAs) were recently described
to affect translation of mRNAs with specific codon usage
(Goodarzi et al, 2016). Moreover, recent reports highlight
alterations of tRNA modifications as an important mech-
anism underlying selective translation (Chan et al, 2015;
Delaunay et al, 2016; Rapino et al, 2017, 2018) which
are thought to act by maintaining protein homeostasis or
driving an adaptive proteome (Nedialkova & Leidel, 2015).

Estrogen receptor alpha (ERα) is a key steroid receptor and
transcription factor which drives tumorigenesis in hormone-
dependent cancers (Shanle & Xu, 2010). In prostate can-
cer, ERα expression is associated with increased cell prolif-
eration. Moreover, ERα is overexpressed in genetically
engineered mouse models of prostate cancer and high
grade patient tumors (Chakravarty et al, 2014; Megas
et al, 2015; Takizawa et al, 2015). In this context, the
ERα transcriptional output is thought to direct a program
distinct from the androgen receptor (AR) that may con-
tribute to emergence of castrate-resistant prostate cancer

and aggressive tumor subtypes (Setlur et al, 2008). In-
triguingly, in addition to its role in regulating transcription,
ERα may directly or indirectly influence PI3K/AKT/mTOR
and MAPK pathway signaling, as shown in several tissues
(Levin, 2009) including the prostate (Takizawa et al, 2015).
Studies in multiple cellular models have revealed that fluc-
tuations in mTOR activity predominantly affect translation
of mRNA subsets defined by long and highly structured
5’UTRs, extremely short 5’UTRs or 5’UTRs harboring a 5’-
terminal oligopyrimidine tract (TOP) (Patursky-Polischuk
et al, 2009; Hsieh et al, 2012; Larsson et al, 2012; Meyuhas
& Kahan, 2015; Gandin et al, 2016b; Masvidal et al, 2017).
Moreover, MAPK signaling induces phosphorylation of
eIF4E which also selectively modulates mRNA translation
(Furic et al, 2010; Robichaud et al, 2015). Therefore, we in-
vestigated whether ERα, in addition to its well-established
role in transcription, also modulates translation.

Results

Changes in steady-state mRNA levels upon
depletion of ERα are largely offset at the level
of translation

To study the impact of ERα on regulation of gene expres-
sion in prostate cancer, we used the BM67 cell line derived
from the PTEN null mouse model of prostate cancer (Tak-
izawa et al, 2015). BM67 cells express relatively high
level of ERα, which was silenced using an shRNA to gen-
erate shERα BM67 cells (Fig. 1A). To assess effects of
ERα depletion on mRNA abundance and translation, we
used polysome-profiling quantified by DNA-microarrays
(Supplementary Fig. S1A-B). Polysome-profiling gener-
ates parallel data on efficiently translated (i.e. those as-
sociated with >3 ribosomes) and total mRNA (Fig. 1A)
(Gandin et al, 2016b; Masvidal et al, 2017). Changes in
polysome-associated mRNA can result either from congru-
ent changes in cytosolic mRNA or from changes in trans-
lational efficiencies without corresponding fluctuations in
mRNA levels. The former is the outcome of regulated tran-
scription and/or mRNA stability while the latter reflects
bona fide changes in translational efficiency (Larsson et
al, 2010). The anota2seq algorithm identifies changes in
polysome-associated and cytosolic mRNA; and computes
alterations in translational efficiency (Larsson et al, 2010;
Oertlin et al, 2018). In line with the role of ERα as a tran-
scription factor, wide-spread changes in total mRNA levels
were observed between control and shERα BM67 cells as
evidenced by a strong enrichment of transcripts with low
p-values (Fig. 1B; Supplementary Fig. S1C). Substan-
tially fewer mRNAs displayed ERα-associated changes in
polysome-association as indicated by a smaller enrichment
of transcripts with low p-values (Fig. 1B; Supplemen-
tary Fig. S1C). Strikingly, when comparing fold changes
for cytosolic and polysome-associated mRNAs in shERα vs.
control BM67 cells, we identified a population of genes
showing changes in cytosolic mRNA without corresponding
changes in their association with polysomes (Fig. 1C). This
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Figure 1. ERα-dependent alterations in steady-state mRNA levels are largely offset at the level of mRNA translation. (A) Expression
of ERα in control (shCtrl) and knockdown (shERα) BM67 cells was determined by western blotting (β-actin served as a loading control). Gene
expression was determined using polysome-profiling which quantifies both total mRNA and efficiently translated polysome-associated mRNA.
(B) Densities of p-values for differential expression (shERα vs. shCtrl BM67 cells) using data from polysome-associated mRNA (orange),
cytosolic mRNA (purple) or from analysis of changes in translational efficiency leading to altered protein levels (red). (C) Scatterplot of
polysome-associated mRNA vs. cytosolic mRNA log2 fold-changes (shERα vs. shCtrl). Areas of the plot are colored according to the density of
data points (genes; dark blue corresponds to areas with many genes [see methods]) (D) Same plot as in (B) but including a blue density of
p-values from the analysis of translational offsetting. (E) A scatter plot similar to (C) but where genes are colored according to their mode of
regulation derived from anota2seq analysis. A relaxed threshold (p<0.05) was used to identify a set of transcripts regulated via translation,
which did not pass thresholds used for identification of changes in mRNA abundance or translational offsetting (FDR<0.1). Confidence
ellipses (level 0.7) are overlaid for each mode of regulation. A bar graph indicates the number of mRNAs regulated via each mode. (F) Targets
from each mode of regulation (cf. E) were selected for validation by Nanostring. Shown is a scatterplot of Nanostring quantification of
polysome-associated mRNA vs. cytosolic mRNA log2 fold-change (shERα vs. shCtrl). Genes are colored according to their identified mode of
regulation (i.e. from E). Confidence ellipses (based on Nanostring data, level 0.7) are overlaid for each mode of regulation. Selected genes
from each mode of regulation are indicated. (G) Levels of indicated proteins from shERα and control BM67 cells were determined by western
blotting. β-actin served as loading control.
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suggests that shERα-dependent alterations in mRNA levels
may be buffered at the level of translation such that the
amount of mRNA associated with polysomes is unaltered
despite changes in corresponding mRNA levels. Trans-
lational buffering has been described in the context of
transcript-dosage compensation where it acts to maintain
protein levels similar between different bacterial (Lalanne
et al, 2018) and yeast species (Artieri & Fraser, 2014; Mc-
Manus et al, 2014) and human individuals (Cenik et al,
2015). It has also been reported that gene dosage effects
caused by aneuploidy may be compensated at the level of
translation in a cell type-specific context (Zhang & Pres-
graves, 2017), and that translational buffering may reduce
transcriptional "noise" caused by acute stimulation of cells
with growth factors (Tebaldi et al, 2012). In contrast to
these modes of regulation, which appear to chiefly reduce
"noise" in the proteome composition, transcriptional de-
fects caused by ERα-depletion appear to induce a form of
translational buffering which can be activated to sustain an
adaptive proteome and thus we refer to it as "translational
offsetting".

We next implemented adjustments in anota2seq that al-
lowed analysis of different forms of translational buffering
including ERα-dependent translational offsetting (Oertlin
et al, 2018). This led to identification of a large number of
mRNAs which changed in abundance in shERα BM67 vs.
control cells but were translationally offset as illustrated
by an abundance of low p-values (Fig. 1D; Supplemen-
tary Fig. S1D). Anota2seq also allows to categorize tran-
scripts in 3 modes of regulation: i) changes in mRNA abun-
dance (congruent changes in total and polysome-associated
mRNA), ii) changes in translation (changes in polysome-
associated mRNA without corresponding changes in total
mRNA) and translational offsetting (changes in cytosolic
mRNA without corresponding changes in their polysome
association) (Fig. 1E; Supplementary Table S1). Strik-
ingly, as evidenced by the number of transcripts under each
mode of regulation, translational offsetting was the pre-
dominant mode for regulation of gene expression following
ERα depletion (Fig. 1E). Therefore, the ERα-dependent
perturbations in mRNA levels appear to be largely offset at
the level of translation.

ERα-dependent translational offsetting op-
poses changes in protein levels despite alter-
ations in corresponding mRNA levels

To validate observed ERα-dependent changes in gene ex-
pression, we selected candidate genes from the three modes
of regulation, together with negative controls. Nanostring
technology (Geiss et al, 2008) quantified 86 such mRNAs
and confirmed all modes of ERα-dependent regulation of
gene expression (Fig. 1F; Supplementary Fig. S2A. We
next selected genes regulated at the level of translation
(AR), mRNA abundance (JAG1) or translational offsetting
(CHEK1, DEK and DCXR) and assessed corresponding pro-
tein abundance using Western blotting. AR and JAG1 were
downregulated in shERα as compared to control BM67

cells, which corresponded to the observed decrease in their
polysome association (Fig. 1G, Supplementary Fig. S2B-
C). In turn, levels of proteins encoded by translationally
offset mRNAs remained comparable between ERα depleted
and control BM67 cells (Fig. 1G, Supplementary Fig.
S2B-C). Altogether, in addition to changes in total mRNA
levels, ERα depletion leads to translational offsetting which
opposes changes in protein levels despite alterations in
mRNA abundance.

We next sought to establish functional relationships be-
tween the ERα-dependent genes governed by translational
offsetting by performing gene set enrichment analyses us-
ing Gene Ontology (GO) annotations (Gene Ontology Con-
sortium, 2015). No functions passed selected thresholds for
enrichment among proteins encoded by mRNAs induced
in shERα vs. control BM67 cells but translationally offset.
In contrast, metabolism and mitochondria-related func-
tions were enriched (False Discovery Rate (FDR)-adjusted
p-value = 0.008 and 0.001, respectively) among proteins
encoded by mRNAs whose levels were suppressed but trans-
lationally offset upon ERα depletion (Fig. 2; Supplemen-
tary Table S2). As expected, this largely overlapped with
the enrichment of cellular functions among proteins en-
coded by mRNAs whose total mRNA was reduced upon ERα
depletion (irrespective of whether this was paralleled by
changes in their polysome-association or not; Supplemen-
tary Fig. S3; Fig. 2). In contrast, there was no significant
enrichment in cellular functions among proteins encoded
by mRNAs whose polysome-association was reduced upon
ERα depletion. Therefore, subsets of mRNAs which are
offset at the level of translation upon ERα depletion are
functionally related and are implicated in essential cellular
functions.

Short, unstructured 5’UTRs characterize mR-
NAs which are downregulated but transla-
tionally offset upon ERα depletion

We next sought to identify mRNA features which underpin
ERα-dependent translational offsetting. To this end, we
compared mRNAs which changed their level and polysome-
association in ERα-depleted vs control cells vs. those that
maintained their polysome occupancy despite changes in
the abundance. We initially focused on 5’UTR features
as they play key roles in translational control (Hinneb-
usch et al, 2016; Masvidal et al, 2017). To achieve this,
we performed transcription start site profiling in shERα
BM67 cells using nano-cap analysis of gene expression
(nanoCAGE). At a sequencing depth close to saturation,
approximately 10,000 5’UTRs were detected (Fig. 3A).
Using these data, we contrasted genes whose mRNA abun-
dance and polysome-association changed in parallel to
those which were translationally offset for: 5’UTR length,
GC content, free energy of folding and presence of uORFs in
a strong Kozak context. Strikingly, transcripts whose levels
were reduced upon ERα depletion but were translationally
offset had a median 5’ UTR lengths ~ 50% shorter and were
less structured relative to downregulated but non-offset
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mRNAs (Fig. 3B). In contrast, transcripts induced upon
ERα depletion but translationally offset exhibited compa-
rable 5’UTR length and folding free energy but slightly
lower GC content as compared to non-offset mRNAs (Fig.
3B). Furthermore, there were no differences in proportion
of mRNA harboring uORFs between offset and non-offset
transcripts (Fig. 3B). Collectively, these findings suggest
that mRNAs whose level is suppressed upon ERα depletion
but are offset at the level of translation contain shorter and
less structured 5’UTRs.

Transcripts whose levels are downregulated
but translationally offset upon ERα depletion
are largely devoid of miRNAs target sites

ERα modulates expression of multiple miRNAs (Castellano
et al, 2009; Maillot et al, 2009; Klinge, 2012; Bailey et al,
2015) which led us to investigate the role of miRNAs in
translational offsetting. To this end, we performed small
RNAseq in shERα and control BM67 cells (Supplementary
Fig. S4). ERα depletion led to alterations in levels of a
subset of miRNAs (Fig. 4A). Among these, five miRNAs
(miR-181a-5p, miR-21a-5p, miR-23b-3p, miR-32-5p, miR-
27b-3p) were selected and their expression was validated
using qPCR (Fig. 4B-C). As RNAseq involves relative quan-
tification of miRNAs, we also considered a global change
in miRNA expression depending on ERα. Bioanalyzer based
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Figure 3. Genes repressed upon ERα depletion but translation-
ally offset have short and less stable 5’ UTRs. (A) nanoCAGE
sequencing was applied to determine transcription start sites in
shERα BM67 cells. The number of detected transcription start sites
(peaks) and RefSeq transcripts when sampling increasing number of
RNAseq reads are indicated to evaluate the complexity of nanoCAGE
RNAseq libraries. (B) Boxplots for offset and non-offset mRNAs com-
paring 5’ UTR weighted lengths (log2 scale), GC content (%), free
energy (log10 scale, kcal/mole). Number of transcripts harboring
at least one (dark gray) or no (light gray) uORF in a strong Kozak
context.

quantification of small RNAs to assess global changes in
miRNA expression, however, indicated no difference in to-
tal miRNA expression between shERα and control cells
(Fig. 4D). Next, we assessed whether targets of miR-
NAs with ERα-dependent expression were selectively offset.
Transcripts upregulated but translationally offset in control
vs shERα BM67 cells showed no enrichment of target sites
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for downregulated miRNAs (Fig. 4E-G). In contrast, down-
regulated mRNAs that were translationally offset were
largely devoid of the target sites for miRNAs which were
upregulated in ERα depleted cells (Fig. 4H-I). Importantly,
such a strong underrepresentation of miRNA target sites
among transcripts whose abundance was reduced but trans-
lationally offset upon ERα depletion was also observed
when selecting random sets of miRNAs (Fig. 4J). This
suggests that there is no link between ERα-regulated miR-
NAs and translational offsetting, but rather that there is
a general lack of miRNA target sites within this subset of
transcripts. In summary, mRNAs whose levels are reduced
but offset upon ERα depletion have short and less struc-
tured 5’UTRs and harbor less miRNA target sites in their 3’
UTRs as compared to non-offset transcripts.

Transcripts whose level are induced by ERα
depletion, but translationally offset are de-
coded by a distinct set of tRNAs.

Because no distinct 5’ or 3’UTR features were observed
among transcripts induced but translationally offset in ERα-
depleted vs. control cells, we next investigated their codon
usage. Transcripts expressed during proliferation vs. dif-
ferentiation exhibit distinct codon usage and thus appear
to require different subsets of tRNAs for their translation
(Gingold et al, 2014). We therefore considered that a
mismatch between tRNA demand (codon usage from ex-
pressed mRNAs) and tRNA expression could lead to trans-
lational offsetting. Indeed, there was a strong association
between the mode of regulation and codon composition
(p<0.001, Pearson’s Chi-squared test) as mRNAs whose
upregulation was translationally offset following ERα de-
pletion showed a striking enrichment for a distinct subset
of codons (Fig. 5A-B). This was confirmed by analyses of
codon bias using a set of highly expressed genes as refer-
ence (top panels) and measures of adaptation to the tRNA
pool by the tRNA adaptation index (tAI) whereby relative
tRNA levels are assumed to be mirrored by their genomic
copy numbers (Supplementary Fig. S5A). Moreover, a
reduced tAI was observed at all sextiles along the coding
sequences of upregulated mRNAs which were translation-
ally offset (Supplementary Fig. S5B). We next assessed
how codon usage in herein identified modes of regulation
of gene expression compared to codon usage in transcripts
encoding proteins with distinct cellular function (which
was used to detect codon bias between proliferation and
differentiation associated-transcripts previously (Gingold
et al, 2014)). To this end, we first visualized differences in
codon usage between mRNAs grouped based on cellular
functions (i.e. within GO terms) using correspondence
analysis. Codon usage of different modes of regulation
of gene expression were then projected in the same di-
mensions (Fig. 5C, Supplementary Table S3). Prolifera-
tion and differentiation related functions showed extreme
positive and negative values, respectively, in the first di-
mension (Supplementary Table S3). Strikingly, mRNAs
which were induced at the total transcript level but trans-
lationally offset following ERα depletion showed a more

positive value in dimension one than any GO term (Fig.
5C). Notably, in the gene-set enrichment analysis (Fig. 2),
while the most enriched GO terms found among proteins
encoded by mRNAs whose upregulation was offset at the
level of translation were related to cellular proliferation,
this enrichment did not pass the thresholds for statistical
significance (Supplementary Table S2). To further char-
acterize the nature of the differences in codon usage we
selected the first quintile of codons (12 codons; Fig. 5B;
Supplementary Table S4) with highest positive residu-
als from independence between codon composition and
mode of regulation. Out of these, 9 and 3 codons were
over-represented among mRNAs whose upregulation and
downregulation, were respectively translationally offset,
following ERα depletion (Figs. 5B, 5D). Notably, these 3
codons showed a stronger depletion among mRNAs that
were upregulated but translationally offset as compared
to their enrichment among mRNAs which were downreg-
ulated but offset. Yet, the codon adaptation indexes of
mRNAs whose downregulation was offset at the level of
translation were all consistently higher compared to those
of non-offset mRNAs (Fig. 5B; Supplementary Fig. S5A-
C; Supplementary Table S4). These analyses were based
on codon frequency (which is affected by amino acid fre-
quency) but comparable results were obtained following
normalization to amino acid counts (Fig. 5E, Supple-
mentary Fig. S5D-F). Notably, codons enriched among
induced and offset (9 codons) or repressed and offset (3
codons) mRNAs show strong co-variation across expressed
transcripts (Supplementary Fig. S5G). In summary, mR-
NAs whose total levels are induced but offset at the level
of translation show distinct codon usage, which suggests
that their translational offset could stem from a mismatch
between tRNA expression and demand.

Transcripts whose upregulation is transla-
tionally offset are enriched in codons depend-
ing on U34-modified tRNAs for their efficient
decoding

To explore whether ERα-dependent alterations in tRNA
expression may underpin translational offsetting, we em-
ployed RNAseq of small RNAs. Notably, tRNA modifications
result in short RNA sequencing reads, which do not con-
sistently allow locus-specific expression data (Cozen et al,
2015). Nevertheless, we obtained expression data on tR-
NAs irrespective of loci which allowed quantification of
tRNA expression (Supplementary Fig. S6). When com-
paring shERα to control BM67 cells, however, no significant
change in tRNA expression was observed (Fig. 6A). We
next grouped tRNAs corresponding to codons identified as
overrepresented in mRNAs whose alterations were trans-
lationally offset. No differences in expression of any of
the tRNA groups were however observed between shERα
vs. control BM67 cells (Fig. 6B). In addition to alter-
ation of their expression, tRNA function is regulated by
post-transcriptional modifications (El Yacoubi et al, 2012).
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Figure 5. Transcripts induced but translationally offset upon ERα depletion are characterized by distinct codon usage. (A) For
each codon, the average frequency (per thousand) is compared between transcripts induced but offset vs non-offset (i.e. abundance mode
of regulation) upon ERα depletion. Codons for the same amino acid are connected by a gray line. (B) Heatmap of standardized residuals
from a chi-squared contingency table test. Shown in red and blue are cells with counts significantly higher and lower, respectively, than
expected counts under the null hypothesis (i.e. independence between mode for regulation of gene expression and codon composition). (C) A
correspondence analysis of codon composition for all mouse GO terms. Modes of regulation are projected on the same dimensions. (D) A
correspondence analysis of codon composition for all regulated mRNAs (from Fig. 1E). mRNAs are projected on the 2 first dimensions of the
correspondence analysis and colored according to their mode of regulation. Codons selected as over-represented among translationally offset
mRNAs are projected in the same dimensions. (E) Unsupervised clustering of gene level codon usage normalized by amino acid counts. All
regulated mRNAs (from Fig. 1E) are shown in rows and all codons in columns. Codons identified as over-represented among mRNAs whose
levels were induced but offset or suppressed but offset are indicated in light and dark blue, respectively.
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Figure 6. Translational offsetting of transcripts induced following ERα depletion is mediated by U34 tRNA-modification enzymes.
(A) Volcano plot of changes in tRNA level (shERα vs. shCtrl). Each tRNA is colored according to the mode for regulation of gene expression it
is enriched in. (B) tRNAs were grouped according to the mode for regulation of gene expression they are enriched in and their expression is
compared using boxplots. (C) Immunoblotting of BM67 cell extract for ELP3 and JAG1 after transient ERα knockdown in BM67 cells. (D)
Boxplots of gene expression of ELP3, ALKBH8 and CTU2 upon treatment with 17β-E2 and/or ICI in MCF7 cells (extracted from (Wardell et al,
2012)). *** p<0.001; ** p<0.01; • p<0.1. (E) Immunoblotting of MCF7 cell extracts after treatment with 1 nM E2 and/or 100 nM ICI
after 24 hours. (F) Immunoblotting of MCF7 cell extract after overexpression of ELP3, ALKBH8 and CTU2 combined with treatment of 1 nM
E2 and/or 100 nM ICI. Vh, Vehicle; ICI, ICI-182780.
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Modifications present at the anticodon loop affect trans-
lational rates, sometimes in a codon-specific manner, by
modulating the stability of codon-anticodon pairing, and
thus limiting decoding to specific nucleotides in wobble
position (Rezgui et al, 2013; Deng et al, 2015). Among the
9 codons which were over-represented in mRNAs whose
upregulation was translationally offset, 7 had an adeno-
sine in the 3’ position. These codons are decoded by tRNAs
harboring modified uridine at position 34 (U34; Supple-
mentary Table S4). Moreover, Dek mRNA, which encodes
a tumor-promoting protein and whose upregulation is off-
set at the level of translation upon ERα depletion (Fig. 1G),
is dependent on 5-methoxycarbonyl-methyl-2-thiouridine
(mcm5s2-U) modification at U34 of corresponding tRNAs
(Delaunay et al, 2016). In yeast, this modification is present
on tRNAUUC

Glu, tRNAUUU
Lys and tRNAUUG

Gln, wherein it fa-
cilitates decoding of GAA, AAA and CAA codons (Johansson
et al, 2008). Strikingly, these codons are among those that
were over-represented in mRNAs whose induction is trans-
lationally offset in ERα depleted cells (Fig. 5B). Thus, we
speculated that although tRNA expression did not change
following ERα depletion, alterations in mcm5s2-U modi-
fications may underlie translational offsetting of mRNAs
whose levels are induced.

ERα regulates expression of tRNA U34 modi-
fication enzymes leading to selective transla-
tional offsetting

The mcm5s2-U modification is catalyzed by a cascade of
enzymes including ELP3, ALKBH8 and CTU1/2 (Rapino
et al, 2017). Upon ERα depletion, Elp3 (p=0.03) and
Alkbh8 (p=0.16) showed reductions in their amounts of
polysome-associated mRNA and, consistently, ELP3 protein
level was decreases in shERα BM67 as compared to con-
trol cells (Fig. 6C; no reagents were available to measure
mouse ALKBH8). There are two approaches to studying
estrogen signaling, depleting the receptor or modulating its
activity with ligands. Using BM67 cells with stable knock-
down of ERα excluded any confounding effects of ERβ
and established the translational offsetting as a sustained
response. Yet, this model does not distinguish between
direct effects of ERα –which are usually observed after 2
to 24 hours of estradiol treatment–and indirect regulation
induced by its transcriptional targets (Katchy et al, 2012).
We therefore sought to independently confirm these find-
ings using MCF7 human breast cancer cells, one of the most
common models of ligand-induced ERα activity (Hewitt
& Korach, 2018). To this end, we used a data set where
human breast cancer MCF7 cells were starved followed
by treatment with estradiol (E2) or vehicle for 24 hours
in the presence or absence of selective estrogen receptor
modulators (SERMs) (Wardell et al, 2012). Indeed, this
revealed that ELP3, ALKBH8 and CTU2 mRNA levels are
induced in an ER-dependent fashion (Fig. 6D; CTU1 was
not quantified). As previously reported, stimulation of
MCF7 cells with E2 leads to reduced ERα protein expres-
sion due to ligand-receptor induced conformational change
and poly-ubiquitination following stimulation and receptor

activation (Wijayaratne & McDonnell, 2001) (Fig. 6E).
Transcriptional activity of ERα was confirmed by upregu-
lation of MYC (Wang et al, 2011) which was paralleled
by increase in ELP3 and DEK protein levels (Fig. 6E).
This response was abrogated by ER antagonist ICI-182780
(Fig. 6E). This suggests that translational offsetting of mR-
NAs whose levels are induced by ERα depletion may be
mediated by ERα-dependent alterations in mcm5s2-U mod-
ification. Notably, as observed in a recent study (Rapino et
al, 2018), the regulation of these enzymes did not corre-
late with global changes in mcm5s2-U-modified tRNAs as
quantified by the [(N-acryloylamino)phenyl]mercuric chlo-
ride (APM) method (Igloi, 1988) (Supplementary Fig.
S7). Nonetheless, we sought to rescue E2-stimulated DEK
expression by overexpressing the mcm5s2-U34 modifica-
tion enzymes in MCF7 cells which were treated with E2
and/or ICI-182780 (Fig. 6F). Overexpression of AKLBH8,
but not ELP3 or CTU2, rescued DEK protein levels. (Fig.
6F, Supplementary Fig. S8). These data suggest that en-
zymes catalyzing mcm5s2-U tRNA modifications require
ERα and E2 for their expression. Thus, downregulation
of U34-modifying enzymes following ERα-depletion leads
to translational offsetting of upregulated transcriptional
targets.

Discussion

Improved experimental and analytical methods for
transcriptome-wide analysis of translation have been es-
sential for identifying hitherto unprecedented mechanisms
of translation regulation (Truitt & Ruggero, 2016; Ingolia
et al, 2018; Yordanova et al, 2018). Using such methods,
upon depletion of ERα in prostate cancer, we observed that
translational offsetting appears to be a pervasive mecha-
nism which maintains proteome composition. Transcrip-
tion start site profiling and sequencing of small RNAs re-
vealed that translational offsetting of mRNAs whose levels
are decreased is linked to distinct 5’ and 3’ UTR features.
The length of the 5’UTR can have strong effects on transla-
tion where short (e.g. <30 bases) and very long (e.g. >150
bases) 5’UTRs are associated with reduced translational
efficiencies (Pelletier & Sonenberg, 1987; Koromilas et al,
1992; Arribere & Gilbert, 2013; Sinvani et al, 2015; Gandin
et al, 2016b). In contrast, the median 5’UTR length (85 nt)
of mRNAs whose downregulation is offset at the level of
translation corresponds to what has been described as the
"optimal" length for translation in mammalian cells (Kozak,
1987). Moreover, target sites for miRNAs, which medi-
ate translational suppression (Filipowicz et al, 2008), are
largely absent in mRNAs whose suppression is translation-
ally offset. Finally, tRNAs required for decoding mRNAs
whose downregulation is translationally offset appear to
be expressed at higher levels as compared to other identi-
fied tRNA groups (Fig. 6B) and such transcripts are also
better adapted to the tRNA pool as compared to non-offset
mRNAs (Supplementary Fig. S5A-B). Therefore, this sub-
set of mRNAs exhibits multiple features which would be
expected to facilitate translational offsetting upon reduced
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mRNA levels.

We also observed widespread translational offsetting for
mRNAs whose levels were induced in ERα depleted vs. pro-
ficient cells. In this case, translational offsetting may be
attributed to codon usage of these transcripts. Indeed, the
frequency of codons which are decoded more efficiently by
the U34-modified tRNAs was substantially higher in tran-
scripts whose induction after ERα depletion was translation-
ally offset as compared to non-offset mRNAs. Consistently,
ERα depletion reduced expression of U34 modification en-
zymes, which appear to play a major role in tumorigenesis
(Ladang et al, 2015; Delaunay et al, 2016; Rapino et al,
2018). In this context, genes such as DEK (Delaunay et
al, 2016) and HIF1α (Rapino et al, 2018) were charac-
terized as key downstream effectors, which mediate the
pro-neoplastic effects of U34 modifications. Consistently,
we demonstrate that DEK expression is induced by ERα and
E2. Collectively, these findings suggest that ERα-dependent
modulation of U34-modification enzymes expression re-
sults in translational offset of transcripts whose levels are
induced upon ERα depletion.

In addition to translation initiation, it has recently been
revealed that translation elongation is also dysregulated in
cancer, which in part appears to be determined by codon
composition of mRNAs (Leprivier et al, 2013; Faller et
al, 2015). Herein, we have identified regulation of U34-
modification enzymes as a process by which ERαmodulates
translation of a subset of mRNAs with distinct codon usage
in prostate cancer cells. This regulation is mediated at
the level of mRNA translation by offset of transcriptional
targets requiring U34-modified tRNAs. At the same time, a
second set of transcripts which harbor optimal 5’UTRs and
codon composition but lack target sites for miRNAs are
translationally offset when mRNA levels decrease. We spec-
ulate that this plays a role in mediating biological effects
of ERα in neoplastic tissues. Indeed, using a polysome-
profiling data set comparing tamoxifen-sensitive vs. resis-
tant cells (Geter et al, 2017), we observed translational
activation of mRNAs with higher requirements for U34-
modified tRNAs and increased expression of ALKBH8 in
tamoxifen-resistant cells (Supplementary Fig. S9). Thus,
modulation of translation via ERα-dependent changes in
U34-modifications may be associated with drug resistance
and our findings therefore may have important implications
in understanding alterations in gene expression programs
following treatment with ERα antagonists.

In conclusion, this study establishes translational offsetting
as a distinct subtype of a wide-spread buffering mecha-
nism which allows adaptation to acute (E2 treatment) and
chronic (ERα depletion) alterations in ERα-dependent tran-
scriptomes. Moreover, these findings unravel a previously
unappreciated cooperation between transcriptional and
translational programs which suggest a hitherto unappre-
ciated plasticity of gene expression machinery in shaping
adaptive proteomes.

Methods

Cell Culture, antibodies, western blot

MCF7 cells were purchased from America Type Tissue Cul-
ture Collection and used at low passage for less than 2
months before thawing a new vial. The PTEN-deficient
prostate cancer cell line (BM67) derived from the PB-
Cre;PtenFlox/Flox mouse model of prostate cancer (Wang
et al, 2003) has been described previously (Takizawa et al,
2015) and used at low passage. Stable knockdown of ERα
was achieved using the pGIPZ vector (Open Biosystems)
containing a non-silencing control (shCtrl) or a mouse
ERα shRNA (V2LMM_30677). Cells were maintained on
4 µg/mL of puromycin (Sigma). All cells were grown
in RPMI-1640 (Gibco) and supplemented to a final con-
centration of 5% Fetal Bovine Serum (FBS, Sigma) and
100 IU/mL penicillin and 10 µg/mL streptomycin (P/S,
Invitrogen) and kept in a humidified incubator at 37°C
supplemented with 5% CO2. All cell lines were routinely
tested for mycoplasma (in house service, Peter MacCallum
Cancer Centre). Western blot information is provided in
Supplementary Methods.

RNA-extraction

Polysome profiling was performed on four replicates of
each condition as previously described (Gandin et al, 2014).
Briefly, cytosolic lysates were loaded on a 5-50% sucrose
gradient allowing for isolation of mRNAs associated with
more than 3 ribosomes (hereafter referred to as polysome-
associated mRNA) after ultracentrifugation. Total cytosolic
RNA was isolated in parallel (Gandin et al, 2014).

DNA-microarray assays and data processing

Cytosolic and polysome-associated RNA were quantified
using the Affymetrix Mouse Gene 1.1 ST array as described
previously (Gandin et al, 2016a) by the Bioinformatics and
Expression analysis core facility at Karolinska Institutet.
Poor quality arrays were obtained for one replicate of each
condition leading to exclusion of the whole replicate (cy-
tosolic and polysome-associated samples from both condi-
tions) from all analyses. Gene expression was normalized
using Robust Multiarray Averaging and annotated with a
custom probeset definition (mogene11st_Mm_ENTREZG)
(Dai et al, 2005; Sandberg & Larsson, 2007).

Analysis of polysome-profiling data

Changes in translational efficiency leading to altered pro-
tein levels were quantified using analysis of partial vari-
ance (Larsson et al, 2010, 2011) as implemented in the
anota2seq R/Bioconductor package version 1.2.0 (Oertlin
et al, 2018). Differential expression of cytosolic and
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polysome-associated RNA was also assessed using the an-
ota2seq package. For such analyses, Benjamini-Hochberg
correction was used to account for multiple testing and
a random variance model was used to increase statistical
power (Wright & Simon, 2003; Larsson et al, 2010). Trans-
lational offsetting was defined by mRNAs showing changes
in cytosolic RNA which are not reflected in polysome load-
ing as implemented in anota2seq. Details of the analysis
are provided in Supplementary Methods.

Nanostring gene expression quantification
and analysis

145 genes were selected for quantification by Nanostring
(Geiss et al, 2008). Within each mode of regulation (as
defined in Fig. 1E), genes among the top smallest p-values
were randomly selected. Additional genes within each
mode of regulation (not belonging to the most significant
sets) as well as 11 negative controls (non-regulated genes)
were included as well. Details about methodology and
analysis are given in Supplementary Methods.

GO enrichment analysis

A Generally Applicable Gene-set Enrichment for Pathway
Analysis (Luo et al, 2009) was performed to identify en-
richment of key cellular functions represented by GO terms
(Gene Ontology Consortium, 2015). Additional informa-
tion is provided in Supplementary Methods.

nanoCAGE library preparation, sequencing
and analysis

nanoCAGE libraries of cytosolic mRNA from shERα BM67
cells were prepared as described previously (Gandin et al,
2016b) with several modifications detailed in Supplemen-
tary Methods where description of pre-processing and
analysis is also provided.

RNAseq of small RNAs

RNA was extracted in triplicates from ERα shRNA and con-
trol BM67 cells using the RNeasy Plus Mini Kit (Qiagen).
RNAseq libraries were prepared according to the Illumina
TruSeq Small RNA Library Preparation protocol with small
RNA enrichment on the Agilent Bravo Liquid Handling
Platform and sequenced on HiSeq2500 (HiSeq Control
Software 2.2.58/RTA 1.18.64) with a 1x51 setup. Library
preparation and sequencing was performed at Science for
Life Laboratory National Genomics Infrastructure. Prepro-
cessing and analysis of RNAseq of small RNAs data are
described in Supplementary Methods.

Validation of miRNA expression using qPCR

cDNA was synthesized using miSCRIPT II RT kit (Qia-
gen; 3 replicates) followed by specific miRNA amplifica-
tion using miSCRIPT SYBR Green PCR kit (Qiagen) using
the following miScript specific primers mmu-miR-21a-5p
(5’-UAGCUUAUCAGACUGAUGUUGA-3’), mmu-miR-181a-
5p (5’-AACAUUCAACGCUGUCGGUGAGU-3’), mmu-miR-
32-5p (5’-UAUUGCACAUUACUAAGUUGCA-3’), mmu-miR-
23b-3p (5’-AUCACAUUGCCAGGGAUUACC-3’) and mmu-
miR-27b-3p (5’-UUCACAGUGGCUAAGUUCUGC-3’).

Analysis of codon usage

A detailed explanation is given in Supplementary Meth-
ods. Briefly, the longest coding sequences of all regu-
lated mRNAs were extracted from the consensus coding
sequence database (Pruitt et al, 2009) to retrieve their
codon composition. The codon usage indexes were com-
puted using the codonW (CodonW) and tAI (dos Reis et al,
2003, 2004; dos Reis) packages.

Quantification and analysis of tRNA levels
and modifications

RNAseq of small RNAs data described above was used
for tRNA quantification using the ARM-seq bioinformat-
ics pipeline from Cozen et al. (Cozen et al, 2015) with
a few modifications detailed in Supplementary Meth-
ods. For quantification of mcm5s2-U modified tE(UUC),
tRNA was purified using the miRvana kit (Roche; 4 repli-
cates). 0.5µg RNA was resolved on an 8%. acrylamide
gels containing 0.5x TBE, 7 M urea, and 50 mg/mL
[(N-acryloylamino)phenyl]mercuric chloride (APM) (Igloi,
1988). Northernblot analysis was performed essentially
as described in Leidel et al. (Leidel et al, 2009), using
5’-TTCCCATACCGGGAGTCGAACCCG-3’ as probe to detect
tE(UUC).

Analysis of public dataset for E2 dependent
expression of ELP3, ALKBH8 and CTU2

Expression of enzymes catalyzing the mcm5s2-U34 tRNA
modification upon treatment with E2 and/or ICI-182780
was analyzed using a publicly available data (Wardell et al,
2012) as detailed in Supplementary Methods.

Selective Estrogen Receptor Modulator
(SERM) treatment and target gene rescue

Cells were seeded in standard cell culture conditions to
achieve 25-40% confluency. Twenty-four hours later, the
culture medium was replaced with fresh standard culture
medium (FBS). 24 hours later, SERM were administered
at a concentration of 1 nM 17β-Estradiol (E2) or 100
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nM of Fulvestrant (ICI-182,780). For target gene rescue,
an additional timepoint was added. 24 hours later, sam-
ples were incubated with a mixture containing 7.5 µL of
Lipofectamine 3000 (Invitrogen) complexed with 2.5 ug
of empty vector plasmid or plasmid harboring of ELP3
(pCS6-ELP3, Integrated Sciences #TCMS1004), CTU2
(pcDNA3.1+CTU2-C-HA, GenScript Clone ID OMu03000C)
or ALKBH8 (pcDNA3.1+ALKBH8-C-Myc, GenScript Clone
ID OMu01949C). Samples were then processed for western
blot.

Statistics

Unless stated otherwise, all statistical tests are two-sided.

Data availability

The DNA-microarrays, RNAseq of small RNAs and
nanoCAGE datasets generated and analyzed during
the current study are available in the NCBI Gene Ex-
pression Omnibus repository under accession number
GSE120917 (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE120917).
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